Energy Transition

China is currently attempting to reduce greenhouse gas emissions and increase natural gas consumption as a part of broader national strategies to reduce the air pollution impacts of the nation’s energy system. To assess the scenarios of natural gas development up to 2050, we employ a global energy-economic model—the MIT Economic Projection and Policy Analysis (EPPA) model. The results show that a cap-and-trade policy will enable China to achieve its climate mitigation goals, but will also reduce natural gas consumption. An integrated policy that uses a part of the carbon revenue obtained from the cap-and-trade system to subsidize natural gas use promotes natural gas consumption, resulting in a further reduction in coal use relative to the cap-and-trade policy case. The integrated policy has a very moderate welfare cost; however, it reduces air pollution and allows China to achieve both the climate objective and the natural gas promotion objective.

A well-known challenge in computable general equilibrium (CGE) models is to maintain correspondence between the forecasted economic and physical quantities over time. Maintaining such a correspondence is necessary to understand how economic forecasts reflect, and are constrained by, relationships within the underlying physical system. This work develops a method for projecting global demand for passenger vehicle transport, retaining supplemental physical accounting for vehicle stock, fuel use, and greenhouse gas (GHG) emissions. This method is implemented in the MIT Emissions Prediction and Policy Analysis Version 5 (EPPA5) model and includes several advances over previous approaches. First, the relationship between per-capita income and demand for passenger vehicle transport services (in vehicle-miles traveled, or VMT) is based on econometric estimates and modeled using quasi-homothetic preferences. Second, the passenger vehicle transport sector is structured to capture opportunities to reduce fleet-level gasoline use through the application of vehicle efficiency or alternative fuel vehicle technologies, introduction of alternative fuels, or reduction in demand for VMT. Third, alternative fuel vehicles (AFVs) are represented in the EPPA model. Fixed costs as well as learning effects that could influence the rate of AFV introduction are captured explicitly. This model development lays the foundation for assessing policies that differentiate based on vehicle age and efficiency, alter the relative prices of fuels, or focus on promoting specific advanced vehicle or fuel technologies.

© 2012 Elsevier B.V.

MIT’s contribution to this collaborative effort will be to investigate future changes in regional air pollution characteristics due to technological and societal changes. The researchers will quantify the future implications of technologies and efficiency improvements in the energy and transportation sectors on regional differences in air pollution impacts. As a case study, they’ll assess the environmental and health benefits of choices in state and regional carbon policy implementation relevant to recently proposed carbon dioxide emission reductions from the energy sector.

A need for a low-carbon world has added a new challenging dimension for long-term energy scenarios development. In addition to the traditional factors like technological progress and demographic, economic, political and institutional considerations, there is another aspect of modern energy forecasts related to the coverage, timing and stringency of policies to mitigate greenhouse gas emissions and air pollutants. Modern tools for energy scenario development provide a good basis for estimates of the required changes in the energy system to achieve certain climate and environmental targets. While current scenarios show that a move to a low- carbon energy future requires a drastic change in energy investment and the resulting mix in energy technologies, the exact technology mix, paths to the needed mix, price and cost projections should be treated with a great degree of caution. The scenarios do not provide exact predictions, but they can be used as a qualitative analysis of decision-making risks associated with different pathways. If history is any guide, energy scenarios overestimate the extent to which the future will look like the recent past. As future costs and the resulting technology mixes are uncertain, a wise government policy is to target emissions reductions from any source, rather than focus on boosting certain kinds of low-carbon energy.

A recent UN climate agreement has the potential to shift global energy consumption from a mix dominated by fossil fuels to one driven by low-carbon technologies. It is clear that if this happens, fossil-fuel-producing countries will have to adjust their economies to reflect lower export earnings from oil, coal, and natural gas. The rise of renewable energy may also create new centers of geopolitical power. As renewable resources become widely distributed, supply-side geopolitics are expected to be less influential than in the fossil-fuel era. Instead of focusing on just two major resources, oil and natural gas, low-carbon energy geopolitics may depend on many additional factors, such as access to technology, power lines, rare earth materials, patents, storage, and dispatch, not to mention unpredictable government policies. Despite uncertainty, there is no question that the balance of power in energy geopolitics is shifting from fossil-fuel owners to countries that are developing low-carbon solutions.

Pages

Subscribe to Energy Transition