Bottom-heavy trophic pyramids impair methylmercury biomagnification in the marine plankton ecosystems

Journal Article
Bottom-heavy trophic pyramids impair methylmercury biomagnification in the marine plankton ecosystems
Wu, P., S. Dutkiewicz, E. Monier and Y. Zhang (2021)
Environmental Science and Technology, 10.1021/acs.est.1c04083

Abstract/Summary:

Abstract: Methylmercury (CH3Hg+, MMHg) in the phytoplankton and zooplankton, which form the bottom of marine food webs, is a good predictor of MMHg in top predators, including humans. Therefore, evaluating the potential exposure of MMHg to higher trophic levels (TLs) requires a better understanding of relationships between MMHg biomagnification and plankton dynamics.

In this study, a coupled ecological/physical model with 366 plankton types of different sizes, biogeochemical functions, and temperature tolerance is used to simulate the relationships between MMHg biomagnification and the ecosystem structure. The study shows that the MMHg biomagnification becomes more significant with increasing TLs. Trophic magnification factors (TMFs) in the lowest two TLs show the opposite spatial pattern to TMFs in higher TLs. The low TMFs are usually associated with a short food-chain length. The less bottom-heavy trophic pyramids in the oligotrophic oceans enhance the MMHg trophic transfer. The global average TMF is increased from 2.3 to 2.8 in the warmer future with a medium climate sensitivity of 2.5 °C.

Our study suggests that if there are no mitigation measures for Hg emission, MMHg in the high-trophic-level plankton is increased more dramatically in the warming future, indicating greater MMHg exposure for top predators such as humans.

Citation:

Wu, P., S. Dutkiewicz, E. Monier and Y. Zhang (2021): Bottom-heavy trophic pyramids impair methylmercury biomagnification in the marine plankton ecosystems. Environmental Science and Technology, 10.1021/acs.est.1c04083 (https://pubs.acs.org/doi/10.1021/acs.est.1c04083)
  • Journal Article
Bottom-heavy trophic pyramids impair methylmercury biomagnification in the marine plankton ecosystems

Wu, P., S. Dutkiewicz, E. Monier and Y. Zhang

10.1021/acs.est.1c04083
2021

Abstract/Summary: 

Abstract: Methylmercury (CH3Hg+, MMHg) in the phytoplankton and zooplankton, which form the bottom of marine food webs, is a good predictor of MMHg in top predators, including humans. Therefore, evaluating the potential exposure of MMHg to higher trophic levels (TLs) requires a better understanding of relationships between MMHg biomagnification and plankton dynamics.

In this study, a coupled ecological/physical model with 366 plankton types of different sizes, biogeochemical functions, and temperature tolerance is used to simulate the relationships between MMHg biomagnification and the ecosystem structure. The study shows that the MMHg biomagnification becomes more significant with increasing TLs. Trophic magnification factors (TMFs) in the lowest two TLs show the opposite spatial pattern to TMFs in higher TLs. The low TMFs are usually associated with a short food-chain length. The less bottom-heavy trophic pyramids in the oligotrophic oceans enhance the MMHg trophic transfer. The global average TMF is increased from 2.3 to 2.8 in the warmer future with a medium climate sensitivity of 2.5 °C.

Our study suggests that if there are no mitigation measures for Hg emission, MMHg in the high-trophic-level plankton is increased more dramatically in the warming future, indicating greater MMHg exposure for top predators such as humans.

Posted to public: 

Monday, November 15, 2021 - 17:04