JP

Years of hard bargaining have failed to produce a policy architecture to adequately address the complexities of climate change. Very likely, such a structure will have to be sought though improvement of the partial architecture developed to date within the Framework Convention on Climate Change. We identify key architectural features that have emerged in the Convention process, and then explore extensions that will be necessary if the current approach is to serve for the long term. An important task is to break the deadlock over accession of developing countries. To this end we propose further incorporation in the negotiations of concepts of burden sharing according to ability to pay that already seem to be embedded in the Convention. The implications of alternative versions of such an approach are illustrated with a set of simple model simulations.

This paper surveys and interprets the attitudes of scientists to the use of flux adjustments in climate projections with coupled Atmosphere Ocean General Circulation Models. The survey is based largely on the responses of 19 climate modellers to several questions and a discussion document circulated in 1995. We interpret the responses in terms of the following factors: the implicit assumptions which scientists hold about how the environmental policy process deals with scientific uncertainty over human-related global warming; the different scientific styles that exist in climate research; and the influence of organisations, institutions, and policy upon research agendas. We find evidence that scientists' perceptions of the policy process do play a role in shaping their scientific practices. In particular, many of our respondents expressed a preference for keeping discussion of the issue of flux adjustments within the climate modeling community, apparently fearing that climate contrarians would exploit the issue in the public domain. While this may be true, we point to the risk that such an approach may backfire. We also identify assumptions and cultural commitments lying at a deeper level which play at least as important a role as perceptions of the policy process in shaping scientific practices. This leads us to identify two groups of scientists, 'pragmatists' and 'purists,' who have different implicit standards for model adequacy, and correspondingly are or are not willing to use flux adjustments.

We demonstrate a method for integrating environmental effects into a computable general equilibrium model. This is a critical step forward toward the development of improved integrated assessment models of environmental change. We apply the method to examine the economic consequences of air pollution on human health for the US for the period from 1970 to 2000. The pollutants include tropospheric ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, and particulate matter. We apply this method to the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the economy that has been widely used to study climate change policy. The method makes use of traditional valuation studies, incorporating this information so that estimates of welfare change are consistent with welfare valuation of the consumption of market goods and services. We estimate the benefits of air pollution regulations in USA rose steadily from 1975 to 2000 from $50 billion to $400 billion (from 2.1% to 7.6% of market consumption). Our estimated benefits of regulation are somewhat lower than the original estimates made by the US Environmental Protection Agency, and we trace that result to our development of a stock model of pollutant exposure that predicts that the benefits from reduced chronic air pollution exposure will only be gradually realized. We also estimate the economic burden of uncontrolled levels of air pollution over that period. The uncertainties in these estimates are large which we show through simulations using 95% confidence limits on the epidemiological dose-response relationships.

© 2007 Springer

The intrinsic difficulties in building realistic climate models and in providing complete, reliable and meaningful observational datasets, and the conceptual impossibility of testing theories against data imply that the usual Galilean scientific validation criteria do not apply to climate science. The different epistemology pertaining to climate science implies that its answers cannot be singular and deterministic; they must be plural and stated in probabilistic terms. Therefore, in order to extract meaningful estimates of future climate change from a model, it is necessary to explore the model's uncertainties. In terms of societal impacts of scientific knowledge, it is necessary to accept that any political choice in a matter involving complex systems is made under unavoidable conditions of uncertainty. Nevertheless, detailed probabilistic results in science can provide a baseline for a sensible process of decision making.

© 2004-2006 Inderscience Enterprises Limited.

This paper provides a penetrating analysis of the Clinton Administration's pre-Kyoto proposal for imposing national limits on greenhouse gas emissions in the context of negotiations for an international agreement. The Administration's "U.S. Draft Protocol Framework" (17 January 1997), which suggests tradable permits and joint implementation are the favored policy vehicles to achieve emissions reductions, shows neglect of important issues. It has the potential to take us for a bumpy ride (with non-negligible implementation problems and potentially excessive abatement costs) in the wrong direction (toward short-run reductions in rich country emissions from fossil fuels). The subsequent Commentary continues the metaphor to discuss: How good are the climate road maps?, What road are we on?, and Can backseat drivers (scientists) help?

This paper is written as part of a two-year study of climate change policy choices facing Sweden, conducted under the auspices of the Center for Business and Policy Studies in Stockholm. As such, it aims to be a primer on emissions trading as an instrument for limiting greenhouse gas (GHG) emissions under the Kyoto Protocol to the Framework Convention on Climate Change. The first section notes general considerations concerning emissions trading, particularly in relation to climate policy. The second section explains the many forms of emissions trading included in the Kyoto Protocol. The third section provides a brief review of emissions trading proposals that have been advanced in Europe as of mid-2000. The fourth section addresses issues in the design and implementation of a national GHG emissions trading system. The brief conclusion is followed by an appendix, which draws applicable lessons concerning the choice and design of a cap and trade system from the U.S. SO2 emissions trading program.

This paper presents a conceptual, integrated modelling framework and provides an example tradeoff analysis between economic development goals and climate change adaptation strategies. Case study results for tradeoffs between water entering Egypt and predicted economic consequences are discussed and lessons learned (e.g. the nature and limitations of the tradeoff analysis) are summarized. Tradeoff analysis results were illustrated using Stochastic Efficiency with Respect to a Function (SERF) stochastic dominance methodology (including certainty equivalent measures of the GDP and the quantity of water), and used recent projected climate change scenarios and economic indicators. Results show that some climate change adaptation strategies may coincide with economic development agenda and objectives (such as more water release from the Aswan High Dam). Some strategies may, however, contradict existing regional economic development goals. The conceptual framework and methods developed and illustrated here have broad applications to trans-boundary water issues in Africa and elsewhere.

The Terrestrial Ecosystem Model (TEM version 4.1) is applied to assess the sensitivity of net ecosystem production (NEP) of the terrestrial biosphere to transient changes in atmospheric CO2 concentration and climate in the 21st Century. These NEP estimates provide a measure of the potential for various vegetated regions and countries to act as sinks or sources of atmospheric CO2. We use three transient climate change predictions over the period of 1977-2100 from the MIT Integrated Global System Model for assessment of the effects of different climate changes. Global annual NEP has large interannual variations and increases over time, thus representing a growing net carbon flux from the atmosphere to the biosphere. Latitudinal distribution of total annual NEP along 0.5degrees resolution latitudinal bands has a significant shift from the tropics to the northern mid- and high-latitudes over time. The sums of annual NEP over the period of 1990-2100 differ substantially among the twelve economic regions of the world. The results show that temporal dynamics and spatial distribution of annual NEP are very sensitive to the magnitudes and paths of temporal changes in atmospheric CO2 concentration and climate.

© 2008 American Geophysical Union

The Terrestrial Ecosystem Model (TEM version 4.1) is applied to assess the sensitivity of net ecosystem production (NEP) of the terrestrial biosphere to transient changes in atmospheric CO2 concentration and climate in the 21st century. These NEP estimates provide a measure of the potential for various vegetated regions and countries to act as sinks or sources of atmospheric CO2. We use three transient climate change predictions over the period of 1977-2100 from the MIT Integrated Global System Model for assessment of the effects of different climate changes. Global annual NEP has large interannual variations and increases over time, thus representing a growing net carbon flux from the atmosphere to the biosphere. Latitudinal distribution of total annual NEP along 0.5 degree resolution latitudinal bands has a significant shift from the tropics to the northern mid- and high-latitudes over time. The sums of annual NEP over the period of 1990-2100 differ substantially among the twelve economic regions of the world. The results show that temporal dynamics and spatial distribution of annual NEP are very sensitive to the magnitudes and paths of temporal changes in atmospheric CO2 concentration and climate.

Pages

Subscribe to JP