Earth Systems

Forests provide several critical ecosystem services that help to support human society. Alteration of forest infrastructure by changes in land use, atmospheric chemistry, and climate change influence the ability of forests to provide these ecosystem services and their sensitivity to existing and future extreme climate events. Here, we explore how the evolving forest infrastructure of the Midwest and Northeast United States influences carbon sequestration, biomass increment (i.e., change in vegetation carbon), biomass burning associated with fuelwood and slash removal, the creation of wood products, and runoff between 1980 and 2019 within the context of changing environmental conditions and extreme climate events using a coupled modeling and assessment framework.

For the 40-year study period, the region’s forests functioned as a net atmospheric carbon sink of 687 Tg C with similar amounts of carbon sequestered in the Midwest and the Northeast. Most of the carbon has been sequestered in vegetation (+771 Tg C) with more carbon stored in Midwestern trees than in Northeastern trees to provide a larger resource for potential wood products in the future. Runoff from forests has also provided 4,651 billion m3 of water for potential use by humans during the study period with the Northeastern forests providing about 2.4 times more water than the Midwestern forests. Our analyses indicate that climate variability, as particularly influenced by heat waves, has the dominant effect on the ability of forest ecosystems to sequester atmospheric CO2 to mitigate climate change, create new wood biomass for future fuel and wood products, and provide runoff for potential human use. Forest carbon sequestration and biomass increment appear to be more sensitive to heat waves in the Midwest than the Northeast while forest runoff appears to be more sensitive in the Northeast than the Midwest. Land-use change, driven by expanding suburban areas and cropland abandonment, has enhanced the detrimental heat-wave effects in Midwestern forests over time, but moderated these effects in Northeastern forests.

When developing climate stabilization, energy production and water security policies, it will be important to consider how evolving forest infrastructure modifies ecosystem services and their responses to extreme climate events over time.

Abstract: Understanding and predicting fate of global biodiversity amidst an increasingly complex and changing world is a major challenge facing the Earth-system science community.  Among the core research objectives within this challenge lies the ability to construct a comprehensive metric that not only faithfully quantifies the current and observed state of biodiversity, but also captures future trends that are driven by a variety of stressors across environmental, social, and economic systems. In order to give a better overview of our impact on biodiversity despite the obvious complexity inherent to the multi-sectoral nature of the problem, we have chosen to group together the indicators currently assessed and used internationally in a linked indicator set categorized according to the “Pressure-State-Response” framework. This approach stems from a desire to highlight and quantify the links between these different indicators in a logical and objective manner and allows us to construct a systematic synthesis of the key drivers of biodiversity. We develop a new methodology using predictive supervised learning to propose a statistical weighting of the linked indicator metric.

Abstract: Physical and societal risks across the natural, managed, and built environments are becoming increasingly complex, multi-faceted, and compounding. Such risks stem from socio-economic and environmental stresses that co-evolve and force tipping points and instabilities. Robust decision-making necessitates extensive analyses and model assessments for insights toward solutions. However, these exercises are consumptive in terms of computational and investigative resources. In practical terms, such exercises cannot be performed extensively – but selectively in terms of priority and scale. Therefore, an efficient analysis platform is needed through which the variety of multi-systems/sector observational and simulated data can be readily incorporated, combined, diagnosed, visualized, and in doing so, identifies “hotspots” of salient compounding threats.

In view of this, we have constructed a “triage-based” visualization and data-sharing platform – the Socio-Environmental Systems Risk Triage (SESRT) – that brings together data across socio-environmental systems, economics, demographics, health, biodiversity, and infrastructure. Through the SESRT website, users can display risk indices that result from weighted combinations of risk metrics they can select. Currently, these risk metrics include land-, water-, and energy systems, biodiversity, as well as demographics, environmental equity, and transportation networks.

We highlight the utility of the SESRT platform through several demonstrative analyses over the United States from the national to county level. The SESRT is an open-science tool and available to the community-at-large. We will continue to develop it with an open, accessible, and interactive approach, including academics, researchers, industry, and the general public.

Authors' Summary: This book demonstrates how robust and evolving science can be relevant to public discourse about climate policy. Fighting climate change is the ultimate societal challenge, and the difficulty is not just in the wrenching adjustments required to cut greenhouse emissions and to respond to change already under way. A second and equally important difficulty is ensuring widespread public understanding of the natural and social science. This understanding is essential for an effective risk management strategy at a planetary scale. The scientific, economic, and policy aspects of climate change are already a challenge to communicate, without factoring in the distractions and deflections from organized programs of misinformation and denial. 

Here, four scholars, each with decades of research on the climate threat, take on the task of explaining our current understanding of the climate threat and what can be done about it, in lay language—importantly, without losing critical  aspects of the natural and social science. In a series of essays, published during the 2020 presidential election, the COVID pandemic, and through the fall of 2021, they explain the essential components of the challenge, countering the forces of distrust of the science and opposition to a vigorous national response.  

Each of the essays provides an opportunity to learn about a particular aspect of climate science and policy within the complex context of current events. The overall volume is more than the sum of its individual articles. Proceeding each essay is an explanation of the context in which it was written, followed by observation of what has happened since its first publication. In addition to its discussion of topical issues in modern climate science, the book also explores science communication to a broad audience. Its authors are not only scientists – they are also teachers, using current events to teach when people are listening. For preserving Earth’s planetary life support system, science and teaching are essential. Advancing both is an unending task.

Climate policies are typically designed to reduce greenhouse gas emissions that result from human activities and drive climate change. The largest source of these emissions is the combustion of fossil fuels, which increases atmospheric concentrations of ozone, fine particulate matter (PM2.5) and other air pollutants that pose public health risks.

Pages

Subscribe to Earth Systems