Climate Policy

The Minamata Convention on Mercury entered into force in August 2017, committing its currently 92 parties to take action to protect human health and the environment from anthropogenic emissions and releases of mercury. But how can we tell whether the convention is achieving its objective? Although the convention requires periodic effectiveness evaluation (1), scientific uncertainties challenge our ability to trace how mercury policies translate into reduced human and wildlife exposure and impacts. Mercury emissions to air and releases to land and water follow a complex path through the environment before accumulating as methylmercury in fish, mammals, and birds. As these environmental processes are both uncertain and variable, analyzing existing data alone does not currently provide a clear signal of whether policies are effective. A global-scale metric to assess the impact of mercury emissions policies would help parties assess progress toward the convention's goal. Here, I build on the example of the Montreal Protocol on Substances that Deplete the Ozone Layer to identify criteria for a mercury metric. I then summarize why existing mercury data are insufficient and present and discuss a proposed new metric based on mercury emissions to air. Finally, I identify key scientific uncertainties that challenge future effectiveness evaluation.

The paper applies multiregional CGE Economic Policy Projection and Analysis (EPPA) model to analyze major risks the Paris Agreement on climate change adopted in 2015 brings to Russia. The authors come to the conclusion that if parties of the Agreement meet their targets that were set for 2030 it may lead to the decrease of average annual GDP growth rates by 0.2-0.3 p. p. Stricter climate policies beyond this year would bring GDP growth rates reduction in2035-2050 by additional 0.5 p. p. If Russia doesn’t ratify Paris Agreement, these losses may increase. In order to mitigate these risks, diversification of Russian economy is required.

The ozone layer depletion and its recovery, as well as the climate influence of ozone-depleting substances (ODSs) and their substitutes that influence climate, are of interest to both the scientific community and the public. Here we report on the emissions of ODSs and their substitute from China, which is currently the largest consumer (and emitter) of these substances. We provide, for the first time, comprehensive information on ODSs and replacement hydrofluorocarbon (HFC) emissions in China starting from 1980 based on reported production and usage. We also assess the impacts (and costs) of controls on ODS consumption and emissions on the ozone layer (in terms of CFC-11-equivalent) and climate (in CO2-equivalent). In addition, we show that while China’s future ODS emissions are likely to be defined as long as there is full compliance with the Montreal Protocol; its HFC emissions through 2050 are very uncertain. Our findings imply that HFC controls over the next decades that are more stringent than those under the Kigali Amendment to the Montreal Protocol would be beneficial in mitigating global climate change.

Fulfilling the ultimate goal of the Paris Agreement on climate change—keeping global warming well below two degrees Celsius, if not 1.5°C—will be impossible without dramatic action from the world’s largest emitter of greenhouse gases, China. Toward that end, China began developing in 2017 an emissions trading scheme (ETS), a national carbon dioxide market designed to enable the country to meet its initial Paris pledge with the greatest efficiency and at the lowest possible cost.

Summary: Fulfilling the ultimate goal of the Paris Agreement on climate change—keeping global warming well below two degrees Celsius, if not 1.5°C—will be impossible without dramatic action from the world’s largest emitter of greenhouse gases, China. Toward that end, China began developing in 2017 an emissions trading scheme (ETS), a national carbon dioxide market designed to enable the country to meet its initial Paris pledge with the greatest efficiency and at the lowest possible cost. China’s pledge, or Nationally Determined Contribution (NDC), is to reduce its CO2 intensity of GDP (emissions produced per unit of economic activity) by 60–65% in 2030 relative to 2005, and to peak CO2 emissions around 2030.

When it’s rolled out, China’s carbon market will initially cover the electric power sector (which currently produces more than three billion tons of CO2) and likely set CO2 emissions intensity targets (e.g. grams of CO2 per kilowatt hour) to ensure that its short-term NDC is fulfilled. But to help the world achieve the long-term 2°C and 1.5°C Paris goals, China will need to continually decrease these targets over the course of the century.

A new Joint Program-led study of China’s long-term power generation mix under the nation’s ETS projects that until 2065, renewable energy sources will likely expand to meet these targets; after that, carbon capture and storage (CCS) could be deployed to meet the more stringent targets that follow. 

Summary: Improved air quality can be a major bonus of climate mitigation policies aimed at reducing greenhouse gas emissions. By cutting air pollution levels in the country where emissions are produced, such policies can avoid significant numbers of premature deaths. But other nations downwind from the host country may also benefit. This study hows that if the world’s top emitter of greenhouse gas emissions, China, fulfills its climate pledge to peak carbon dioxide emissions in 2030, the positive effects would extend all the way to the United States, where improved air quality would result in nearly 2,000 fewer premature deaths.       

The study estimates China’s climate policy air quality and health co-benefits resulting from reduced atmospheric concentrations of ozone, as well as co-benefits from reduced ozone and particulate air pollution (PM2.5) in three downwind and populous countries: South Korea, Japan and the U.S. As ozone and PM2.5  give a well-rounded picture of air quality and can be transported over long distances, accounting for both pollutants enables a more accurate projection of associated health co-benefits in the country of origin and those downwind.  

Pages

Subscribe to Climate Policy