Analysis of Climate Policy Targets under Uncertainty

Joint Program Report
Analysis of Climate Policy Targets under Uncertainty
Webster, M., A.P. Sokolov, J.M. Reilly, C.E. Forest, S. Paltsev, A. Schlosser, C. Wang, D. Kicklighter, M. Sarofim, J. Melillo, R.G. Prinn and H.D. Jacoby (2009)
Joint Program Report Series, September, 53 p.

Report 180 [Download]

Abstract/Summary:

Although policymaking in response to the climate change is essentially a challenge of risk management, most studies of the relation of emissions targets to desired climate outcomes are either deterministic or subject to a limited representation of the underlying uncertainties. Monte Carlo simulation, applied to the MIT Integrated Global System Model (an integrated economic and earth system model of intermediate complexity), is used to analyze the uncertain outcomes that flow from a set of century-scale emissions targets developed originally for a study by the U.S. Climate Change Science Program. Results are shown for atmospheric concentrations, radiative forcing, sea ice cover and temperature change, along with estimates of the odds of achieving particular target levels, and for the global costs of the associated mitigation policy. Comparison with other studies of climate targets are presented as evidence of the value, in understanding the climate challenge, of more complete analysis of uncertainties in human emissions and climate system response.

Citation:

Webster, M., A.P. Sokolov, J.M. Reilly, C.E. Forest, S. Paltsev, A. Schlosser, C. Wang, D. Kicklighter, M. Sarofim, J. Melillo, R.G. Prinn and H.D. Jacoby (2009): Analysis of Climate Policy Targets under Uncertainty. Joint Program Report Series Report 180, September, 53 p. (http://globalchange.mit.edu/publication/16763)
  • Joint Program Report
Analysis of Climate Policy Targets under Uncertainty

Webster, M., A.P. Sokolov, J.M. Reilly, C.E. Forest, S. Paltsev, A. Schlosser, C. Wang, D. Kicklighter, M. Sarofim, J. Melillo, R.G. Prinn and H.D. Jacoby

Report 

180
September, 53 p.
2017

Abstract/Summary: 

Although policymaking in response to the climate change is essentially a challenge of risk management, most studies of the relation of emissions targets to desired climate outcomes are either deterministic or subject to a limited representation of the underlying uncertainties. Monte Carlo simulation, applied to the MIT Integrated Global System Model (an integrated economic and earth system model of intermediate complexity), is used to analyze the uncertain outcomes that flow from a set of century-scale emissions targets developed originally for a study by the U.S. Climate Change Science Program. Results are shown for atmospheric concentrations, radiative forcing, sea ice cover and temperature change, along with estimates of the odds of achieving particular target levels, and for the global costs of the associated mitigation policy. Comparison with other studies of climate targets are presented as evidence of the value, in understanding the climate challenge, of more complete analysis of uncertainties in human emissions and climate system response.