JP

This report documents the version 5 of the MIT Economic Projection and Policy Analysis (EPPA) model. In addition to the updates in economic and population data, the model includes new features such as land use change representation, private vehicles detail, bioenergy production, and power sector representation. We provide an overview of the model with an emphasis on these new features of EPPA.

Carbon tetrachloride (CCl4) is an ozone-depleting substance, which is controlled by the Montreal Protocol and for which the atmospheric abundance is decreasing. However, the current observed rate of this decrease is known to be slower than expected based on reported CCl4 emissions and its estimated overall atmospheric lifetime. Here we use a three-dimensional (3-D) chemical transport model to investigate the impact on its predicted decay of uncertainties in the rates at which CCl4 is removed from the atmosphere by photolysis, by ocean uptake and by degradation in soils. The largest sink is atmospheric photolysis (74 % of total), but a reported 10 % uncertainty in its combined photolysis cross section and quantum yield has only a modest impact on the modelled rate of CCl4 decay. This is partly due to the limiting effect of the rate of transport of CCl4 from the main tropospheric reservoir to the stratosphere, where photolytic loss occurs. The model suggests large interannual variability in the magnitude of this stratospheric photolysis sink caused by variations in transport. The impact of uncertainty in the minor soil sink (9 % of total) is also relatively small. In contrast, the model shows that uncertainty in ocean loss (17 % of total) has the largest impact on modelled CCl4 decay due to its sizeable contribution to CCl4 loss and large lifetime uncertainty range (147 to 241 years). With an assumed CCl4 emission rate of 39 Gg year−1, the reference simulation with the best estimate of loss processes still underestimates the observed CCl4 (overestimates the decay) over the past 2 decades but to a smaller extent than previous studies. Changes to the rate of CCl4 loss processes, in line with known uncertainties, could bring the model into agreement with in situ surface and remote-sensing measurements, as could an increase in emissions to around 47 Gg year−1. Further progress in constraining the CCl4 budget is partly limited by systematic biases between observational datasets. For example, surface observations from the National Oceanic and Atmospheric Administration (NOAA) network are larger than from the Advanced Global Atmospheric Gases Experiment (AGAGE) network but have shown a steeper decreasing trend over the past 2 decades. These differences imply a difference in emissions which is significant relative to uncertainties in the magnitudes of the CCl4 sinks.

More than 600 acres of solar panels have been successfully installed and connected on land in North Carolina and are delivering their power into the nation’s grid, thanks to a power purchase agreement (PPA) with MIT and two other Boston-based organizations. The installation will not only offset a substantial portion of the Institute’s greenhouse gas emissions but also enable an exceptional level of real-time data collection that could enhance research and education on the design and operation of solar facilities.

The growth in global methane (CH4) concentration, which had been ongoing since the industrial revolution, was observed to stall around the year 2000, before resuming globally in 2007. Here, we evaluate the role of the hydroxyl radical (OH), the major CH4 sink, in the recent CH4 growth. We also examine the influence of systematic uncertainties in OH on CH4 emissions inferred from atmospheric observations. We use observations of 1,1,1-trichloroethane (CH3CCl3), which is lost primarily through reaction with OH, to estimate OH levels as well as CH3CCl3 emissions, whose uncertainty has previously limited the accuracy of OH estimates. We find a 61% - 73% probability that a decline in OH has contributed to the post-2007 methane rise. Our median solution suggests that CH4 emissions increased relatively steadily during the late 1990s and early 2000s, after which, growth was more modest. This solution obviates the need for a sudden, statistically significant change in total CH4 emissions around the year 2007 to explain the atmospheric observations, and contributes to the decline in the atmospheric 13CH4/12CH4 ratio. Our approach indicates that significant OH-related uncertainties in the CH4 budget remain, and we find that it is not possible to implicate, with a high degree of confidence, rapid global CH4 emissions changes as the primary driver of recent trends, when our inferred OH trends and these uncertainties are considered.

Given uncertainty in long-term carbon reduction goals, how much non-carbon generation should be developed in the near-term? This research investigates the optimal balance between the risk of overinvesting in non-carbon sources that are ultimately not needed and the risk of underinvesting in non-carbon sources and subsequently needing to reduce carbon emissions dramatically. We employ a novel framework that incorporates a computable general equilibrium (CGE) model of the U.S. into a two-stage stochastic approximate dynamic program (ADP) focused on decisions in the electric power sector. We solve the model using an ADP algorithm that is computationally tractable while exploring the decisions and sampling the uncertain carbon limits from continuous distributions.

The results of the model demonstrate that an optimal hedge is in the direction of more non-carbon investment in the near-term, in the range of 20-30% of new generation. We also demonstrate that the optimal share of non-carbon generation is increasing in the variance of the uncertainty about the long-term carbon targets, and that with greater uncertainty in the future policy regime, a balanced portfolio of non-carbon, natural gas, and coal generation is desirable.

Precipitation-gauge observations and atmospheric reanalysis are combined to develop an analogue method for detecting heavy precipitation events based on prevailing large-scale atmospheric conditions. Combinations of atmospheric variables for circulation (geopotential height and wind vector) and moisture (surface specific humidity, column and up to 500-hPa precipitable water) are examined to construct analogue schemes for the winter [December–February (DJF)] of the “Pacific Coast California” (PCCA) region and the summer [June–August (JJA)] of the Midwestern United States (MWST). The detection diagnostics of analogue schemes are calibrated with 1979–2005 and validated with 2006–14 NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA). All analogue schemes are found to significantly improve upon MERRA precipitation in characterizing the occurrence and interannual variations of observed heavy precipitation events in the MWST. When evaluated with the late twentieth-century climate model simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), all analogue schemes produce model medians of heavy precipitation frequency that are more consistent with observations and have smaller intermodel discrepancies than model-based precipitation. Under the representative concentration pathways (RCP) 4.5 and 8.5 scenarios, the CMIP5-based analogue schemes produce trends in heavy precipitation occurrence through the twenty-first century that are consistent with model-based precipitation, but with smaller intermodel disparity. The median trends in heavy precipitation frequency are positive for DJF over PCCA but are slightly negative for JJA over MWST. Overall, the analyses highlight the potential of the analogue as a powerful diagnostic tool for model deficiencies and its complementarity to an evaluation of heavy precipitation frequency based on model precipitation alone.

After more than three and a half years of service as the 13th U.S. Secretary of Energy, nuclear physicist Ernest J. Moniz has returned to his roots at MIT, the place where he served most of his professional career.

Nominated to the cabinet by President Barack Obama in March 2013 and confirmed by the Senate on May 16 in a unanimous vote — a rare occurrence in a polarized political atmosphere — Moniz left the office on Jan. 20, 2017, with the arrival of the Trump administration.

Nearly 25 percent of the world’s malnourished population lives in sub-Saharan Africa, where more than 300 million people depend on corn, or maize, as their main food source. Maize is the most widely harvested agricultural product in Africa and is grown by small farmers who rely heavily on rainwater rather than irrigation. The crop is therefore extremely sensitive to drought, and since 2015 its production has fallen dramatically as a result of record-setting drought conditions across southern and eastern Africa. 

Pages

Subscribe to JP