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Extreme Events Issues

Society has become more vulnerable to extreme

events. Population and infrastructure increases, pollution event
associated with storm run off, more coastal development, etc...

Lack of long-term climate data suitable for analysis

of extremes. Few countries (United States, Australia, South
Africa, Norway) have reliable precipitation data prior to World War |l

How will climate change modify extreme events?

Did climate change contribute to a specific extreme
event?



Societal Impacts

Frequency and/or intensity of extremes can cause major
problems.

Impact of climate change on society and ecosystems could
be due to changes in the physical system or to changes in
the vulnerability of society.

Is the frequency of extreme events currently changing
and/or is only the perception of an increase exacerbated by
enhanced media coverage?

Alternative definition of extreme event: impact that an

event has on society: loss of life, economic losses, infrastructure
destruction, pollution.



Why are these changes important?
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Extreme events and climate change

—3

HIGH

Confidence in capabilities for attribution of
specific events to anthropogenicclimate change

LOW

Understanding of effect of climate change on event type

PNAS, 2015



Extremes and climate climate change |

Understanding of
. e Physical Mechanisms
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Hot and Cold waves trends

United States
+2

e |ast decades:
* |ncrease in number of heat waves

e Decrease in number of cold waves
e Peterson et al. 2013




Percent of land area

Extreme precipitation trends
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Percent increase from 1958 to 2012 in the amount of precipitation falling in very heavy events.

Very Heavy Precipitation is defined as the heaviest 1% of all daily events from 1958-2012.
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Attribution of Extreme Events

* Did anthropogenic climate change increase
the probability of occurrence of a specific
extreme event?



Hurricanes
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TEXAS LOUISTANA
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Number of Atlantic Storms 1851-2012
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Atlantic Multi-Decadal Signal

Atlantic Major Hurricanes
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Atlantic Hurricanes and ENSO (2)

* |In El Nino (La Nina) years there are fewer (more)
hurricanes in the Atlantic (Gray, 1984).

* Factors:
— Larger vertical wind shear (Shapiro, 1987).

— Changes in atmospheric temperature and stability (Tang
and Neelin, 2004).
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Typhoons and

x 10° Mean ACE per Year - TC categories
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Climate change — possible influences on
hurricanes:

* Increase in sea surface temperature.
* Increase in the atmospheric temperature.

* |ncrease in the evaporation in the atmosphere
(more humidity in the atmosphere)



Hurricanes and Climate Change

 How could hurricanes change with global
warming?
— Frequency
— Intensity
— Duration
— Precipitation
— Areas affected



Issues — TC trends

* Large amplitude fluctuations of climate
variability for TCs (frequency and intensity) —
trend attribution is difficult.

* Global historical records of TCs — availability
and quality limited — large error bars

* Uncertainty: past changes in TC variability
have exceeded what is expected from nature
climate variability.

Knutson et al. 2010



Temperature
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Atlantic Hurricanes

0

HURDAT Reanalysis project

Atlantic Hurricanes
1851 to 1910
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The average annual count for Atlantic hurricanes is 5.1.

1893 Atlantic Hurricane Season
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Hurricane Harvey attribution studies

Return Periods of Storm Total Rain at Houston
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Urbanization exacerbated the rainfall and flooding
caused by hurricane Harvey in Houston

Wei Zhang!, Gabriele Villarini'*, Gabriel A. Vecchi®3 & James A. Smith*

Nature, 563, 384-388, 2019, doi: 10.1038/s41586-018-0676-z.
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Sea-level deviation

Sea level rise

SATELLITE DATA: 1993-PRESENT RATE OF CHANGE

Data source: Satellite sea level observations. /]\ 3 4 '1
Credit: NASA Goddard Space Flight Center .

mm per year
80
60

40

Sea Level Change (mm)

1995 1998 2001 2004 2007 2010 2013

Trend in Total Sea Level from Altimetry
—a v

o

. B T e

—-50 — %HH o Glabal Mean Sea Laval Variations,
H} Rate = 3.5 mmiyear 1

g

A NS .
07 o8 Tabe Tats 7000, 2002 2004 2006 2008 50 100 150 200
-200 T T T T T T T

1880 1900 1920 1940 1960 1980 2000 5 0
Year Sea Level Rise (mm/yr)

(millimeters)

e

pvad

DMSL {mm)

P

=GO VIS |

250 300 350

S 10



Reasons for sea-level rise

* Warmer ocean:
thermal expansion of
the ocean — waters
expand with
temperature

* Melting land ice
(glaciers, ice caps, ice
sheets) — additional
water in the oceans.

Climate-related Contributions to Global Sea Level Rise
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From 1972 to 2008, melting land ice—glaciers, ice caps, and ice
sheets—accounted for 52 percent of sea level rise, while warmer
oceans contributed 38 percent. Groundwater withdrawal and other
factors, both known and unknown, contributed the remaining 10 per-
cent. Ice loss has accelerated since the early 1990s, and has accounted
for 75 percent to 80 percent of sea level rise since 2003.

SOURCES: NRC 2012; CHURCH AND WHITE 2011; CAZENAVE AND LLOVEL 2010

NICHOLLS AND CAZENAVE 2010



Climate Change Projections

Increase in storm surge due to sea level
rise

Increase in tropical cyclone precipitation
(mean and peak) — likely in some areas.

Changes in hurricane intensity — intense
hurricanes happening more frequently.

Changes in hurricane frequency — fewer
tropical cyclones (most studies)

Regions with hurricane occurrence is NOT
expected to change.




Future Projections — TCs and Climate

Change

Based on theory and models

Global
toward

Global
on the

y averaged intensity of TCs shift
s stronger storms —2-11% by 2100

y averaged frequency of TCs decreases
order of 6-34%

Increases of ~ 20% of the precipitation rate

within

100km of the storm center.

Projected changes for individual basins —
uncertain.

Knutson et al. 2010



