Climate Policy

With federal policies to curb greenhouse gas emissions in the U.S. stagnating, California has taken action on its own. We estimate the impact of California’s cap-and-trade program on the leakage of emissions to other regions using a calibrated general equilibrium model. Sub-national policies can lead to high leakage rates as state economies are generally closely connected to other economies, including integration of electricity markets. Measures that will prevent leakage from California’s cap-and-trade program include requiring permits to be surrendered for emissions embodied in imported electricity and legislation banning “resource shuffling”. Under a cap-and-trade policy without measures to reduce leakage, the price of emission permits is $12 per ton of CO2 and emissions in other regions increase by 46% of the reduction in emissions in California. When imported electricity is included in the program and resource shuffling is banned, the carbon price is $65, there is negative leakage to regions exporting electricity to California, positive leakage to other regions and the overall leakage rate is 2%. We conclude that although there is potential for large increases in emissions elsewhere due to California’s cap-and-trade policy, enforcement of requirements for imported electricity will be effective at curtailing leakage.

With federal policies to curb carbon emissions stagnating in the U.S., California is taking action alone. Sub-national policies can lead to high rates of emissions leakage to other regions as state-level economies are closely connected, including integration of electricity markets. Using a calibrated general equilibrium model, we estimate that California's cap-and-trade program without restrictions on imported electricity increases out-of-state emissions by 45% of the domestic reduction. When imported electricity is included in the cap and "resource shuffling" is banned, as set out in California's legislation, emissions reductions in electricity exporting states partially offset leakage elsewhere and overall leakage is 9%.

© 2014 International Association for Energy Economics

In the negotiations of the United Nations Framework Convention on Climate Change (UNFCCC), new market mechanisms are proposed to involve Non-Annex I countries in the carbon markets developed by Annex I countries, beyond their current involvement through the Clean Development Mechanism (CDM). Sectoral trading is one such mechanism. It would consist of coupling one economic sector of a Non-Annex I country, e.g., the Chinese electricity sector, with the carbon market of some Annex I countries, e.g., the European Union Emission Trading Scheme (EU ETS). Previous research analyzed the potential impacts of such a mechanism and concluded that a limit would likely be set on the amount of carbon permits that could be imported from the non-Annex I country to the Annex I carbon market, should such a mechanism come into effect. This paper analyzes the impact of limited trading in carbon permits between the EU ETS and Chinese electricity sector when the latter is constrained by a 10% emissions reduction target below business as usual by 2030. The limit on the amount of Chinese carbon permits that could be sold into the European carbon market is modeled through the introduction of a trade certificate system. The analysis employs the MIT Emissions Prediction and Policy Analysis (EPPA) model and takes into account the banking–borrowing of allowances and the inclusion of aviation emissions in the EU ETS. We find that if the amount of permits that can be imported from China to Europe is 10% of the total amount of European allowances, the European carbon price decreases by 34%, while it decreases by 74 % when sectoral trading is not limited. As a consequence, limited sectoral trading does not reverse the changes initiated in the European electricity sector as much as unlimited sectoral trading would. We also observe that international leakage and leakage to non-electricity sectors in China are lower under limited sectoral trading, thus achieving more emissions reductions at the aggregate level. Finally, we find that, if China can capture the rents due to the limit on sectoral trading, it is possible to find a limit that makes both regions better off relative to when there is no international trade in carbon permits.

Marginal abatement cost (MAC) curves, relationships between tonnes of emissions abated and the CO2 (or greenhouse gas (GHG)) price, have been widely used as pedagogic devices to illustrate simple economic concepts such as the benefits of emissions trading. They have also been used to produce reduced-form models to examine situations where solving the more complex model underlying the MAC is difficult. Some important issues arise in such applications: (1) Are MAC relationships independent of what happens in other regions?, (2) are MACs stable through time regardless of what policies have been implemented in the past?, and (3) can one approximate welfare costs from MACs? This paper explores the basic characteristics of MAC and marginal welfare cost (MWC) curves, deriving them using the MIT Emissions Prediction and Policy Analysis model. We find that, depending on the method used to construct them, MACs are affected by policies abroad. They are also dependent on policies in place in the past and depend on whether they are CO2-only or include all GHGs. Further, we find that MACs are, in general, not closely related to MWCs and therefore should not be used to derive estimates of welfare change. We also show that, as commonly constructed, MACs may be unreliable in replicating results of the parent model when used to simulate GHG policies. This is especially true if the policy simulations differ from the conditions under which the MACs were simulated.

© 2012 Springer

Summary

Regulatory measures have proven the favored approach to climate change mitigation in the U.S., while market-based policies have gained little traction. Using a model that resolves the U.S. economy by region, income category, and sector-specific technology deployment opportunities, this paper studies the magnitude and distribution of economic impacts under regulatory versus market-based approaches. We quantify heterogeneity in the national response to regulatory policies, including a fuel economy standard and a clean or renewable electricity standard, and compare these to a cap–and–trade system targeting carbon dioxide or all greenhouse gases. We find that the regulatory policies substantially exceed the cost of a cap–and–trade system at the national level. We further show that the regulatory policies yield large cost disparities across regions and income groups, which are exaggerated by the difficulty of implementing revenue recycling provisions under regulatory policy designs.

Climate and energy policy in China will have important and uneven impacts on the country’s regionally heterogeneous transport system. In order to simulate these impacts, transport sector detail is added to a multi-sector, static, global computable general equilibrium (CGE) model which resolves China’s provinces as distinct regions. This framework is used to perform an analysis of national-level greenhouse gas (GHG) policies. Freight, commercial passenger and household (private vehicle) transport are separately represented, with the former two categories further disaggregated into road and non-road modes. The preparation of model inputs is described, including assembly of a provincial transport data set from publicly-available statistics. Two policies are analyzed: the first represents China’s target of a 17% reduction in GHG emissions intensity of GDP during the Twelfth Five Year Plan (12FYP), and the second China’s Copenhagen target of a 40–45% reduction in the same metric during the period 2005–2020.

We find significant heterogeneity in regional transport impacts. We find that both freight and passenger transportation in some of the poorest provinces are most adversely affected, as their energy-intensive resource and industrial sectors offer many of the least-cost abatement opportunities, and the transformation of their energy systems strongly affects transport demand. At the national level, we find that road freight is the transport sector affected most by policy, likely due to its high energy intensity and limited low-cost opportunities for improving efficiency.

The type and degree of regional disparity in impacts is relevant to central and provincial government decisions which set and allocate climate, energy and transport policy targets. We describe how this research establishes a basis for regional CGE analysis of the economic, energy and environmental impacts of transport-focused policies including vehicle ownership restrictions, taxation of driving activity or fuels, and the supply of public transit.

In a dramatic example of policy diffusion, the past three decades have witnessed the spread of automobile emission standards throughout the world. Contrary to fears that global competition would produce a race to the bottom, there appears to be a race to the top, not only among rich countries but also among poor ones. Using econometric analysis of the adoption of automobile emission standards over the past twenty years for 129 countries, the author argues that this global diffusion results from countries' efforts to stay competitive in the international market. Due to the pressure from importing countries that have adopted stringent emission standards, even developing countries have rapidly moved to adopt rich country standards. The evidence shows that adoption of automobile emission standards correlates with an increase in the total value of automobile exports. Under some conditions, economic incentives in a global market can be a complement to environmental protection.

© 2013 Trustees of Princeton University

We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an earth system model of intermediate complexity with a two-dimensional zonal-mean atmosphere, to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three-dimensional atmospheric model; and a statistical downscaling, where a pattern scaling algorithm uses climate-change patterns from 17 climate models. This framework allows for key sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections; climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate); natural variability; and structural uncertainty. Results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also find that different initial conditions lead to differences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider all sources of uncertainty when modeling climate impacts over Northern Eurasia.

To address rising energy use and CO2 emissions, China’s leadership has enacted energy and CO2 intensity targets under the Twelfth Five-Year Plan (2011–2015), which are defined at both the national and provincial levels. We develop a computable general equilibrium (CGE) model with global coverage that disaggregates China’s 30 provinces and includes energy system detail, and apply it to assess the impact of provincial CO2 emissions intensity targets. We compare the impact of the provincial targets approach to a single national target for China that achieves the same reduction in CO2 emissions intensity at the national level. We find that at the national level, the national target results in 25% lower welfare loss relative to the provincial targets approach. Given that the regional distribution of impacts has been an important consideration in the target-setting process, we focus on the changes in provincial level CO2 emissions intensity, CO2 emissions, energy consumption, and economic welfare. We observe significant heterogeneity across provinces in terms of the energy system response as well as the magnitude and sometimes sign of welfare impacts. We further model the current policy of fixed end-use electricity prices in China and find that national welfare losses increase. Assumptions about capital mobility have a substantial impact on national welfare loss, while assumptions about natural gas resource potential does not have a large effect.

Passenger vehicles and power plants are major sources of greenhouse gas emissions. While economic analyses generally indicate that a broader market-based approach to greenhouse gas reduction would be less costly and more effective, regulatory approaches have found greater political success. Vehicle efficiency standards have a long history in the U.S and elsewhere, and the recent success of shale gas in the U.S. leads to a focus on coal–gas fuel switching as a way to reduce power sector emissions. We evaluate a global regulatory regime that replaces coal with natural gas in the electricity sector and imposes technically achievable improvements in the efficiency of personal transport vehicles. Its performance and cost are compared with other scenarios of future policy development including a no policy world, achievements under the Copenhagen accord, and a price-based policy to reduce global emissions by 50% by 2050. The assumed regulations applied globally achieve a global emissions reduction larger than projected for the Copenhagen agreements, but they do not prevent global GHG emissions from continuing to grow, and the reduction in emissions is achieved at a high cost compared to a price-based policy. Diagnosis of the reasons for the limited yet high-cost performance reveals influences including the partial coverage of emitting sectors, small or no influence on the demand for emissions-intensive products, leakage when a reduction in fossil use in the covered sectors lowers the price to others, and the partial coverage of GHGs.

Pages

Subscribe to Climate Policy