JP

In this study, the Weather Research and Forecasting Model (WRF) is coupled with the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA), a high complexity land surface model. Although WRF is a state-of-the-art regional atmospheric model with high spatial and temporal resolutions, the land surface schemes available in WRF are simple and lack the capability to simulate carbon dioxide (for example, the popular NOAH LSM). ACASA is a complex multilayer land surface model with interactive canopy physiology and full surface hydrological processes. It allows microenvironmental variables such as air and surface temperatures, wind speed, humidity, and carbon dioxide concentration to vary vertically.

Simulations of surface conditions such as air temperature, dew point temperature, and relative humidity from WRF-ACASA and WRF-NOAH are compared with surface observation from over 700 meteorological stations in California. Results show that the increase in complexity in the WRF-ACASA model not only maintains model accuracy, it also properly accounts for the dominant biological and physical processes describing ecosystem-atmosphere interactions that are scientifically valuable. The different complexities of physical and physiological processes in the WRF-ACASA and WRF-NOAH models also highlight the impacts of various land surface and model components on atmospheric and surface conditions.

Fourty percent of all crops grown in the world today are grown using irrigation, and shifting precipitation patterns due to climate change are viewed as a major threat to food security. This thesis examines, in the framework of the MIT Integrated Global System Model, the potential impacts of climate change on crop water stress and the risk implications for policy makers due to underlying uncertainty in climate models. This thesis presents the Community Land Model - Agriculture module (CLM-AG) that models crop growth and water stress. It is a global generic crop model built in the framework of the Community Land Model and was evaluated for maize, cotton and spring wheat. A full climate model, the IGSM-CAM, was first used to force CLM-AG and show the regional disparity of the response to climate change. Some areas like the Midwest or Equatorial Africa benefit from the higher precipitations associated to climate change while others like Europe or Southern Africa see the irrigation need for crops increase. The effect of a mitigation policy appeared contrasted, as water-stress for some areas (including Europe and Africa) is increased if greenhouse gases emissions are limited while for other areas (Central Asia, United States) it is reduced. A second analysis was carried in Central Zambia using uncertainty ensembles. The ensembles demonstrate the notable extent of the uncertainty stemming from different climate sensitivities and different regional patterns in climate models. Crops are impacted differently but a consistent result is that climate mitigation policies reduce uncertainty in crop water stress, making it easier to plan for any anticipated future climate change.

The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important “systems” problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981–2000 to 2091–2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether “climate engineering” is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better.

Nitrous oxide is an important greenhouse gas and ozone-depleting-substance. Its sources are diffuse and poorly characterized, complicating efforts to understand anthropogenic impacts and develop mitigation policies. Online, spectroscopic analysis of N2O isotopic composition can provide continuous measurements at high time resolution, giving new insight into N2O sources, sinks, and chemistry. We present a new preconcentration unit, “Stheno II”, coupled to a tunable infrared laser direct absorption spectroscopy (TILDAS) instrument, to measure ambient-level variations in 18O and sitespecific 15N N2O isotopic composition at remote sites with a temporal resolution of <1 h. Trapping of N2O is quantitative up to a sample size of ∼4 L, with an optimal sample size of 1200− 1800 mL at a sampling frequency of 28 min. Line shape variations with the partial pressure of the major matrix gases N2/O2 and CO2 are measured, and show that characterization of both pressure broadening and Dicke narrowing is necessary for an optimal spectral fit. Partial pressure variations of CO2 and bath gas result in a linear isotopic measurement offset of 2.6−6.0 ‰ mbar−1. Comparison of IR MS and TILDAS measurements shows that the TILDAS technique is accurate and precise, and less susceptible to interferences than IR MS measurements. Two weeks of measurements of N2O isotopic composition from Cambridge, MA, in May 2013 are presented. The measurements show significant short-term variability in N2O isotopic composition larger than the measurement precision, in response to meteorological parameters such as atmospheric pressure and temperature.

© 2013 American Chemical Society

We examine the efficiency and distributional impacts of greenhouse gas policies directed toward the electricity sector in a model that links a “top-down” general equilibrium representation of the U.S. economy with a “bottom-up” electricity-sector dispatch and capacity expansion model. Our modeling framework features a high spatial and temporal resolution of electricity supply and demand, including renewable energy resources and generating technologies, while representing CO2 abatement options in non-electric sectors as well as economy-wide interactions. We find that clean and renewable energy standards entail substantial efficiency costs compared to an economy-wide carbon pricing policy such as a cap-and-trade program or a carbon tax, and that these policies are regressive across the income distribution. The geographical distribution of cost is characterized by high burdens for regions that depend on non-qualifying generation fuels, primarily coal. Regions with abundant hydro power and wind resources, and a relatively clean generation mix in the absence of policy, are among the least impacted. An important shortcoming of energy standards vis-à-vis a first-best carbon pricing policy is that no revenue is generated that can be used to alter unintended distributional consequences.

Report Summary
 

Following the failure in 2010 to pass a comprehensive cap-and-trade bill in the United States, analysts and policymakers have called for new or more stringent policies to curb GHG emissions in the electric power sector. In his 2011 State of the Union address, President Obama announced the goal of producing 80 percent of electricity from “clean” energy sources by 2035. The idea of a federal clean energy standard (CES) has been garnering bi-partisan support in Washington, D.C., and at latest count, thirty-six states (plus the District of Columbia) already employ renewable energy standards (RES) or CES programs, most of them mandating that 15 to 25 percent of total electricity production by 2020 has to come from renewable or “clean” sources (DSIRE, 2011). Energy standards in existing and proposed regulation differ with regard to the list of fuel sources included. Unlike a RES program, most CES proposals would credit not only renewable sources, like wind, solar, bio-power, hydropower and geothermal, but would also credit non-emitting non-renewable sources like nuclear energy, and would give partial crediting to certain other technologies, such as gas and coal technologies with carbon capture and storage (CCS), and natural gas combined cycle plants.

This paper examines the efficiency and distributional implications of RES and CES regulation in the U.S. electric power sector employing a numerical general equilibrium model that is uniquely well suited to assessing both economy-wide and electric sector impacts. We investigate the impacts of introducing a federal energy standard, formulated with and without a particular emphasis on incentivizing renewable energy, on economy-wide costs and emissions reductions, relating these impacts to changes in electricity capacity and generation (shifts to low carbon fuels and renewable sources), and changes in general equilibrium products and factor prices.

The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the economic and emissions impacts of this goal using renewable fuel produced from a Hydroprocessed Esters and Fatty Acids (HEFA) process from renewable oils. Our approach employs an economy-wide model of economic activity and energy systems and a detailed partial equilibrium model of the aviation industry. If soybean oil is used as a feedstock, we find that meeting the aviation biofuel goal in 2020 will require an implicit subsidy from airlines to biofuel producers of $2.69 per gallon of renewable jet fuel. If the aviation goal can be met by fuel from oilseed rotation crops grown on otherwise fallow land, the implicit subsidy is $0.35 per gallon of renewable jet fuel. As commercial aviation biofuel consumption represents less than 2% of total fuel used by this industry, the goal has a small impact on the average price of jet fuel and carbon dioxide emissions. We also find that, under the pathways we examine, the cost per tonne of CO2 abated due to aviation biofuels is between $50 and $400.

© 2013 the authors

The papers in this special issue represent some of the most comprehensive analyses of the implications of climate change for developing countries undertaken to date. The papers employ a bottoms-up systems approach whereby the implications of climate change are evaluated using structural models of agriculture and infrastructure systems. The authors of the paper hail from multiple disciplines. This comprehensive, multi-disciplinary, structural approach is designed to allow for more robust insight into the potential implications of climate change. The approach also allows for experimentation with alternative policy options for achieving development objectives in the context of climate change.

© 2012 Blackwell Publishing Ltd.

A national-scale simulation-optimization model was created to generate estimates of economic impacts associated with changes in water supply and demand as influenced by climate change. Water balances were modeled for the 99 assessment sub-regions, and are presented for 18 water resource regions in the United States. Benefit functions are developed for irrigated agriculture, municipal and domestic water use, commercial and industrial water use, and hydroelectric power generation. Environmental flows below minimal levels required for environmental needs are assessed a penalty. As a demonstration of concept for the model, future climate is projected using a climate model ensemble for two greenhouse gas (GHG) emissions scenarios: a business-as-usual (BAU) scenario in which no new GHG controls are implemented, and an exemplary mitigation policy (POL) scenario in which future GHG emissions are mitigated. Damages are projected to grow less during the 21st century under the POL scenario than the BAU scenario. The largest impacts from climate change are projected to be on non-consumptive uses (e.g., environmental flows and hydropower) and relatively lower-valued consumptive uses (e.g., agriculture), as water is reallocated during reduced water availability conditions to supply domestic, commercial, and industrial uses with higher marginal values. Lower GHG concentrations associated with a mitigation policy will result in a smaller rise in temperature and thus less extensive damage to some water resource uses. However, hydropower, environmental flow penalty, and agriculture were shown to be sensitive to the change in runoff as well.

© 2013 the authors

The role of nitrogen limitation on photosynthesis downregulation and stomatal conductance has a significant influence on evapotranspiration and runoff. In the current Community Land Model with coupled Carbon and Nitrogen cycles (CLM4-CN), however, the carbon and water coupling in stomata is not linked to nitrogen limitation. We modify the incomplete linkages between carbon, nitrogen, and water, and examine how nitrogen limitation affects hydrological processes in CLM4-CN. In addition, we evaluate if the modification can improve the simulation of carbon and water fluxes. Applying the effects of nitrogen limitation on stomatal conductance significantly decreases leaf photosynthesis. It leads to a reduction in canopy transpiration, thereby increasing total runoff, mainly due to increasing subsurface runoff. More available soil water for vegetation from the reduced transpiration helps increase gross primary productivity (GPP) in the relatively moisture-limited regions of grassland/steppe and savanna. But, in the tropics and boreal forest regions, changes in soil water by nitrogen limitation are insignificant, and GPP decreases directly by down-regulated leaf photosynthesis. Decreasing canopy transpiration and increasing runoff from nitrogen limitation improve simulating latent heat flux and runoff by reducing high biases for latent heat flux in the tropics and low biases for runoff in the tropics and northern high-latitudes. In addition, the CLM4-CN with leaf-level nitrogen limitation reduces high model biases in tropical GPP. Thus, nitrogen limitation on the leaf-level significantly affects hydrological processes in CLM4-CN and improves the simulation of carbon and water fluxes.

Pages

Subscribe to JP