Infrastructure & Investment

Abstract: Water supply infrastructure planning faces many uncertainties. Uncertainty in short-term in rainfall and runoff, groundwater storage, and long-term climate change impacts water supply forecasts. Population and economic growth drive urban water demand growth at rapid but uncertain rates. Overbuilding infrastructure can lead to expensive stranded assets and unnecessary environmental impacts, while under building can cause reliability outages with impacts on the economy, ecosystems, and human health. This dissertation assesses the potential for Bayesian learning about uncertainty to enable flexible, adaptive approaches in which infrastructure can be changed over time to reduce cost risk while achieving reliability targets. It develops a novel planning framework that: 1) classifies uncertainties and applies appropriate, differentiated uncertainty analysis tools, 2) applies Bayesian inference to physical models of hydrology and climate to develop dynamic uncertainty estimates, and 3) uses stochastic dynamic programming and engineering options analysis to assess the value of flexibility in mitigating cost and reliability risk. This framework is applied to three applications. Chapter 3 evaluates the potential for modular desalination design to manage multiple, diverse uncertainties — streamflow, demand growth, and the cost of water shortages — in Melbourne, Australia. Chapter 4 addresses uncertainty in groundwater resources in desalination planning in Riyadh, Saudi Arabia, and Chapter 5 addresses model uncertainty in climate change projections in a dam design problem in Mombasa, Kenya. Across all three applications, we find value in flexible infrastructure planning with a 9–28% reduction in expected cost. However, the performance of flexible approaches compared to traditional robust approaches varies considerably and is influenced by technology choice, economies of scale, discounting, the presence of irreducible stochastic variability, and the value society places on water reliability.

While the most devastating and costly impacts of climate change occur at regional and local scales, Earth System Models (ESMs), which simulate the climate, are too computationally time-consuming and expensive to run at sufficient resolution to provide this level of detail. But assessment of regional and local climate impacts is critical to enabling municipalities, businesses and regional economies to prepare for the effects of a changing climate—including the possibility of more frequent and intense extreme events such as major storms and heatwaves. To that end, this study uses a regional climate model to downscale middle and end-of-century climate projections of an ESM under a high-impact emissions scenario to a horizontal resolution of three kilometers. The resulting high-resolution climate projections consist of more than 200 climate variables at hourly frequency. This allows for analysis of changes in temperature, precipitation and other climate variables within a single 24-hour period. The aim of these projections is to support further assessments of climate change impacts and sustainability studies in the region.

 

Extreme precipitation events pose a significant threat to public safety, natural and managed resources, and the functioning of society. Changes in such high-impact, low-probability events have profound implications for decision-making, preparation and costs of mitigation and adaptation efforts. Understanding how extreme precipitation events will change in the future and enabling consistent and robust projections is therefore important for the public and policymakers as we prepare for consequences of climate change.

Projection of extreme precipitation events, however, particularly at the local scale, presents a critical challenge: the climate model-based simulations of precipitation that we currently rely on for such projections—general circulation models (GCMs)—are not very realistic, mainly due to the models’ coarse spatial resolution. This coarse resolution precludes adequate representation of highly influential, small-scale features such as moisture convection and topography. Regional circulation models (RCMs) provide much higher resolution and better representation of such features, and are thus often perceived as an optimum approach to producing more accurate heavy precipitation statistics than GCMs. However, they are much more computationally intensive, time-consuming and expensive to run.

In a previous paper, the researchers developed an algorithm that detects the occurrence of heavy precipitation events based on climate models’ well-resolved, large-scale atmospheric circulation conditions associated with those events—rather than relying on these models’ simulated precipitation. The algorithm’s results corresponded with observations with much greater precision than the model-simulated precipitation.

In this paper, the researchers show that the performance of the new algorithm in detecting heavy precipitation event is not dependent on the model resolution and even better than that of precipitation simulated from RCMs. The algorithm thus presents a robust and economic way to assess extreme precipitation frequency across a broad range of GCMs and multiple climate change scenarios with minimal computational requirements.   

Pages

Subscribe to Infrastructure & Investment