JP

Malawi confronts a growth and development imperative that it must meet in a context characterised by rising temperatures and deep uncertainty about trends in precipitation. This article evaluates the potential implications of climate change for overall growth and development prospects in Malawi. We combine climate, biophysical and economic models to develop a structural analysis focused on three primary impact channels: agriculture, road infrastructure and hydropower generation. We account explicitly for the uncertainty in climate forecasts by exploiting the best available information on the likely distribution of climate outcomes. We find that climate change is unlikely to substantially slow overall economic growth over the next couple of decades. However, assuming that global emissions remain effectively unconstrained, climate change implications become more pronounced over time. Reduced agricultural yields and increased damage to road infrastructure due to increased frequency and intensity of extreme events are the principal impact channels. Owing to the potential for positive impacts in the near term, the net present value of climate impacts from 2007 to 2050 (using a 5% discount rate) can be positive or negative with an average loss of about USD 610 million. The main implication of our findings is that Malawian policy makers should look to exploit the coming decade or two as these represent a window of opportunity to develop smart and forward looking adaptation policies. As many of these policies take time to develop, implement, and then execute, there is little cause for complacency.

© 2014 the authors.

We investigate effects of 2000–2050 emissions and climate changes on the atmospheric transport of three polycyclic aromatic hydrocarbons (PAHs): phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP). We use the GEOS-Chem model coupled to meteorology from a general circulation model and focus on impacts to northern hemisphere midlatitudes and the Arctic. We project declines in anthropogenic emissions (up to 20%) and concentrations (up to 37%), with particle-bound PAHs declining more, and greater declines in midlatitudes versus the Arctic. Climate change causes relatively minor increases in midlatitude concentrations for the more volatile PHE and PYR (up to 4%) and decreases (3%) for particle-bound BaP. In the Arctic, all PAHs decline slightly under future climate (up to 2%). Overall, we observe a small 2050 “climate penalty” for volatile PAHs and “climate benefit” for particle-bound PAHs. The degree of penalty or benefit depends on competition between deposition and surface-to-air fluxes of previously deposited PAHs. Particles and temperature have greater impacts on future transport than oxidants, with particle changes alone accounting for 15% of BaP decline under 2050 emissions. Higher temperatures drive increasing surface-to-air fluxes that cause PHE and PYR climate penalties. Simulations suggest ratios of more-to-less volatile species can be used to diagnose signals of climate versus emissions and that these signals are best observed in the Arctic.

© 2013 American Chemical Society

In the face of climate and environmental change, the food sufficiency challenge is more than ever an important issue. This article provides an assessment of the food situation, how it has evolved in recent decades, and how it is likely to change in the future. We provide an overview of how climate and extreme weather events are predicted to change in the future, and summarize the estimated impact of these changes on agriculture. To do so, we first detail the different methods employed by climate change impact assessments, and discuss their strengths and weaknesses. We then review the findings from this literature and provide a range of predicted impacts on agriculture. This article also discusses how the food sector will be affected by climate change mitigation policies, such as clean-energy mandates, agriculture management improvements, carbon pricing, and carbon sequestration measures.

© 2013 Elsevier Inc.

In this study, we analyze changes in extreme temperature and precipitation over the US in a 60-member ensemble simulation of the 21st century with the Massachusetts Institute of Technology (MIT) Integrated Global System Model–Community Atmosphere Model (IGSM-CAM). Four values of climate sensitivity, three emissions scenarios and five initial conditions are considered. The results show a general intensification and an increase in the frequency of extreme hot temperatures and extreme precipitation events over most of the US. Extreme cold temperatures are projected to decrease in intensity and frequency, especially over the northern parts of the US. This study displays a wide range of future changes in extreme events in the US, even simulated by a single climate model. Results clearly show that the choice of policy is the largest source of uncertainty in the magnitude of the changes. The impact of the climate sensitivity is largest for the unconstrained emissions scenario and the implementation of a stabilization scenario drastically reduces the changes in extremes, even for the highest climate sensitivity considered. Finally, simulations with different initial conditions show conspicuously different patterns and magnitudes of changes in extreme events, underlining the role of natural variability in projections of changes in extreme events.

© 2014 the authors

 

Electronic supplementary material

The online version of this journal article (doi:10.1007/s10584-013-1048-1) contains supplementary material, which is available to authorized users.

This article is part of a Special Issue on “A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States” edited by Jeremy Martinich, John Reilly, Stephanie Waldhoff, Marcus Sarofim, and James McFarland.

Extreme weather and climate events, such as heat waves, droughts and severe precipitation events, have substantial impacts on ecosystems and the economy. However, future climate simulations display large uncertainty in mean changes. As a result, the uncertainty in future changes of extreme events, especially at the local and national level, is large. In this study, we analyze changes in extreme events over the US in a 60-member ensemble simulation of the 21st century with the Massachusetts Institute of Technology (MIT) Integrated Global System Model–Community Atmosphere Model (IGSM-CAM). Four values of climate sensitivity, three emissions scenarios and five initial conditions are considered. The results show a general intensification of extreme daily maximum temperatures and extreme precipitation events over most of the US. The number of rain days per year increases over the Great Plains but decreases in the northern Pacific Coast and along the Gulf Coast. Extreme daily minimum temperatures increase, especially over the northern parts of the US. As a result, the number of frost days per year decreases over the entire US and the frost-free zone expands northward. This study displays a wide range of future changes in extreme events in the US, even simulated by a single climate model. Nonetheless, it clearly shows that under a reference emissions scenario with no climate policy, changes in extreme events reach dangerous levels, especially for large values of climate sensitivity. On the other hand, the implementation of a stabilization scenario drastically reduces the changes in extremes, even for the highest climate sensitivity considered.

Due to their reliance on rain-fed agriculture, both as a source of income and consumption, many low-income countries are considered to be the most vulnerable to climate change. Here, we estimate the impact of climate change on food security in Tanzania. Representative climate projections are used in calibrated crop models to predict crop yield changes for 110 districts in Tanzania. These results are in turn imposed on a highly disaggregated, recursive dynamic economy-wide model of Tanzania. We find that, relative to a no-climate-change baseline and considering domestic agricultural production as the channel of impact, food security in Tanzania appears likely to deteriorate as a consequence of climate change. The analysis points to a high degree of diversity of outcomes (including some favorable outcomes) across climate scenarios, sectors, and regions. Noteworthy differences in impacts across households are also present both by region and by income category.

© 2012 Blackwell Publishing Ltd.

Climate change may damage road infrastructure, to the potential detriment of economic growth, particularly in developing countries. To quantitatively assess climate change's consequences, we incorporate a climate–infrastructure model based on stressor–response relationships directly into a recursive dynamic economy-wide model to estimate and compare road damages with other climate change impact channels. We apply this framework to Mozambique and simulate four future climate scenarios. Our results indicate that climate change through 2050 is likely to place a drag on economic growth and development prospects. The economic implications of climate change appear to become more pronounced from about 2030. Nevertheless, the implications are not so strong as to drastically diminish development prospects. Our findings suggest that impact assessments should include damages to long-run assets, such as road infrastructure, imposed by climate change.

© 2012 Blackwell Publishing Ltd.

Air pollution has been recognized as a significant problem in China. In its Twelfth Five Year Plan (FYP), China proposes to reduce SO2 and NOx emissions significantly, and here we investigate the cost of achieving those reductions and the implications of doing so for CO2 emissions. We extend the analysis through 2050, and either hold emissions policy targets at the level specified in the Twelfth FYP, or continue to reduce them gradually. We apply a computable general equilibrium model of the Chinese economy that includes a representation of pollution abatement derived from detailed assessment of abatement technology and costs. We find that China’s SO2 and NOx emissions control targets would have substantial effects on CO2 emissions leading to emissions savings far beyond those we estimate would be needed to meet its CO2 intensity targets. However, the cost of achieving and maintaining the pollution targets can be quite high given the growing economy. In fact, we find that the Twelfth FYP pollution targets can be met while still expanding the use of coal, but if they are, then there is a lock-in effect that makes it more costly to maintain or further reduce emissions. That is, if firms were to look ahead to tighter targets, they would make different technology choices in the near term, largely turning away from increased use of coal immediately.

A global biofuels program will potentially lead to intense pressures on land supply and cause widespread transformations in land use. These transformations can alter the Earth climate system by increasing greenhouse gas (GHG) emissions from land use changes and by changing the reflective and energy exchange characteristics of land ecosystems. Using an integrated assessment model that links an economic model with climate, terrestrial biogeochemistry, and biogeophysics models, we examined the biogeochemical and biogeophysical effects of possible land use changes from an expanded global second-generation bioenergy program on surface temperatures over the first half of the 21st century. Our integrated assessment model shows that land clearing, especially forest clearing, has two concurrent effects—increased GHG emissions, resulting in surface air warming; and large changes in the land’s reflective and energy exchange characteristics, resulting in surface air warming in the tropics but cooling in temperate and polar regions. Overall, these biogeochemical and biogeophysical effects will only have a small impact on global mean surface temperature. However, the model projects regional patterns of enhanced surface air warming in the Amazon Basin and the eastern part of the Congo Basin. Therefore, global land use strategies that protect tropical forests could dramatically reduce air warming projected in these regions.

© 2013 American Geophysical Union

A thorough analysis of the ozone transport was carried out using the Transformed-Mean Eulerian (TEM) tracer continuity equation and the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). In this budget analysis, the chemical net production term, which is calculated as the residual of the other terms, displays the correct features of a chemical sink and source term, including location and seasonality, and shows good agreement in magnitude compared to other methods of calculating ozone loss rates. This study provides further insight into the role of the eddy ozone transport and underlines its fundamental role in the recovery of the ozone hole during spring. The trend analysis reveals that the ozone hole intensification over the 1980–2001 period is not solely related to the trend in chemical losses, but more specifically to the balance between the trends in chemical losses and ozone transport. That is because, in the Southern Hemisphere from October to December, the large increase in the chemical destruction of ozone is balanced by an equally large trend in the eddy transport, associated with a small increase in the mean transport. This study shows that the increase in the eddy transport is characterized by more poleward ozone eddy flux by transient waves in the midlatitudes and by stationary waves in the polar region. Overall, this study makes clearer the close interaction between the trends in ozone chemistry and ozone transport. It reveals that the eddy ozone transport and its long-term changes are an important natural mitigation mechanism for the ozone hole. This work also underlines the need for diagnostics of the eddy transport in chemical transport models used to investigate future ozone recovery.

Pages

Subscribe to JP