JP

This paper is an empirical investigation of the effects of climate on the use of electricity by consumers and producers in urban and rural areas within China. It takes advantage of an unusual combination of temporal and regional data sets in order to estimate temperature, as well as price and income elasticities of electricity demand. The estimated positive temperature/electric power feedback implies a continually increasing use of energy to produce electric power which, in China, is primarily based on coal. In the absence of countervailing measures, this will contribute to increased emissions, increased atmospheric concentrations of greenhouse gases, and increases in greenhouse warming.

Although emissions of CO2 are the largest anthropogenic contributor to the risks of climate change, other substances are important in the formulation of a cost-effective response. To provide improved facilities for addressing their role, we develop an approach for endogenizing control of these other greenhouse gases within a computable general equilibrium (CGE) model of the world economy. The calculation is consistent with underlying economic production theory. For parameterization it is able to draw on marginal abatement cost (MAC) functions for these gases based on detailed technological descriptions of control options. We apply the method to the gases identified in the Kyoto Protocol: methane (CH4), nitrous oxide (N2O), sulfur hexaflouride (SF6), the perflourocarbons (PFCs), and the hyrdoflourocarbons (HFCs). Complete and consistent estimates are provided of the costs of meeting greenhouse-gas reduction targets with a focus on "what" flexibility — i.e., the ability to abate the most cost-effective mix of gases in any period. We find that non-CO2 gases are a crucial component of a cost-effective policy. Because of their high Global Warming Potentials (GWPs) under current international agreements they would contribute a substantial share of early abatement.

© 2003 Kluwer Academic Publishers

Although emissions of CO2 are the largest anthropogenic contributor to the risks of climate change, other substances are important in the formulation of a cost-effective response. To provide improved facilities for addressing their role, we develop an approach for endogenizing control of these other greenhouse gases within a computable general equilibrium (CGE) model of the world economy. The calculation is consistent with underlying economic production theory. For parameterization it is able to draw on marginal abatement cost (MAC) functions for these gases based on detailed technological descriptions of control options. We apply the method to the gases identified in the Kyoto Protocol: methane (CH4), nitrous oxide (N2O), sulfur hexaflouride (SF6), the perflourocarbons (PFCs), and the hyrdoflourocarbons (HFCs). Complete and consistent estimates are provided of the costs of meeting greenhouse-gas reduction targets with a focus on "what" flexibility — i.e., the ability to abate the most cost-effective mix of gases in any period. We find that non-CO2 gases are a crucial component of a cost-effective policy. Because of their high Global Warming Potentials (GWPs) under current international agreements they would contribute a substantial share of early abatement.

We examine the interplay between ecology and biogeochemical cycles in the context of a global three-dimensional ocean model where self-assembling phytoplankton communities emerge from a wide set of potentially viable cell types. We consider the complex model solutions in the light of resource competition theory. The emergent community structures and ecological regimes vary across different physical environments in the model ocean: Strongly seasonal, high-nutrient regions are dominated by fast growing bloom specialists, while stable, low-seasonality regions are dominated by organisms that can grow at low nutrient concentrations and are suited to oligotrophic conditions. In the latter regions, the framework of resource competition theory provides a useful qualitative and quantitative diagnostic tool with which to interpret the outcome of competition between model organisms, their regulation of the resource environment, and the sensitivity of the system to changes in key physiological characteristics of the cells.

© 2009 American Geophysical Union

This doctoral thesis examines the controls that climate has on natural emissions of N2O and CH4 from the terrestrial biosphere to the atmosphere, and explores the feedbacks between climate and the N2O and CH4 cycles. The development of a process-oriented global biogeochemical model for soil N2O emissions (with a 2.5 degree x 2.5 degree spatial resolution) and a more empirically based global model for wetland CH4 emissions (1 degree x 1 degree resolution) are described. The models are used to quantify the natural emission changes due to climate change and the feedback of the natural emissions onto the climate system. Two extreme climatic cases are considered: that associated with doubling current CO2 levels and that during the last glacial maximum. Climate influences, seasonal variation, spatial and temporal vegetation variations and sensitivity experiments are discussed. The emission models were coupled with MIT's 2D climate and chemistry models. Results indicate that changes in natural N2O and CH4 emissions corresponding to long term climate changes are significant. Fully interactive model runs show that there is a significant positive feedback between emissions and climate.

The overall goals of this thesis are to examine quantitatively the controls that climate has on natural emissions of N2O and CH4 from the terrestrial biosphere to the atmosphere and to explore the feedbacks between climate and the N2O and CH4 cycles. A process-oriented global model for soil N2O emissions and a more empirically based global model for wetland CH4 emissions have been developed to address these goals. These emission models are capable of quantifying the natural emission changes due to climate change and the feedback of the natural emissions onto the climate system.

The global emission model for N2O, which focuses on soil biogenic N2O emissions, has a 2.5 degree x 2.5 degree spatial resolution. The model can predict daily emissions for N2O, N2, NH3 and CO2 and daily soil uptake of CH4. It is a process-oriented biogeochemical model including all those soil C and N dynamic processes for decomposition, nitrification, and denitrification in Li et al.'s (1992a, b) site model. The model takes into account the spatial and temporal variability of the driving variables, which include vegetation type, total soil organic carbon, soil texture, and climate paramters. Climatic influences, particularly temperature and precipitation, determine dynamic soil temperature and moisture profiles and shifts of aerobic-anaerobic conditions.

The methane emission model is developed specifically for wetlands and has a spatial resolution of 1 degree x 1 degree. There are three components for the global wetland methane emission model: high latitude wetlands, tropical wetlands and wet tundra. For high latitude wetlands (i.e. northern bogs), the emission model uses a two-layer hydrological model (Frolking, 1993) to predict the water table level and the bog soil temperature, which are then used in an empirical formula to predict methane emissions. For tropical wetlands (i.e. swamps and alluvial formations), a two-factor model (temperature and water availability) is used to model the methane flux by taking into account the temperature and moisture dependence of activity of methanogens. Methane emissions from wet tundra are calculated by assuming a constant small methane flux and an emission season defined by the time period when the surface temperature is about the freeezing point. The hydrological model and the two-factor model are driven by surface temperature and precipitation, which links methane emission with climate.

For present-day climate and soil data sets the N2O emission model predicts an annual flux of 11.3 Tg-N/year (17.8 Tg N2O/year). The spatial distribution and seasonal variation of the modeled current N2O emissions are similar to climate patterns, especially the precipitation pattern. Chemical transport model experiments using the modeled soil N2O emissions plus prescribed other (minor) emissions show good agreement with observations of trends of surface N2O missing ratios and the N2O interhemispheric gradient (Prinn et al., 1990). Sensitivity experiments suggest that soil organic carbon content, precipitation and surface temperature are the dominant factors in controlling global N2O emissions.

The global CH4 emission model predicts an annual flux of 127 Tg CH4/year for present-day climate and wetland conditions, which is in the middle fo the range of recent estimates for natural wetland emissions (Bartlett and Harriss, 1993; Reeburgh et al., 1993; IPCC, 1994). Global methane emissions have two strong latitudinal bands with one in the tropics and the other in the northern high latitudes. There are strong seasonal cycles for the high latitude CH4 emissions and hence for the global total emission amount.

The emission models for N2O and CH4 have been applied to two extreme climatic cases: that associated with doubling current CO2 levels and that during the last glacial maximum. While predicted equilibrium climates from three climate models (MIT 2D, GISS and GFDL GCMs) have been used in both cases, predicted soil organic carbon from terrestrial ecocystem model (TEM, Melillo et al., 1993) have been used in the "doubled-CO2" case and CLIMAP data (1981) have been used in the "ice age" case. Results indicate that equilibrium climate changes due to doubling CO2 would lead to a 34% increase in N2O emissions and a 54% increase in natural wetland CH4 emissions. Temperature increases seem to dominate the contribution to increases in N2O and CH4 emissions. Geographical coherence of predicted changes in surface temperature and precipitation is significant in determining the predicted changes in global emissions. Ice age soil N2O emissions and wetland CH4 emissions are predicted to be significantly smaller (about 50% of current emissions).

Finally, the emission models were coupled with 2D climate and chemistry models developed at MIT (Sokolov and Stone, 1995; Wang, Prinn and Sokolov, 1996). Model results indicate that changes in natural N2O and CH4 emissions corresponding to long term climate changes are significant. Predicted N2O and CH4 emissions indicate significant sensitivity to outputs from the climate (surface temperature and precipitation) and TEM (total soil organic carbon) models. Fully interactive runs show that there is a significant positive feedback between emissions and climate.

The availability of water resources affects energy, agricultural and environmental systems, which are linked together as well as to climate via the water cycle. As such, watersheds and river basins are directly impacted by local and regional climate variations and change. In turn, these managed systems provide direct inputs to the global economy that serve and promote public health, agricultural and energy production, ecosystem surfaces and infrastructure. We have enhanced the Integrated Global System Model (IGSM) framework capabilities to model effects on the managed water-resource systems of the influence of potential climate change and associated shifts in hydrologic variation and extremes (i.e. non-stationarity in the hydro-climate system), and how we may be able to adapt to these impacts. A key component of this enhancement is the linkage of the Water Resources System (WRS) into the IGSM framework. WRS is a global river basin scale model of water resources management, agricultural (rain-fed and irrigated crops and livestock) and aquatic environmental systems. In particular, WRS will provide the capability within the IGSM framework to explore allocation of water among irrigation, hydropower, urban/industrial, and in-stream uses and investigate how society might adapt water resources due to shifts in hydro-climate variations and extremes. This paper presents the overall design of WRS, its linkages to the land system and economic models of the IGSM, and results of test bed runs of WRS components to address issues of temporal and spatial scales in these linkages.

A new subcloud layer evaporation scheme is incorporated into Regional Climate Model, version 3 (RegCM3), to better simulate the rainfall distribution over a semiarid region around Kuwait. The new scheme represents subcloud layer evaporation of convective as well as large-scale rainfall. Model results are compared to observations from rain gauge data networks and satellites. The simulations show significant response to the incorporation of subcloud layer evaporation as a reduction by as much as 20% in annual rainfall occurs over the region. As a result, the new model simulations of annual rainfall are within 15% of observations. In addition, results indicate that the interannual variability of rainfall simulated by RegCM3 is sensitive to the specification of boundary conditions. For example, forcing RegCM3's lateral boundary conditions with the 40-yr ECMWF Re-Analysis (ERA-40) data, instead of NCEP–NCAR's Reanalysis Project 2 (NNRP2), reduces interannual variability by over 25%. Moreover, with subcloud layer evaporation incorporated and ERA-40 boundary conditions implemented, the model's bias and root-mean-square error are significantly reduced. Therefore, the model's ability to reproduce observed annual rainfall and the year-to-year variation of rainfall is greatly improved. Thus, these results elucidate the critical role of this natural process in simulating the hydroclimatology of semiarid climates. Last, a large discrepancy between observation datasets over the region is observed. It is believed that the inherent characteristics that are used to construct these datasets explain the differences observed in the annual and interannual variability of Kuwait's rainfall.

© American Meteorological Society 2008

Hydrogen fueled transportation has been proposed as a low carbon alternative to the current gasoline powered fleet. Using a computable general equilibrium model of the world economy we explore the economic viability of hydrogen transportation in several different tax and carbon dioxide stabilization policy scenarios. We represent the capital, labor, fuel and other costs of hydrogen production and hydrogen powered vehicles in the economic model. We examine scenarios where the hydrogen fuel price and vehicle cost are varied over a wide range to evaluate what technology improvements would be needed, in terms of cost reductions, for hydrogen vehicles to penetrate the market. We consider scenarios with and without climate policy, and in competition with other reduced-carbon fuel substitutes, such as ethanol-blend fuels. We find that hydrogen-powered fuel-cell vehicles could make a significant contribution to de-carbonization of the transportation fuel cycle if production of hydrogen itself is not carbon-intensive. Cost targets needed for the technology to penetrate in the USA are such that the hydrogen fuel would need to be in the range of 1 to 1.7 times the 1997 price of gasoline and the vehicle mark-up above an average fuel cell automobile would need no more than 1.3 to 1.5 times an average conventional vehicle. At the lower end of these cost ranges, the vehicle fleet could be competitive by 2020 but at the upper end we would only see entry of the fleet toward the end of the century. High fuel taxes in Europe makes fuel-efficient hydrogen fuel cell technology more competitive there than in the USA. Along with cost reductions, these results assume that technical issues are solved and that market hurdles of establishing the fuel distribution system are overcome. For those involved in hydrogen vehicle research this analysis provides cost targets that would need to met and, given they are achieved, an idea of when vehicles could be competitive and under what conditions.

Existing fuel taxes play a major role in determining the welfare effects of exempting the transportation sector from measures to control greenhouse gases. To study this phenomenon we modify the MIT Emissions Prediction and Policy Analysis (EPPA) model to disaggregate the household transportation sector. This improvement requires an extension of the GTAP data set that underlies the model. The revised and extended facility is then used to compare economic costs of cap-and-trade systems differentiated by sector, focusing on two regions: the USA where the fuel taxes are low, and Europe where the fuel taxes are high. We find that the interplay between carbon policies and pre-existing taxes leads to different results in these regions: in the USA exemption of transport from such a system would increase the welfare cost of achieving a national emissions target, while in Europe such exemptions will correct pre-existing distortions and reduce the cost.

© 2005 Springer Science and Business Media

Link to full document (Note large file size: 51 MB PDF)

Book Summary on publisher's website

Pages

Subscribe to JP