Natural Ecosystems

Abstract: Nitrogen (N) availability exerts strong control on carbon storage in the forests of Northern Eurasia. Here, using a process-based model, we explore how three factors that alter N availability—permafrost degradation, atmospheric N deposition, and the abandonment of agricultural land to forest regrowth (land-use legacy)—affect carbon storage in the region’s forest vegetation over the 21st century within the context of two IPCC global-change scenarios (RCPs 4.5 and 8.5). For RCP4.5, enhanced N availability results in increased tree carbon storage of 27.8 Pg C, with land-use legacy being the most important factor. For RCP8.5, enhanced N availability results in increased carbon storage in trees of 13.4 Pg C, with permafrost degradation being the most important factor. Our analysis reveals complex spatial and temporal patterns of regional carbon storage. This study underscores the importance of considering carbon-nitrogen interactions when assessing regional and sub-regional impacts of global change policies.

Human activities have released large quantities of neutral persistent organic pollutants (POPs) that may be biomagnified in food webs and pose health risks to wildlife, particularly top predators. Here we develop a global 3‐D ocean simulation for four polychlorinated biphenyls (PCBs) spanning a range of molecular weights and volatilities to better understand effects of climate‐driven changes in ocean biogeochemistry on the lifetime and distribution of POPs. Observations are most abundant in the Arctic Ocean. There, model results reproduce spatial patterns and magnitudes of measured PCB concentrations. Sorption of PCBs to suspended particles and subsequent burial in benthic marine sediment is the dominant oceanic loss process globally. Results suggest benthic sediment burial has removed 75% of cumulative PCB releases since the onset of production in 1930. Wind speed, light penetration, and ocean circulation exert a stronger and more variable influence on volatile PCB congeners with lower particle affinity such as chlorinated biphenyl‐28 and chlorinated biphenyl‐101. In the Arctic Ocean between 1992 and 2015, modeled evasion (losses) of the more volatile PCB congeners from the surface ocean increased due to declines in sea ice and changes in ocean circulation. By contrast, net deposition increased slightly for higher molecular weight congeners with stronger partitioning to particles. Our results suggest future climate changes will have the greatest impacts on the chemical lifetimes and distributions of volatile POPs with lower molecular weights.

Abstract: Crop biodiversity has the potential to enhance resistance to strains due to biotic and abiotic factors and to improve crop production and farm revenues. To investigate the effect of crop biodiversity on crop productivity, we build a probabilistic model based on ecological mechanisms to describe crop survival and productivities according to diversity. From this analytic model, we derive reduced forms that are empirically estimated using detailed field data of South African agriculture combined with satellite derived data. Our results confirm that diversity has a positive and significant impact on crop survival odds. We show the consistency of these results with the underlying ecologic and agricultural mechanisms.

To Purchase Book: https://press.uchicago.edu/ucp/books/book/chicago/A/bo42710291.html

Pages

Subscribe to Natural Ecosystems