Earth Systems

The MIT Integrated Global Systems Model (IGSM) version 2.3 is an intermediate complexity model that couples a zonally-averaged statistical dynamical atmospheric model with a full 3D ocean GCM and, therefore, simulates feedbacks associated with changes in ocean circulation. A fundamental feature of the IGSM2.3 is the ability to modify its climate sensitivity (through cloud adjustment), net aerosol forcing and ocean heat uptake rate (via the diapycnal diffusion coefficient). As such, the IGSM2.3 provides an efficient tool for generating probabilistic distribution functions of climate parameters (climate sensitivity, aerosol forcing and ocean heat uptake rate) using optimal fingerprint diagnostics. Probabilistic distributions of sea surface temperature (SST) and sea ice cover (SIC) changes for the 21st century can then be obtained using Latin-Hypercube sampling of climate parameters under various emissions scenarios. The emissions scenarios used in this study are based on the MIT Emissions Predictions and Policy Analysis (EPPA) model and include a no policy case where emissions of long-lived GHGs are uncertain, and a range of stabilization scenarios from stringent policy to milder policy.

In order to investigate future regional climate impacts, the MIT IGSM2.3 is coupled to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 3 (CAM3). For linkages between the IGSM2.3 and CAM3, the 3-D atmospheric model is driven by the IGSM2.3 SST anomalies with a climatological annual cycle taken from an observed dataset, instead of the full IGSM2.3 SSTs, to provide a better SST annual cycle and more realistic features between the ocean and atmospheric components. This approach yields a consistent regional distribution and climate change over the 20th century as compared to observational datasets. For each emissions scenario, an ensemble member of the IGSM2.3 SST/SIC probabilistic distribution drives CAM3 to span the multi-dimensional space of uncertainty in climate parameters. For consistency, for each set of IGSM2.3/CAM3 runs, the trace gas concentrations calculated by the atmospheric chemistry component of the IGSM2.3 is used to force CAM3. The cloud adjustment scheme used in the IGSM2.3 was implemented in CAM3, which allows modifying its climate sensitivity to match that of the IGSM2.3 setup that generates the SST field used to drive CAM3.

With this approach, regional climate impacts can be assessed under various emissions scenarios based on probability distributions of climate parameters. In this paper, preliminary results from these ensemble simulations are presented. A particular focus is placed on the distribution of extreme events. For example, the frequency, duration and intensity of extreme events such as heat waves, floods and droughts, precipitation and storm activities can be investigated, as well as other dynamical features such as jet stream modulation.

The MIT Integrated Global Systems Model (IGSM) version 2.3 is an intermediate complexity model that couples a zonally-averaged statistical dynamical atmospheric model with a full 3D ocean GCM and, therefore, simulates feedbacks associated with changes in ocean circulation. A fundamental feature of the IGSM2.3 is the ability to modify its climate sensitivity (through cloud adjustment), net aerosol forcing and ocean heat uptake rate (via the diapycnal diffusion coefficient). As such, the IGSM2.3 provides an efficient tool for generating probabilistic distribution functions of climate parameters (climate sensitivity, aerosol forcing and ocean heat uptake rate) using optimal fingerprint diagnostics. Probabilistic distributions of sea surface temperature (SST) and sea ice cover (SIC) changes for the 21st century can then be obtained using Latin-Hypercube sampling of climate parameters under various emissions scenarios. The emissions scenarios used in this study are based on the MIT Emissions Predictions and Policy Analysis (EPPA) model and include a no policy case where emissions of long-lived GHGs are uncertain, and a range of stabilization scenarios from stringent policy to milder policy.

In order to investigate future regional climate impacts, the MIT IGSM2.3 is coupled to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 3 (CAM3). For linkages between the IGSM2.3 and CAM3, the 3-D atmospheric model is driven by the IGSM2.3 SST anomalies with a climatological annual cycle taken from an observed dataset, instead of the full IGSM2.3 SSTs, to provide a better SST annual cycle and more realistic features between the ocean and atmospheric components. This approach yields a consistent regional distribution and climate change over the 20th century as compared to observational datasets. For each emissions scenario, an ensemble member of the IGSM2.3 SST/SIC probabilistic distribution drives CAM3 to span the multi-dimensional space of uncertainty in climate parameters. For consistency, for each set of IGSM2.3/CAM3 runs, the trace gas concentrations calculated by the atmospheric chemistry component of the IGSM2.3 is used to force CAM3. The cloud adjustment scheme used in the IGSM2.3 was implemented in CAM3, which allows modifying its climate sensitivity to match that of the IGSM2.3 setup that generates the SST field used to drive CAM3.

With this approach, regional climate impacts can be assessed under various emissions scenarios based on probability distributions of climate parameters. In this paper, preliminary results from these ensemble simulations are presented. A particular focus is placed on the distribution of extreme events. For example, the frequency, duration and intensity of extreme events such as heat waves, floods and droughts, precipitation and storm activities can be investigated, as well as other dynamical features such as jet stream modulation.

Conducting probabilistic climate projections with a particular climate model requires the ability to vary the model’s characteristics, such as its climate sensitivity. In this study, we implement and validate a method to change the climate sensitivity of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 3 (CAM3) through a cloud radiative adjustment. Results show that the cloud radiative adjustment method does not lead to physically unrealistic changes in the model’s response to an external forcing, such as doubling CO2 concentrations or increasing sulfate aerosol concentrations. Furthermore, this method has some advantages compared to the traditional perturbed physics approach. In particular, the cloud radiative adjustment method can produce any value of climate sensitivity within the wide range of uncertainty based on the observed 20th century climate change. As a consequence, this method allows Monte Carlo type probabilistic climate forecasts to be conducted where values of uncertain parameters not only cover the whole uncertainty range, but cover it homogeneously. Unlike the perturbed physics approach which can produce several versions of a model with the same climate sensitivity but with very different regional patterns of change, the cloud radiative adjustment method can only produce one version of the model with a specific climate sensitivity. As such, a limitation of this method is that it cannot cover the full uncertainty in regional patterns of climate change.

We have recently investigated large-scale co-variability between aerosol and precipitation and other meteorological variables in the West African Monsoon (WAM) region using long term satellite observations and reanalysis data. In this study we compared the observational results to a global model simulation including only direct radiative forcing of black carbon (BC). From both observations and model simulations we found that in boreal cold seasons anomalously high African aerosols are associated with significant reductions in cloud amount, cloud top height, and surface precipitation. These results suggest that the observed precipitation reduction in the WAM region is caused by radiative effect of BC. The result also suggests that the BC effect on precipitation is nonlinear.

Prediction and understanding of the regional impact of climate change in the American Midwest is of critical importance to agriculture, economy, and society. In particular, predicting the sign and magnitude of the future change in soil moisture conditions is a significant research challenge. During the summer, the input of water to the regional soil moisture (rainfall) is significantly smaller than the output from the same system (evaporation plus surface runoff). This deficit is currently supplied by drawing from the stored soil water in the saturated and unsaturated zones. Therefore, the fundamental research question raised is what will happen to the magnitude of this deficit in the coming decades? If this deficit increases significantly, e.g. due to a significant increase in evaporation, dry soil moisture conditions would develop every year at the end of the summer season. Predicting the magnitude of this deficit under climate change scenarios would require the use of models that are capable of simulating not only the right current climatology of rainfall, evaporation, and runoff, but also the right sign and magnitude of the sensitivity of these processes to climate change. Observations of the water cycle and surface energy balance from the Illinois State Water Survey and FLUXNET will be used to characterize the current climatology in Illinois and examine the sensitivity of latent heat flux to changes in available energy. Implications of the results from regional climate model simulations will be discussed in the context of global climate change and future agricultural productivity.

A thorough analysis of the ozone transport was carried out using the Transformed-Mean Eulerian (TEM) tracer transport equation and the European Centre for Medium-Range Weather Forecasts (ECMWF) Re- Analysis (ERA-40). In this budget analysis, the chemical net production term, which is calculated as the residual of the other terms, displays the correct features of a chemical sink and source term, including location and seasonality, and shows a good agreement in magnitude compared to other methods of calculating ozone loss rates. This study provides further insight into the role of the eddy ozone transport and underlines its fundamental role in the recovery of the ozone hole during spring. The trend analysis reveals that the ozone hole intensification over 1980-2001 time period is not directly related to the trend in chemical losses, but more specifically to the balance in the trends in chemical losses and transport. That is because, in the SH from October to December, the large increase in the chemical destruction of ozone is balanced by an equally large trend in the eddy transport, associated with a small increase of the mean transport. This study shows that the increase in the eddy transport is characterized by more poleward ozone eddy flux by transient waves in the midlatitudes and by stationary waves in the polar region. This is primarily due to the presence of storm tracks in the midlatitudes and of the asymmetric Antarctic topography and ice-sea heating contrasts near the pole. Overall, this study makes clear of the fact that without an increase in the eddy ozone transport over the 1980-2001 time period, the ozone hole over Antarctica would be drastically more severe. This underlines the need for careful diagnostics of the eddy ozone transport in modeling studies of long-term changes in stratospheric ozone.

The momentum budget of the Transformed Eulerian-Mean (TEM) equation is calculated using the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-40) and the National Centers for Environmental Prediction (NCEP) Reanalysis 2 (R-2). This study outlines the considerable contribution of unresolved waves, deduced to be gravity waves, to the forcing of the zonal-mean flow. A trend analysis, from 1980 to 2001, shows that the onset and break down of the Northern Hemisphere (NH) stratospheric polar night jet has a tendency to occur later in the season in the more recent years. This temporal shift follows long-term changes in planetary wave activity that are mainly due to synoptic waves, with a lag of one month. In the Southern Hemisphere (SH), the polar vortex shows a tendency to persist further into the SH summertime. This also follows a statistically significant decrease in the intensity of the stationary EP flux divergence over the 1980–2001 period. Ozone depletion is well known for strengthening the polar vortex through the thermal wind balance. However, the results of this work show that the SH polar vortex does not experience any significant long-term changes until the month of December, even though the intensification of the ozone hole occurs mainly between September and November. This study suggests that the decrease in planetary wave activity in November provides an important feedback to the zonal wind as it delays the breakdown of the polar vortex. In addition, the absence of strong eddy feedback before November explains the lack of significant trends in the polar vortex in the SH early spring. A long-term weakening in the Brewer-Dobson (B-D) circulation in the polar region is identified in the NH winter and early spring and during the SH late spring and is likely driven by the decrease in planetary wave activity previously mentioned. During the rest of the year, there are large discrepancies in the representation of the B-D circulation and the unresolved waves between the two reanalyses, making trend analyses unreliable.

The momentum budget of the Transformed Eulerian-Mean (TEM) equation is calculated using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). This study outlines the considerable contribution of the dissipative forcing, identified as a gravity wave drag, to the forcing of the zonal-mean flow. A trend analysis shows that, in recent times, the onset and break down of the Northern Hemisphere (NH) stratospheric polar night jet occur later. This temporal shift is associated with long-term changes in the planetary wave activity that are mainly due to synoptic waves. In the Southern Hemisphere (SH), the polar vortex shows a tendency to persist further into the SH summertime. This is explained by a statistically significant decrease in the intensity of the stationary EP flux divergence over the 1980-2001 period. The prevailing theory explaining the long-term changes in the stratospheric polar vortex postulates that ozone depletion leads to a strengthening of westerly winds which in turn causes the reduction in wave activity in high latitudes. We show that the strongest component in the dynamical response to stratospheric ozone changes is in fact the feedback of planetary wave activity on the zonal wind. Finally, we identify long-term changes in the Brewer-Dobson circulation that are mainly caused by trends in the planetary wave activity during winter and by trends in the gravity wave body force otherwise.

Convective clouds provide an efficient mechanism for transporting aerosols to the upper troposphere. Although observational data in the upper troposphere are still limited, the few measurements available all indicate the existence of high concentrations of small particles, possibly due to the vertical transport related to deep convection. In addition, with sufficiently low temperature, high relative humidity, and relatively high concentrations of aerosol precursors; the outflow regions of convective clouds are likely areas for new aerosols to form, adding even more particles to the upper troposphere. In order to simulate convective cloud transport along with cloud processing of aerosols we have developed a 3-D cloud-resolving model with an interactive explicit aerosol module. A baseline simulation suggests good agreement in the upper troposphere between modeled and observed results including concentrations of aerosols in different size ranges, mole fractions of key chemical species, and concentrations of ice particles. A set of 34 sensitivity simulations has been carried out to investigate the sensitivity of modeled results to the treatment of various aerosol physical and chemical processes in the model. The size distribution of aerosols is proved to be an important factor in determining the aerosols' fate within the convective cloud. Nucleation mode aerosols (0< d <5.84 nm) are quickly transferred to the larger modes as they grow through coagulation and condensation of H2SO4. Accumulation mode aerosols (d >31.0 nm) are almost completely removed by nucleation and impact scavenging. However, a substantial part (up to 10% of the boundary layer concentration) of the Aitken mode aerosol population (5.84 nm< d <31.0 nm) reaches the top of the cloud and the free troposphere. The sensitivity simulations performed indicate that in order to sustain a vigorous storm cloud, the supply of CCN must be continuous over a considerably long time period of the simulation. Hence, the treatment of the growth of particles is in general more important than the initial aerosol concentration itself.

Pages

Subscribe to Earth Systems