JP

Mark Dwortzan, MIT Joint Program's Communications Officer
 

Panelists:

Kimberly Allen,  Director, Media Relatns & Dep Director,
News Office of VP for Communications

Sarah McDonnell, Manager, Media Relations,
News Office of VP for Communications

Tom Kiley, Senior Advisor to the Vice President for Research,
Office of the Provost

Emily DahlCommunications Director,
MIT Energy Initiative

Urban planners face challenges in water infrastructure development decisions due to short-term variation in water availability and demand, long-term uncertainty in climate and population growth, and differing perspectives on the value of water. This paper classifies these multiple uncertainties and develops a decision framework that combines simulation for probabilistic uncertainty, scenario analysis for deep uncertainty, and multistage decision analysis for uncertainties reduced over time with additional information. This framework is applied to a case from Melbourne, Australia, where a drought from 1997 to 2009 prompted investment in a $5 billion desalination plant completed in 2012 after the drought ended. The results show opportunities for significant reduction in capital investment using flexible design. Building no infrastructure is best in most simulations. However, in 10% of simulations, building no infrastructure leads to regret of greater than $10 billion compared with a small, flexible desalination plant. Scenario analysis for deep uncertainties underlines the significant impact of assumptions about the future and also on value judgments about the cost of water scarcity in evaluating infrastructure performance.

A primary reason for implementing a carbon or greenhouse gas tax is to reduce emissions, but in recent years there has been increased interest in a carbon tax’s revenue potential. This revenue could be used for federal deficit reduction, to help finance tax reform, support new spending priorities such as infrastructure spending, offset the burden of the tax on households, or other purposes. With an environmental goal to reduce emissions to very low levels, programs that become dependent on the revenue may come up short when and if carbon revenue begins to decline. To date, the revenue potential of a carbon tax has not been studied in detail. This study focuses on how much carbon tax revenue can be collected and whether there is a carbon “Laffer Curve” relationship, with a point where revenue begins to decline. We employ the MIT U.S. Regional Energy Policy (USREP) model, a dynamic computable general equilibrium model for the U.S. economy, for the numerical investigation of this question. We consider scenarios with different carbon prices and emissions reductions goals to explore how they may affect whether and at what tax rate revenues peak. We find that a sufficiently high tax rate would induce a revenue peak between now and 2050. For the scenarios we study, however, we find that carbon tax revenue is a dependable source of revenue to finance federal fiscal initiatives over a thirty-year period at the minimum. We also explore how the cost of low-carbon technology and existing energy policies interact with tax rates and revenues. Our results indicate that lower costs of abatement technology make emissions more responsive to the tax rate, and removing regulations on renewables and personal transportation results in more carbon tax revenues. Our results also show that either lowering technology costs or removing existing policies would reduce the welfare cost of a carbon policy with specific reduction goals, with a larger offsetting gain from eliminating distortions associated with existing policies.

Spanning Eastern Europe, Scandinavia, the former Soviet Union and Northern China, Northern Eurasia is a bellwether for the future of climate change. Having undergone the fastest rate of climate change in the human-populated world in the past few decades, the region has endured dramatic natural disturbances and significantly altered its land-management practices. And that may be just the beginning.

Global Change Forum XL - Keynote Lecture
Airlie House • March 29, 2017

The Climate-Change Challenge Today: An Update on Science and Policy
(with good news & bad news on each)

John P. Holdren • Teresa & John Heinz Professor of Environmental Policy, Harvard University

Formerly (January 2009 – January 2017):
Assistant to President Obama for Science & Technology
Director, White House Office of Science & Technology Policy

Understanding and predicting the future vulnerability of freshwater resources is a major challenge with important societal implications. Many studies have identified Asia as a hotspot of severe water stress in the coming decades, and also highlighted the large uncertainty associated with water resource assessment based on limited multi-model projections. Here we provide a more comprehensive risk-based assessment of water use and availability in response to future climate change, socioeconomic growth, and their combination in Southern and Eastern Asia. We employ a large ensemble of scenarios that capture the spectrum of regional climate response as well as a range of economic projections and climate policies in a consistent, integrated modeling framework. We show that economic growth increases water stress ubiquitously. The climate-only and combined climate-growth effects on water stress remain largely negative in China and Indus Basin, but largely positive in India, Indochina, and Ganges Basin. However, climate poses substantially large uncertainty in water stress changes than socioeconomic growth. By 2050, socioeconomic growth alone can lead to an additional 650 million people living under at least “heavy” water stress, with most of these located in India, Indus Basin, and China. The combined effects of socioeconomic growth and climate change reduce people under water stress to an additional 200 million, attributed mainly to the beneficial climate in India that moves its heavily-stressed condition into the slightly or moderately‑stressed conditions. These 200 million people primarily reside in Indus Basin and China under at least overly exploited water conditions— where total water requirements will consistently exceed surface water supply. Climate mitigation helps alleviating the risks of increasing water scarcity by midcentury, but to a limited extent. Therefore, adaptive measures need to be taken to meet these surface water shortfalls, or a combination of both approaches may be most effective.

We estimate Engel Curves based on Chinese household microdata and show in general equilibrium simulations that they imply substantially lower energy demand and CO2 emissions, relative to projections based on standard assumptions of unitary income elasticity. Income-driven shifts in consumption reduce the average welfare cost of emissions pricing by more than half. Climate policy is also less regressive, as rising income leads to rapid convergence in the energy intensity of consumption baskets and more evenly distributed welfare loss across households. Our findings underscore the importance of correctly accounting for the relationship between income and energy demand in high-growth economies.

Pages

Subscribe to JP