Energy Transition

We use an economy-wide model to estimate the impact of a representative climate policy on fuel prices and economic activity, and a partial equilibrium model of the aviation industry to estimate changes in aviation carbon dioxide emissions and operations. Between 2012 and 2050, with reference demand growth benchmarked to ICAO/GIACC (2009) forecasts, we find that aviation emissions increase by 130 per cent. In our policy scenarios, emissions increase by between 103 per cent and 123 per cent. Under the assumptions in our analysis, aviation contributes to climate policy targets by funding emissions reductions in sectors with less costly abatement options.

© 2013 Journal of Transport Economics and Policy

We estimate the economic impacts on US airlines that may arise from the inclusion of aviation in the European Union Emissions Trading Scheme from 2012 to 2020. We find that the Scheme would only have a small impact on US airlines and emissions, and that aviation operations would continue to grow. If carriers pass on all additional costs, including the opportunity costs associated with free allowances, to consumers, profits for US carriers will increase. Windfall gains from free allowances may be substantial because, under current allocation rules, airlines would only have to purchase about a third of the required allowances. However, an increase in the proportion of allowances auctioned would reduce windfall gains and profits for US airlines may decline.

Between 2005 and 2012, U.S. natural gas production from ultra-low permeability hydrocarbon-prone mud rock formations, often referred to as the “shale resource”, increased 20-fold to more than 570 Mm3 per day, and now accounts for ≈33% of total U.S. gas output. These developments have had a profound impact on the U.S. energy sector. Despite it’s rapid rise, the exploitation of the shale resource is still in it nascency, and knowledge of the precise production mechanisms remains limited. A consequence of this is that the accurate economic characterization of the resource remains difficult. This paper examines spatial and temporal trends in the productivity of contemporary horizontal, hydraulically fractured wells within and between the major U.S. shale plays.

© 2013 Springer-Verlag Berlin Heidelberg

Australia’s wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia’s electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia’s energy mix, this study sets out to analyze and interpret the nature of Australia’s wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast’s electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it’s intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale.

© 2014 Hallgren et al.

Wind generation has been growing fast, with onshore wind having a 27% average annual growth rate over the past decade. Motivated by this growth, a comprehensive analysis of both the economic and engineering implications of a large wind penetration in power systems was conducted.

In order to understand and capture the unique characteristics of wind generation different tools and methods were combined. First, an analysis of hourly wind and load profiles was completed for individual European countries and for the whole European region. Then, a detailed electricity model was used in order to capture the effects of a large wind penetration (up to 60% of total demand) on the power system. Finally, this information was integrated in a computable general equilibrium (CGE) model, the MIT EPPA model—a tool for analyzing the economy-wide implications of energy and climate policies. Based on the bottom-up modeling results, a new methodology for capturing wind intermittency in EPPA, through modeling system flexibility requirements at large wind penetration levels, was proposed. As a case study, a 40% and an 80% GHG emissions reduction scenarios by 2050 (relative to 1990 levels) were modeled for Europe.

The analysis illustrates that, in order to mitigate wind intermittency, particularly for large wind penetration levels, a system needs to have enough flexible capacity installed—traditionally provided by gas or hydro technologies. However, it is shown that for a significant emissions reduction scenario (80% GHG reduction in Europe by 2050), providing this flexibility from the generation side might be challenging as low-cost, low-carbon, flexible, dispatchable technological options might be limited. This might impose a constraint on the total electricity use and on the growth of wind penetration. Thus, the importance of considering other options for providing flexibility in the system, such as storage, demand response or interconnections is displayed. In particular, the wind and load profile analysis indicates a high value of interconnecting wind farms in the European region.

The 2005 hurricane season was particularly damaging to the United States, contributing to significant losses to energy infrastructure –much of it a result of flooding from storm surges during hurricanes Katrina and Rita. Previous research suggests that these events are not isolated, but rather foreshadow a risk that is to continue and likely increase with a changing climate (17). Since extensive energy infrastructure exists along the U.S. Atlantic and Gulf coasts, these facilities are exposed to an increasing risk of flooding. We study the combined impacts of anticipated sea level rise, hurricane activity, and subsidence on energy infrastructure in these regions with a first application to Galveston Bay. Using future climate conditions as projected by four different Global Circulation Models (GCMs), we model the change in hurricane activity from present day climate conditions in response to a climate projected in 2100 under the IPCC A1B emissions scenario using hurricane analysis developed by Emanuel (5). We apply the results from hurricane runs from each model to the SLOSH model (Sea, Lake and Overland Surges from Hurricanes) (19) to investigate the change in frequency and distribution of surge heights across climates. Further, we incorporate uncertainty surrounding the magnitude of sea level rise and subsidence, resulting in more detailed projections of risk levels for energy infrastructure over the next century. With a detailed understanding of energy facilities’ changing risk exposure, we conclude with a dynamic programming cost-benefit analysis to optimize decision making over time as it pertains to adaptation.

Several recent studies establish that crude oil and natural gas prices are cointegrated. Yet at times in the past, and very powerfully in the last two years, many voices have noted that the two price series appear to have “decoupled”. We explore the apparent contradiction between these two views. We find that recognition of the statistical fact of cointegration needs to be tempered with two additional points. First, there is an enormous amount of unexplained volatility in natural gas prices at short horizons. Hence, any simple formulaic relationship between the prices will leave a large portion of the natural gas price unexplained. Second, the cointegrating relationship does not appear to be stable through time. The prices may be tied, but the relationship can shift dramatically over time. Therefore, although the two price series may be cointegrated, the confidence intervals for both short and long time horizons are large. Keywords: Oil price, Natural gas price, Cointegration

© 2012 IAEE

Historically, electricity consumption has been largely insensitive to short term spot market conditions, requiring the equating of supply and demand to occur almost exclusively through changes in production. Large scale entry of demand response, however, is rapidly changing this paradigm in the electricity market located in the mid-Atlantic region of the US, called PJM. Greater demand side participation in electricity markets is often considered a low cost alternative to generation and an important step towards decreasing the price volatility driven by inelastic demand. Recent experience in PJM, however, indicates that demand response in the form of a peaking product has the potential to increase energy price level and volatility.

Currently, emergency demand response comprises the vast majority of demand side participation in PJM. This is a peaking product dispatched infrequently and only during periods of scarcity when thermal capacity is exhausted. While emergency demand response serves as a cheaper form of peaking resource than gas turbines, it has recently contributed to increases in energy price volatility by setting price at the $1,800/MWh price cap, substantially higher than the marginal cost of most thermal generation. Additionally, the entry of demand response into the PJM capacity market is one of primary drivers for capacity prices declining by over fifty percent. This study investigates the large penetration of emergency demand response in PJM and the implications for the balance between energy and capacity prices and energy price volatility. A novel model is developed that dynamically simulates generation entry and exit over a long term horizon based on endogenously determined energy and capacity prices. The study finds that, while demand response leads to slight reductions in total generation cost, it shifts the bulk of capacity market revenues into the energy market and also vastly increases energy price volatility.

This transition towards an energy only market will send more accurate price signals to consumers as costs are moved out of the crudely assessed capacity charge and into the dynamic energy price. However, the greater volatility will also increase the risk faced by many market participants. The new market paradigm created by demand response will require regulators to balance the importance of sending accurate price signals to consumers against creating market conditions that decrease risk and foster investment.

The possibility of using electricity dispatching strategies to achieve a 50% nitrogen oxide (NOx) emission reduction from electricity generating units was examined using the grid of the Electricity Reliability Council of Texas as a case study. Simulations of a hypothetical policy demonstrate that imposing higher NOx prices induces a switch from some coal-fired generation to natural gas generation, lowering NOx emissions. The simulation is for a day with relatively high electricity demand and accounts for transmission constraints. In addition to the lowering of the NOx emissions, there are co-benefits of the redispatching of generation from coal to natural gas, including reductions in the emissions of sulfur oxides (24%–71%), Hg (16%–82%) and CO2 (8.8%–22%). Water consumption was also decreased, by 4.4%–8.7%. Substantial reductions of NOx emissions can be achieved for an increased generation cost of 4–13%, which is due to the higher fuel price of gas relative to coal (assuming a price of $3.87 per MMBTU (MMBTU: million British thermal units) for natural gas, and $1.89 per MMBTU for coal). However, once the system has reduced NOx emissions by approximately 50%, there is little incremental reduction in emissions due to further increases in NOx prices.

© 2011 IOP Publishing Ltd

Middle distillate (MD) transportation fuels, including diesel and jet fuel, make up almost 30% of liquid fuel consumption in the United States. Alternative drop-in MD and biodiesel could potentially reduce dependence on crude oil and the greenhouse gas intensity of transportation. However, the water and land resource requirements of these novel fuel production technologies must be better understood. This analysis quantifies the lifecycle green and blue water consumption footprints of producing: MD from conventional crude oil; Fischer–Tropsch MD from natural gas and coal; fermentation and advanced fermentation MD from biomass; and hydroprocessed esters and fatty acids MD and biodiesel from oilseed crops, throughout the contiguous United States. We find that FT MD and alternative MD derived from rainfed biomass have lifecycle blue water consumption footprints of 1.6 to 20.1 Lwater/LMD, comparable to conventional MD, which ranges between 4.1 and 7.4 Lwater/LMD. Alternative MD derived from irrigated biomass has a lifecycle blue water consumption footprint potentially several orders of magnitude larger, between 2.7 and 22 600 Lwater/LMD. Alternative MD derived from biomass has a lifecycle green water consumption footprint between 1.1 and 19 200 Lwater/LMD. Results are disaggregated to characterize the relationship between geo-spatial location and lifecycle water consumption footprint. We also quantify the trade-offs between blue water consumption footprint and areal MD productivity, which ranges from 490 to 4200 LMD/ha, under assumptions of rainfed and irrigated biomass cultivation. Finally, we show that if biomass cultivation for alternative MD is irrigated, the ratio of the increase in areal MD productivity to the increase in blue water consumption footprint is a function of geo-spatial location and feedstock-to-fuel production pathway.

© 2013 American Chemical Society

Pages

Subscribe to Energy Transition