JP

Urban air pollution and climate are closely connected due to shared generating processes (e.g., combustion) for emissions of the driving gases and aerosols. They are also connected because the atmospheric lifecycles of common air pollutants such as CO, NOx and VOCs, and of the climatically important methane gas (CH4) and sulfate aerosols, both involve the fast photochemistry of the hydroxyl free radical (OH). Thus policies designed to address air pollution may impact climate and vice versa. We present calculations using a model coupling economics, atmospheric chemistry, climate and ecosystems to illustrate some effects of air pollution policy alone on global warming. We consider caps on emissions of NOx, CO, volatile organic carbon, and SOx both individually and combined in two ways. These caps can lower ozone causing less warming, lower sulfate aerosols yielding more warming, lower OH and thus increase CH4 giving more warming, and finally, allow more carbon uptake by ecosystems leading to less warming. Overall, these effects significantly offset each other suggesting that air pollution policy has a relatively small net effect on the global mean surface temperature and sea level rise. However, our study does not account for the effects of air pollution policies on overall demand for fossil fuels and on the choice of fuels (coal, oil, gas), nor have we considered the effects of caps on black carbon or organic carbon aerosols on climate. These effects, if included, could lead to more substantial impacts of capping pollutant emissions on global temperature and sea level than concluded here. Caps on aerosols in general could also yield impacts on other important aspects of climate beyond those addressed here, such as the regional patterns of cloudiness and precipitation.

Urban air pollution and climate are closely connected due to shared generating processes (e.g., combustion) for emissions of the driving gases and aerosols. They are also connected because the atmospheric lifecycles of common air pollutants such as CO, NOx and VOCs, and of the climatically important methane gas (CH4) and sulfate aerosols, both involve the fast photochemistry of the hydroxyl free radical (OH). Thus policies designed to address air pollution may impact climate and vice versa. We present calculations using a model coupling economics, atmospheric chemistry, climate and ecosystems to illustrate some effects of air pollution policy alone on global warming. We consider caps on emissions of NOx, CO, volatile organic carbon, and SOx both individually and combined in two ways. These caps can lower ozone causing less warming, lower sulfate aerosols yielding more warming, lower OH and thus increase CH4 giving more warming, and finally, allow more carbon uptake by ecosystems leading to less warming. Overall, these effects significantly offset each other suggesting that air pollution policy has a relatively small net effect on the global mean surface temperature and sea level rise. However, our study does not account for the effects of air pollution policies on overall demand for fossil fuels and on the choice of fuels (coal, oil, gas), nor have we considered the effects of caps on black carbon or organic carbon aerosols on climate. These effects, if included, could lead to more substantial impacts of capping pollutant emissions on global temperature and sea level than concluded here. Caps on aerosols in general could also yield impacts on other important aspects of climate beyond those addressed here, such as the regional patterns of cloudiness and precipitation.

© 2007 Cambridge University Press

Urban air pollution and climate are closely connected due to shared generating processes (e.g., combustion) for emissions of the driving gases and aerosols. They are also connected because the atmospheric lifecycles of common air pollutants such as CO, NOx and VOCs, and of the climatically important methane gas (CH4) and sulfate aerosols, both involve the fast photochemistry of the hydroxyl free radical (OH). Thus policies designed to address air pollution may impact climate and vice versa. We present calculations using a model coupling economics, atmospheric chemistry, climate and ecosystems to illustrate some effects of air pollution policy alone on global warming. We consider caps on emissions of NOx, CO, volatile organic carbon, and SOx both individually and combined in two ways. These caps can lower ozone causing less warming, lower sulfate aerosols yielding more warming, lower OH and thus increase CH4 giving more warming, and finally, allow more carbon uptake by ecosystems leading to less warming. Overall, these effects significantly offset each other suggesting that air pollution policy has a relatively small net effect on the global mean surface temperature and sea level rise. However, our study does not account for the effects of air pollution policies on overall demand for fossil fuels and on the choice of fuels (coal, oil, gas), nor have we considered the effects of caps on black carbon or organic carbon aerosols on climate. These effects, if included, could lead to more substantial impacts of capping pollutant emissions on global temperature and sea level than concluded here. Caps on aerosols in general could also yield impacts on other important aspects of climate beyond those addressed here, such as the regional patterns of cloudiness and precipitation.

© 2007 Cambridge University Press

The experience of other environmental problems suggests that policies yielding uniform marginal costs across sectors, as most analyses assume, are not likely to be realized in practice. Some sectors will be favored over others, yielding different levels of control. Using the MIT Emissions Prediction and Policy Analysis Model, the national cost of such differentiation across sectors is shown to be very high. Moreover, because of interactions and feedbacks in the economy, measures that differentiate in this way may not even aid the sectors they are intended to protect.

The experience of other environmental problems suggests that policies yielding uniform marginal costs across sectors, as most analyses assume, are not likely to be realized in practice. Some sectors will be favored over others, yielding different levels of control. Using the MIT Emissions Prediction and Policy Analysis Model, the national cost of such differentiation across sectors is shown to be very high. Moreover, because of interactions and feedbacks in the economy, measures that differentiate in this way may not even aid the sectors they are intended to protect.

The effects of air pollution on vegetation may provide an important control on the carbon cycle that has not yet been widely considered. Prolonged exposure to high levels of ozone, in particular, has been observed to inhibit photosynthesis by direct cellular damage within the leaves and through changes in stomatal conductance. We have incorporated empirical equations derived for trees (hardwoods and pines) and crops into the Terrestrial Ecosystem Model to explore the effects of ozone on net primary production (NPP) and carbon sequestration across the conterminous United States. Our results show up a 2.6-6.8% mean reduction for the U.S. in annual NPP in response to modeled historical ozone levels during the late 1980s to early 1990s. The largest decreases (over 13% in some locations) occur in the Midwest agricultural lands, during the mid-summer when ozone levels are highest. Carbon sequestration since the 1950s has been reduced by 18 to 38 Tg C/yr with the presence of ozone. Thus the effects of ozone on NPP and carbon sequestration should be factored into future calculations of the United States' carbon budget.

© 2004 Blackwell Munksgaard

This technical note documents the inventory of non-CO2 greenhouse gas (GHG) and traditional air pollutant emissions for the MIT Emissions Prediction and Policy Analysis model version five (EPPA 5). The non-CO2 GHG species considered include methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6). Traditional air pollutants include carbon monoxide (CO), sulfur dioxide (SO2), nitrous oxides (NOx), ammonia (NH3), black carbon (BC), organic carbon (OC), and non-methane volatile organic compounds (NMVOCs). In considering non-CO2 GHG data sets, we evaluate bottom-up inventories from the Emissions Database for Global Atmospheric Research version 4.1 (EDGAR v4.1), the “U.S. Environmental Protection Agency Global Non-CO2 Anthropogenic Emissions: 1990-2020” report (EPA 2006), and a recent inventory from the Global Trade Analysis Project (GTAP v7). For traditional air pollutants we consider EDGAR v4.1 and EDGAR-HTAP v1. Since EPPA 5 is also used in connection with the MIT Integrated Global System Model (IGSM) to study environmental effects, good agreement with measured GHG concentrations is crucial and we compare bottom-up and top-down estimates to gauge for consistency. We conclude that the EDGAR v4.1 inventory is best suited for benchmarking non-CO2 GHGs in EPPA 5 due to good disaggregation between economic sectors and species, and because it provides the closest fit with top-down estimates.

We provide details on the development of greenhouse gas and other pollutant inventories for 1995 that are used in the MIT Emissions Prediction and Policy Analysis (EPPA) model. The 1995 inventories developed here are the basis for developing emissions coefficients (emissions per unit of economic activity by sector). For a variety of reasons that vary depending on the particular pollutant, we expect these coefficients to change over time. We provide details on the methods we used to estimate how these coefficients change over time. The greenhouse gases and pollutants discussed include: methane (CH4), nitrous oxide (N2O), perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), sulfur hexafluoride (SF6), other nitrogen oxides (NOx) sulfur dioxide (SO2), carbon monoxide (CO), non-methane volatile organic carbon (NMVOC), black carbon (BC), organic carbon (OC), and ammonia (NH3). This technical note is aimed a documenting in detail the approaches used in developing emissions inventory to facilitate the process of updating and improving the accuracy of the inventory as data and measurement improve. There remain substantial uncertainties in even the current estimates of anthropogenic sources of many of these emissions.

In the absence of significant greenhouse gas (GHG) mitigation, many analysts project that atmospheric concentrations of species identified for control in the Kyoto protocol could exceed 1000 ppm (carbon-dioxide-equivalent) by 2100 from the current levels of about 435 ppm. This could lead to global average temperature increases of between 2.5° and 6° C by the end of the century. There are risks of even greater warming given that underlying uncertainties in emissions projections and climate response are substantial. Stabilization of GHG concentrations that would have a reasonable chance of meeting temperature targets identified in international negotiations would require significant reductions in GHG emissions below “business-as-usual” levels, and indeed from present emissions levels. Nearly universal participation of countries is required, and the needed investments in efficiency and alternative energy sources would entail significant costs. Resolving how these additional costs might be shared among countries is critical to facilitating a wide participation of large-emitting countries in a climate stabilization policy. The 2°C target is very ambitious given current atmospheric concentrations and inertia in the energy and climate system. The Copenhagen pledges for 2020 still keep the 2°C target within a reach, but very aggressive actions would be needed immediately after that.

In recent years, emissions trading has become an important element of programs to control air pollution. Experience indicates that an emissions trading program, if designed and implemented effectively, can achieve environmental goals faster and at lower costs than traditional command-and-control alternatives. Under such a program, emissions are capped but sources have the flexibility to find and apply the lowest-cost methods for reducing pollution. A cap-and-trade program is especially attractive for controlling global pollutants such as greenhouse gases because their warming effects are the same regardless of where they are emitted, the costs of reducing emissions vary widely by source, and the cap ensures that the environmental goal is attained.

Report authors Denny Ellerman and Paul Joskow of the Massachusetts Institute of Technology and David Harrison of National Economic Research Associates, Inc. review six diverse U.S. emissions trading programs, drawing general lessons for future applications and discussing considerations for controlling greenhouse gas emissions. The authors derive five key lessons from this experience. First, emissions trading has been successful in its major objective of lowering the cost of meeting emission reduction goals. Second, the use of emissions trading has enhanced—not compromised—the achievement of environmental goals. Third, emissions trading has worked best when the allowances or credits being traded are clearly defined and tradable without case-by-case certification. Fourth, banking has played an important role in improving the economic and environmental performance of emissions trading programs. Finally, while the initial allocation of allowances in cap-and-trade programs is important from a distributional perspective, the method of allocation generally does not impair the program’s potential cost savings or environmental performance.

With growing Congressional interest in programs to address climate change—including the recent introduction of economy-wide cap-and-trade legislation controlling greenhouse gas emissions—the application of lessons learned from previous emissions trading programs is timely. In addition to this review, the Pew Center is simultaneously releasing a complementary report, Designing a Mandatory Greenhouse Gas Reduction Program for the U.S., which examines additional options for designing a domestic climate change program.

Pages

Subscribe to JP