Regional Analysis

Over the past three years, J-WAFS seed funding has catalyzed a diverse portfolio of MIT research relevant to water and food—spanning fundamental science, engineering and technology, supply chains, big data, business models, development efforts, economics, urban design and infrastructure, and more.  This fall, just as we were distributing our fourth call for proposals, our very first round of seed grant projects—beginning in 2015—came to a close.  As these inaugural projects end and others begin, we'd like to take a moment to highlight and celebrate the achievements the J-WAFS-funded MIT fac

When global oil prices declined dramatically in 2014 and 2015, leading energy analysts expected that oil production in the United States—consisting primarily of “tight oil” extracted from rock formations by means of massive hydraulic fracturing—would likewise decrease due to relatively high production costs. Despite prospects for a negative return on investment, however, U.S. tight oil production continued almost unabated. Perplexed by this development, a team of researchers sought to better understand the relationship between oil prices and production volumes.

When global oil prices declined dramatically in 2014 and 2015, leading energy analysts expected that oil production in the United States—consisting primarily of “tight oil” extracted from rock formations by means of massive hydraulic fracturing—would likewise decrease due to relatively high production costs. Despite prospects for a negative return on investment, however, U.S. tight oil production continued almost unabated. Perplexed by this development, a team of researchers sought to better understand the relationship between oil prices and production volumes. In particular, they aimed to pinpoint those factors that determine the “breakeven” points of tight oil production projects—essentially the oil price points at which revenue from sales equals the cost of production.

Though energy industry analysts have widely used breakeven costs to predict how oil producers will respond to changing market conditions and to assess the economic viability of proposed oil and gas development projects, they have routinely defined them imprecisely and inconsistently. This has resulted in predictions of limited utility and reliability. To enable more robust predictions, the researchers, who work for Schlumberger-Doll Research, the MIT Joint Program on the Science and Policy of Global Change, the Atlantic Council, the King Abdullah Petroleum Studies and Research Center, and the Columbia University School of International and Public Affairs, have developed a systematic method to understand the costs of oil production and how they change with time and circumstances. Applying this method, they have proposed a set of standard definitions for breakeven points at different stages of the oil production cycle.

The MIT Joint Program is collaborating with King Abdulaziz City for Science and Technology (KACST) to conduct numerical experiments with a high-resolution regional climate model (WRF) over the Arabian Peninsula, with the objective of assessing the environmental impacts and urban water-resource risks of a changing climate, and the benefits of mitigation and adaptation. This project is funded via the MIT Sociotechnical Systems Research Center.

Critical to our ability to survive and thrive for generations to come is ongoing access to adequate supplies of clean, fresh water. For the foreseeable future, significant freshwater withdrawals will be needed for irrigation, thermal power plant cooling, and myriad industrial and residential uses. But in many regions, socioeconomic and environmental pressures pose growing threats to both the quantity and quality of local water resources. In order to take effective action to mitigate and/or adapt to rising risks, decision-makers will need robust, prediction-based strategies and tools.

Pages

Subscribe to Regional Analysis