JP

Understanding the capacity of agricultural systems to feed the world population under climate change requires projecting future food demand. This article reviews demand modeling approaches from 10 global economic models participating in the Agricultural Model Intercomparison and Improvement Project (AgMIP). We compare food demand projections in 2050 for various regions and agricultural products under harmonized scenarios of socioeconomic development, climate change, and bioenergy expansion. In the reference scenario (SSP2), food demand increases by 59–98% between 2005 and 2050, slightly higher than the most recent FAO projection of 54% from 2005/2007. The range of results is large, in particular for animal calories (between 61% and 144%), caused by differences in demand systems specifications, and in income and price elasticities. The results are more sensitive to socioeconomic assumptions than to climate change or bioenergy scenarios. When considering a world with higher population and lower economic growth (SSP3), consumption per capita drops on average by 9% for crops and 18% for livestock. The maximum effect of climate change on calorie availability is −6% at the global level, and the effect of biofuel production on calorie availability is even smaller.

© 2013 International Association of Agricultural Economists

We assess the ability of global water systems, resolved at 282 assessment subregions (ASRs), to the meet water requirements under integrated projections of socioeconomic growth and climate change. We employ a water resource system (WRS) component embedded within the Massachusetts Institute of Technology Integrated Global System Model (IGSM) framework in a suite of simulations that consider a range of climate policies and regional hydroclimate changes out to 2050. For many developing nations, water demand increases due to population growth and economic activity have a much stronger effect on water stress than climate change. By 2050, economic growth and population change alone can lead to an additional 1.8 billion people living under at least moderate water stress, with 80% of these located in developing countries. Uncertain regional climate change can play a secondary role to either exacerbate or dampen the increase in water stress. The strongest climate impacts on water stress are observed in Africa, but strong impacts also occur over Europe, Southeast Asia, and North America. The combined effects of socioeconomic growth and uncertain climate change lead to a 1.0–1.3 billion increase of the world’s 2050 projected population living with overly exploited water conditions—where total potential water requirements will consistently exceed surface water supply. This would imply that adaptive measures would be taken to meet these surface water shortfalls and include: water-use efficiency, reduced and/or redirected consumption, recurrent periods of water emergencies or curtailments, groundwater depletion, additional interbasin transfers, and overdraw from flow intended to maintain environmental requirements.

© 2014 the authors

We assess the ability of global water systems, resolved at 282 large river basins or Assessment Sub Regions (ASRs), to the meet water requirements over the coming decades under integrated projections of socioeconomic growth and climate change. We employ a Water Resource System (WRS) component embedded within the MIT Integrated Global System Model (IGSM) framework in a suite of simulations that consider a range of climate policies and regional hydroclimatic changes through the middle of this century. We find that for many developing nations water-demand increases due to population growth and economic activity have a much stronger effect on water stress than climate change. By 2050, economic growth and population change alone can lead to an additional 1.8 billion people living in regions with at least moderate water stress. Of this additional 1.8 billion people, 80% are found in developing countries. Uncertain regional climate change can play a secondary role to either exacerbate or dampen the increase in water stress due to socioeconomic growth. The strongest climate impacts on relative changes in water stress are seen over many areas in Africa, but strong impacts also occur over Europe, Southeast Asia and North America. The combined effects of socioeconomic growth and uncertain climate change lead to a 1.0 to 1.3 billion increase of the world's 2050 projected population living in regions with overly exploited water conditions— where total potential water requirements will consistently exceed surface-water supply. Under the context of the WRS model framework, this would imply that adaptive measures would be taken to meet these surface-water shortfalls and would include: water-use efficiency, reduced and/or redirected consumption, recurrent periods of water emergencies or curtailments, groundwater depletion, additional inter-basin transfers, and overdraw from flow intended to maintain environmental requirements.

Solar electricity generation is one of very few low-carbon energy technologies with the potential to grow to very large scale. As a consequence, massive expansion of global solar generating capacity to multi-terawatt scale is very likely an essential component of a workable strategy to mitigate climate change risk. Recent years have seen rapid growth in installed solar generating capacity, great improvements in technology, price, and performance, and the development of creative business models that have spurred investment in residential solar systems. Nonetheless, further advances are needed to enable a dramatic increase in the solar contribution at socially acceptable costs. Achieving this role for solar energy will ultimately require that solar technologies become cost-competitive with fossil generation, appropriately penalized for carbon dioxide (CO2) emissions, with — most likely — substantially reduced subsidies.

This study examines the current state of U.S. solar electricity generation, the several technological approaches that have been and could be followed to convert sunlight to electricity, and the market and policy environments the solar industry has faced. Our objective is to assess solar energy’s current and potential competitive position and to identify changes in U.S. government policies that could more efficiently and effectively support the industry’s robust, long-term growth.

We focus in particular on three preeminent challenges for solar generation: reducing the cost of installed solar capacity, ensuring the availability of technologies that can support expansion to very large scale at low cost, and easing the integration of solar generation into existing electric systems. Progress on these fronts will contribute to greenhouse-gas reduction efforts, not only in the United States but also in other nations with developed electric systems. It will also help bring light and power to the more than one billion people worldwide who now live without access to electricity.

The Global Temperature Potential (GTP) has recently been proposed as an alternative to the Global Warming Potential (GWP). Using two different Earth Models of Intermediate Complexity, we show that the solution to the 100-year sustained GTP for methane is significantly larger than the equivalent GWP due to the inclusion of future changes in greenhouse gas concentrations in the reference scenario and different atmospheric chemistry assumptions. This result suggests that methane reductions may be undervalued when using GWPs, but the policy implications depend on how the objectives of greenhouse gas policy are defined.

© 2012 Springer Science+Business Media B.V.

We analyze the economic and emissions impacts on U.S. commercial aviation of the Federal Aviation Administration’s renewable jet fuel goal when met using advanced fermentation (AF) fuel from perennial grasses. These fuels have recently been certified for use in aircraft and could potentially provide greater environmental benefits than aviation biofuels approved previously. Due to uncertainties in the commercialization of AF technologies, we consider a range of assumptions concerning capital costs, energy conversion efficiencies and product slates. In 2030, estimates of the implicit subsidy required to induce consumption of AF jet fuel range from $0.45 to $20.85 per gallon. These correspond to a reference jet fuel price of $3.23 per gallon and AF jet fuel costs ranging from 4.01 to $24.41 per gallon. In all cases, as renewable jet fuel represents around 1.4% of total fuel consumed by commercial aviation, the goal has a small impact on aviation operations and emissions relative to a case without the renewable jet fuel target, and emissions continue to grow relative to those in 2005. Costs per metric ton of carbon dioxide equivalent abated by using biofuels range from $42 to $652.

Greenhouse gas (GHG) restrictions implemented by some nations can increase emissions in nations without climate policies. Leakage of emissions can occur via at least two channels. First, climate policies reduce fossil fuel prices which result in increased energy consumption in countries without restrictions. Second, energy-intensive production in countries without GHG restrictions can increase at the expense of energy-intensive production in countries with climate policies. The second form of leakage highlights competitiveness issues that arise when a subset of nations restricts emissions.

© 2012 Oxford University Press

This study estimates of the impact of climate change on yields for the four most commonly grown crops (millet, maize, sorghum and cassava) in Sub-Saharan Africa (SSA). A panel data approach is used to relate yields to standard weather variables, such as temperature and precipitation, and sophisticated weather measures, such as evapotranspiration and the standardized precipitation index (SPI). The model is estimated using data for the period 1961-2002 for 37 countries. Crop yields through 2100 are predicted by combining estimates from the panel analysis with climate change predictions from general circulation models (GCMs). Each GCM is simulated under a range of greenhouse gas emissions (GHG) assumptions. Relative to a case without climate change, yield changes in 2100 are near zero for cassava and range from –19% to +6% for maize, from –38% to –13% for millet and from –47% to –7% for sorghum under alternative climate change scenarios.

© 2012 SciRes

We investigate the effect of climate change on crop productivity in Africa using satellite derived data on land use and net primary productivity (NPP) at a small river basin scale, distinguishing between the impact of local and upper-catchment weather. Regression results show that both of these are determining factors of local cropland productivity. These estimates are then combined with climate change predictions obtained from two general circulation models (GCMs) under two greenhouse gas emissions (GHG) assumptions to evaluate the impact of climate change by 2100. For some scenarios significant decreases are predicted over the northern and southern parts of Africa.

© 2012 Springer Science+Business Media Dordrecht

We use an economy-wide model to estimate the impact of a representative climate policy on fuel prices and economic activity, and a partial equilibrium model of the aviation industry to estimate changes in aviation carbon dioxide emissions and operations. Between 2012 and 2050, with reference demand growth benchmarked to ICAO/GIACC (2009) forecasts, we find that aviation emissions increase by 130 per cent. In our policy scenarios, emissions increase by between 103 per cent and 123 per cent. Under the assumptions in our analysis, aviation contributes to climate policy targets by funding emissions reductions in sectors with less costly abatement options.

© 2013 Journal of Transport Economics and Policy

Pages

Subscribe to JP