JP

A global ocean general circulation model with idealized geometry and coupled to a simple representation of atmospheric energy fluxes is used to investigate which physical factors determine meridional heat transport. A particular focus is on causes for the common underestimation of heat transport in ocean general circulation models. The model is also forced by idealized wind stress and moisture flux profiles.
        The zonal average of surface heat flux is obtained from a simple radiation parameterization and the divergence of observed atmospheric heat transport. In addition, zonal mixing in the atmosphere is implied by the relaxation of the sea surface temperature (SST) to its zonal average. A finite relaxation timescale results in a substantial increase in the meridional mass overturning in the "Atlantic" basin compared to the case with "infinitely efficient" zonal atmospheric mixing, owing to the admittance of zonal SST gradients. However, heat transport changes only by a small amount. When atmospheric zonal mixing is changed to interbasin mixing, meridional heat transport increases significantly. Doubling the width of the Pacific basin leads to a large increase in the Pacific heat transport, induced by both the meridional overtuning and the horizontal gyre circulations.
        If the horizontal viscosity is decreased and the zonal resolution is increased near the boundaries, the resulting larger speed of the western boundary currents causes a noticeable increase in the Atlantic basin's heat transport.
        The introduction of the Gent-McWilliams eddy parameterization leads to a substantial decrease in the strength of the overturning circulation in the Atlantic basin, presumably because the overall amount of diapycnal mixing is reduced. However, the decrease in the heat transport is much smaller because the thermocline is sharper and the deep ocean colder, resulting in enhanced vertical temperature contrast. Apparent disagreements with and among previous results are explained through the different effects of diapycnal mixing in the North Atlantic and elsewhere in the model.

© 2000 American Meteorological Society

In March 2000, the European Commission presented a Green Paper on greenhouse gas emissions trading within Europe, supporting implementation of a Community-wide scheme in which the design and regulation of all essential elements would be harmonized at the Community level. The present paper analyzes economic arguments used to justify such a coordinated scenario, showing these arguments to be based on misleading rhetoric about fair trade and harmonization. Diverse allocations of emissions allowances across Member States are justified in theory. In practice, too, no empirical evidence or model-based results demonstrate that an uncoordinated European trading scheme would adversely affect competitiveness to any significant extent or substantially increase industrial relocations.

© 2001 Elsevier Science

In March 2000, the European Commission presented a Green Paper on greenhouse gas emissions trading within Europe, supporting implementation of a Community-wide scheme in which the design and regulation of all essential elements would be harmonized at the Community level. The present paper analyzes economic arguments used to justify such a coordinated scenario, showing these arguments to be based on misleading rhetoric about fair trade and harmonization. Diverse allocations of emissions allowances across Member States are justified in theory. In practice, too, no empirical evidence or model-based results demonstrate that an uncoordinated European trading scheme would adversely affect competitiveness to any significant extent or substantially increase industrial relocations.

On Aug. 8, 2005, President Bush signed the Energy Policy Act of 2005 (PL 109-58). This was the first major piece of energy legislation enacted since 1992 following five years of Congressional efforts to pass energy legislation. Among other things, the law contains tax incentives worth over $14 billion between 2005 and 2015. These incentives represent both pre-existing initiatives that the law extends as well as new initiatives.
      In this paper I survey federal tax energy policy focusing both on programs that affect energy supply and demand. I briefly discuss the distributional and incentive impacts of many of these incentives. In particular, I make a rough calculation of the impact of tax incentives for domestic oil production on world oil supply and prices and find that the incentives for domestic production have negligible impact on world supply or prices despite the United States being the third largest oil producing country in the world.
      Finally, I present results from a model of electricity pricing to assess the impact of the federal tax incentives directed at electricity generation. I find that nuclear power and renewable electricity sources benefit substantially from accelerated depreciation and that the production and investment tax credits make clean coal technologies cost competitive with pulverized coal and wind and biomass cost competitive with natural gas.

On Aug. 8, 2005, President Bush signed the Energy Policy Act of 2005 (PL 109-58). This was the first major piece of energy legislation enacted since 1992 following five years of Congressional efforts to pass energy legislation. Among other things, the law contains tax incentives worth over $14 billion between 2005 and 2015. These incentives represent both pre-existing initiatives that the law extends as well as new initiatives.

In this paper I survey federal tax energy policy focusing both on programs that affect energy supply and demand. I briefly discuss the distributional and incentive impacts of many of these incentives. In particular, I make a rough calculation of the impact of tax incentives for domestic oil production on world oil supply and prices and find that the incentives for domestic production have negligible impact on world supply or prices despite the United States being the third largest oil producing country in the world.

Finally, I present results from a model of electricity pricing to assess the impact of the federal tax incentives directed at electricity generation. I find that nuclear power and renewable electricity sources benefit substantially from accelerated depreciation and that the production and investment tax credits make clean coal technologies cost competitive with pulverized coal and wind and biomass cost competitive with natural gas.

© 2007 MIT Press

 A three-dimensional ocean model with an idealized geometry and coarse resolution coupled to a two-dimensional (zonally-averaged) statistical-dynamical atmospheric model is used to simulate the response of the thermohaline circulation to increasing CO2 concentration in the atmosphere. The relative role of different factors in slowing down the thermohaline circulation was studied by performing simulations with ocean only and partially coupled models. The computational efficiency of the model allows an extensive and thorough study of the causes of changes in the strength of the thermohaline circulation, through a large number of extended runs. The increase in the atmosphere-to-ocean surface heat fluxes is shown to be the dominant factor in both causing the weakening of the circulation in response to an increasing external forcing as well as in controlling the subsequent recovery. Changes in the zonal distribution of heat fluxes serve as a positive feedback for both decrease and recovery of the meridional overturning, and turn out to be as important as changes in the zonal-mean values of heat fluxes. We also demonstrate that the recovery of the circulation in the ocean model cannot be sustained without feedbacks from the atmosphere. The dependency of global and regional responses on parameterization of eddy mixing, namely the Gent-McWilliams parameterization scheme versus horizontal diffusion, is also discussed.

A three-dimensional ocean model with an idealized geometry and coarse resolution coupled to a two-dimensional (zonally averaged) statistical-dynamical atmospheric model is used to simulate the response of the thermohaline circulation to increasing CO 2 concentration in the atmosphere. The relative roles of different factors in the slowing down and recovery of the thermohaline circulation were studied by performing simulations with ocean only and partially coupled models. The computational efficiency of the model allows an extensive and thorough study of the causes of changes in the strength of the thermohaline circulation, through a large number of extended runs. The evolution of the atmosphere-to-ocean surface heat fluxes is shown to be the dominant factor in causing the weakening of the circulation in response to an increasing external forcing as well as in controlling the subsequent recovery. The feedback between heat flux and the sea surface temperature is necessary for the ocean circulation to recover. The rate of the recovery, however, is not sensitive to the magnitude of the feedback, and changes in the atmosphere, while contributing to the recovery, play a secondary role. In the case of very strong feedback, substantial changes in the SST structure are shown not to be a necessary condition for the recovery of the circulation. Subsurface changes in the density structure accompany recovery despite nearly fixed SST in one of the uncoupled experiments. Changes in the zonal distribution of heat fluxes serve as a positive feedback for both decrease and recovery of the meridional overturning, and are as important as changes in the zonal-mean values of heat fluxes. The secondary role of the moisture fluxes is explained by a smaller magnitude of their contribution to the surface buoyancy flux. Imposing amplified changes in the moisture fluxes leads to a significant slow down of the circulation, accompanied, however, by changes in the heat flux. The changed heat flux, in its turn, makes a significant contribution to the future slow down. This feedback complicates the evaluation of the relative roles of the different fluxes. © Springer Berlin / Heidelberg

Concern about degradation of natural resources has led in the ecological community to the concept of “ecosystem services.” The intent is to identify more fully what environmental economists would refer to as “use values” of ecosystems, concrete goods and services that have value, albeit perhaps unrecognized, to the market economy, as opposed to “non–use values” such as the pleasure of knowing that a natural system exists. The ecological community has also coined the term “agroecosystems,” recognizing that agricultural lands are, albeit modified through management, ecological systems. As such, conventional food and forest products are the products of ecosystems. Biofuels may be another important ecosystem service. Conventional economic analysis can be applied because these are goods that enter markets in the conventional sense.

The values of other ecosystem services are not so explicit in economic data. Here we extend an economic model to explicitly represent the recreation value of ecosystems and their carbon storage value. Our interest is how demand for these various ecosystem services may be complementary or competitive and how pricing of all new services may affect land use, food prices, and the prospects for biofuels production.

Cloud forests usually grow in the moist tropics where water is not a limiting factor to plant growth. Here, for the first time, we describe the hydrology of a water limited seasonal cloud forest in the Dhofar mountains of Oman. This ecosystem is under significant stress from camels feeding on tree canopies. The Dhofar forests are the remnants of a moist vegetation belt, which once spread across the Arabian Peninsula. According to our investigation the process of cloud immersion during the summer season creates within this desert a niche for moist woodland vegetation. Woodland vegetation survives in this ecosystem, sustained through enhanced capture of cloud water by their canopies (horizontal precipitation). Degraded land lacks this additional water source, which inhibits re-establishment of trees. Our modeling results suggest that cattle feeding may lead to irreversible destruction of one of the most diverse ecosystems in Arabia.

© 2006 American Geophysical Union

The combustion of biomass is a major source of atmospheric trace gases and aerosols. Regional- and global-scale models of atmospheric chemistry and climate take estimates for these emissions and arbitrarily "mix" them into grid boxes with horizontal scales of 10-200 km. This procedure ignores the complex non-linear chemical and physical transformations that take place in the highly concentrated environment of the young smoke plumes. In addition, the observations of the smoke plume from the Timbavati savannah fire [Hobbs et al., 2003] show much higher concentrations of ozone and secondary aerosol matter (nitrate, sulfate, and organic carbon [OC]) in the smoke plume than are predicted by current atmospheric chemistry models. To address these issues, we developed a new model of the gas- and aerosol-phase chemistry of biomass burning smoke plumes called ASP (Aerosol Simulation Program). Here we use ASP to simulate the gas-phase chemistry and particle dynamics of young biomass burning smoke plumes and to estimate the errors introduced by the artificial mixing of biomass burning emissions into large-scale grid boxes. This work is the first known attempt to simultaneously simulate the dynamics, gas-phase chemistry, aerosol-phase chemistry, and radiative transfer in a young biomass burning smoke plume.

We simulated smoke plumes from three fires using ASP combined with a Lagrangian parcel model. We found that our model explained the formation of ozone in the Otavi and Alaska plumes fairly well but that our initial model simulation of the Timbavati smoke plume underestimated the formation of ozone and secondary aerosol matter. The initial model simulation for Timbavati appears to be missing a source of OH. Heterogeneous reactions of NO2 and SO2 could explain the high concentrations of OH and the rapid formation of ozone, nitrate and sulfate in the smoke plume if the uptake coefficients on smoke aerosols are large [O(10-3) and O(10-4), respectively]. Uncharacterized organic species in the smoke plume were likely responsible for the rapid formation of aerosol OC. The changes in the aerosol size distribution in our model simulations were dominated by plume dilution and condensational growth, with coagulation and nucleation having only a minor effect.

We used ASP and a 3D Eulerian model to simulate the Timbavati smoke plume. We ran two test cases. In the reference chemistry case, the uncharacterized organic species were assumed to be unreactive and heterogeneous chemistry was not included. In the expanded chemistry case, the uncharacterized organic compounds were included, as were heterogeneous reactions of NO2 and SO2 with uptake coefficients of 10-3 and 2 x 10-4, respectively. The 3D Eulerian model matched the observed plume injection height, but required a large minimum horizontal diffusion coefficient to match the observed horizontal dispersion of the plume. Smoke aerosols reduced the modeled photolysis rates within and beneath the plume by 10%-20%. The expanded chemistry case provided a better match with observations of ozone, OH, and secondary aerosol matter than the reference chemistry case, but still underestimated the observed concentrations. We find that direct measurements of OH in the young smoke plumes would be the best way to determine if heterogeneous production of HONO from NO2 is taking place, and that these measurements should be a priority for future field campaigns.

Using ASP within an Eulerian box model to evaluate the errors that can be caused by the automatic dilution of biomass burning emissions into global model grid boxes, we found that even if the chemical models for smoke plume chemistry are improved, the automatic dilution of smoke plume emissions in global models could result in large errors in predicted concentrations of O3, NOx and aerosol species downwind of biomass burning sources. The thesis discusses several potential approaches that could reduce these errors, such as the use of higher resolution grids over regions of intense biomass burning, the use of a plume-in-grid model, or the use of a computationally-efficient parameterization of a 3D Eulerian plume chemistry model.

Pages

Subscribe to JP