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Role of Negative Emission Technologies (NETs)
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1) Offset difficult-to-eliminate emissions

Source: Davis et al., Science 360 1419 (2018)

+

Difficult-to-eliminate GHG 
emissions from other sectors 
(e.g., agriculture)

Total non-CO2 GHGs in 2020 ~3 Gt CO2e



Role of Negative Emission Technologies (NETs)
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1) Offset difficult-to-eliminate emissions

2) Carbon Removal

3) Lower the costs of meeting a target

• Offset any emissions with marginal abatement cost > cost per ton negative 
emissions 

Net-Negative

Net-Zero

Low-Carbon

Is low-carbon enough?

Net-Zero
Negative Emissions

=
Released Emissions

Net-Negative
Negative Emissions

>
Released Emissions

Low-Carbon
Negative Emissions

<
Released Emissions
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Net-Negative vs. Net-Zero vs. Low-Carbon
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MIT-Imperial BECCS Study

Goal: Quantify potential scale of BECCS and its impact on the economy 
• Considering technology and economics
• Excluding sustainability and political aspects

Fajardy M., J. Morris, A. Gurgel, H. Herzog, N. MacDowell and S. Paltsev (2021): The economics of 
bioenergy with carbon capture and storage (BECCS) deployment in a 1.5°C or 2°C world. Global 
Environmental Change, 68, 102262 (doi: 10.1016/j.gloenvcha.2021.102262) 
(https://www.sciencedirect.com/science/article/abs/pii/S0959378021000418) 

https://www.sciencedirect.com/science/article/abs/pii/S0959378021000418


Approach

• Integrate a BECCS technology into MIT EPPA model and explore 
implications under 2C and 1.5C scenarios

• Model accounts for all major components of BECCS process:
• Land availability
• Crop production and transport
• Biomass conversion to electricity with CO2 capture
• Transport and underground storage of CO2
• Endogenous land use change
• Direct and indirect land use change emissions
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2oC and 1.5oC Policy Scenarios
Emissions caps with a global carbon price starting in 2020 to ensure that global mean 
surface air temperature in year 2100 does not exceed: 
(a) 2oC above pre-industrial levels with a 66% probability
(b) 1.5oC above pre-industrial levels with a 50% probability
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Total Primary Energy
BAU 2C and 1.5C NO BECCS

2C and 1.5C BECCS

33-38% 
of BAU

Just 
below 
BAU
30-36% 
Bio

• Bioenergy: 30-140 EJ in 2050; 320-390 
EJ in 2100

• 3x fossil fuels vs. NO BECCS
• Most coal and gas with CCS
• Emissions from oil use offset by BECCS
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Net CO2eq Emissions

↓86-90% 
fossil CO2
↓79-82% 
industrial 
process 
CO2
↓64-70% 
non-CO2
GHGs

• 21-26 GtCO2/yr negative 
emissions by 2100

• Allows 3x more fossil CO2
compared to NO BECCS

2020-
2100: 
620-
1060 
GtCO2

BAU 2C and 1.5C NO BECCS

2C and 1.5C BECCS
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Global Carbon Price

BECCS effectively 
caps carbon price at 
about $240/tCO2eq, 
an order of 
magnitude less 
than price without 
BECCS
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BECCS Revenue: Electricity vs. Carbon Permits

What if?

1) BECCS receives no CO2 permits
 Zero BECCS deployment

2) Cost of BECCS is doubled
 BECCS in 2100 decreases from 21 to 13 GtCO2/yr

3) “BAC” (biological air capture = BECCS without electricity production)
 BECCS in 2100 decreases from 21 to 19 GtCO2/yr

4) “BAC” 22% cheaper than BECCS
 BECCS in 2100 back to 21GtCO2/yr

Carbon permits drive deployment

Value of CO2 removal > Value of electricity generation
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Global Policy Cost

Percentage change in economy-wide consumption relative to consumption in the BAU scenario

BECCS significantly 
reduces the cost of 
meeting long-term 
targets

-13%

-19%

-5%
-4%
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Global Land Use Change With vs. Without BECCS
2C BECCS: by 
2100, additional 490 
Mha for bioenergy, 
displacing mostly 
cropland and 
pasture

1.5C BECCS: by 
2100, additional 650 
Mha for bioenergy, 
displacing far more 
natural grassland 
and forest (in 2100, 
430 Mha under 
1.5C vs 120 Mha
under 2C)
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Regional Distribution of BECCS under 1.5oC

Cumulative CO2 removal from BECCS under 1.5°C policy with BECCS. 
84% of BECCS deployment occurs in developing nations, with 26% alone in Africa.

Importance of knowledge, technology and financial transfers to developing countries
14



Global Food Price Index

With BECCS: price 
rises, ends up 0.6-
1.5% higher than 
BAU in 2100

Without BECCS: 
price falls, ends up 
5-8% lower than 
BAU in 2100

BECCS with limited impact on global food prices

Competition for land: 
490-650 Mha for 
bioenergy by 2100
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Findings

• BECCS can play a significant role in low-carbon futures 
• Lowers carbon price and policy cost, causes significant land 

use change, but only increases food prices by ~1.5%  

• All technical components for large-scale BECCS 
currently exist

• Many challenges could limit BECCS deployment
• Availability of sustainable biomass, availability of CO2 

geologic storage sites, policy incentives, development of a 
credible accounting and valuation system for negative 
emissions, public acceptance, ecosystem impacts…
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Stepping back….

Is a world with near-zero emissions 
limits, global carbon pricing and large 
amounts of negative emissions realistic? 

Is it risky to bet on such a world?
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MIT Uncertainty Framework

Climate parameters

Socio-economic 
parameters

Policy scenario

Latin 
hypercube
sampling

Economic Projection & 
Policy Analysis (EPPA) 

Model

MIT Earth System 
Model (MESM)

Anthropogenic 
emissions

Integrated socio-economic 
and climate projections

Latin 
hypercube
sampling

- GDP, energy mix…
- temperature, precipitation…

= probability distribution
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MIT-EPRI Study: Uncertainty in Climate Policy Design
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CDR (BECCS & 
afforestation)

Land Mitigation 
Covered

International 
Permit Trading

Optimistic Yes Yes Yes
Pessimistic No No No

Preliminary. EPRI-MIT work in progress.



US 2050 uncertainty for a single 2˚C global emissions pathway
CO2e Emissions Fossil Energy CO2 Emissions Non-CO2 GHG Emissions

Total Primary Energy Fossil Primary Energy Electricity Generation

0.5 to 6 GtCO2e

40 to 175 EJ 25 to 150 EJ 1500 to 8000 TWh

0.5 to 5 GtCO2 0.3 to 1 GtCO2e
Pessimistic policy 

assumptions

Optimistic 
policy 

assumptions
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US 2050 uncertainty for a single Almost 1.5˚C global emissions pathway
CO2e Emissions Fossil Energy CO2 Emissions Non-CO2 GHG Emissions

Total Primary Energy Fossil Primary Energy Electricity Generation

-0.1 to 5 GtCO2e

20 to 160 EJ 10 to 140 EJ 1000 to 8000 TWh

0.2 to 4 GtCO2 0.2 to 1 GtCO2e
Pessimistic policy 

assumptions

Optimistic 
policy 

assumptions
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US 2050 uncertainty for a single 1.5˚C global emissions pathway
CO2e Emissions Fossil Energy CO2 Emissions Non-CO2 GHG Emissions

Total Primary Energy Fossil Primary Energy Electricity Generation

0.5 to 5 GtCO2e

40 to 160 EJ 30 to 130 EJ 2000 to 7000 TWh

1 to 4.5 GtCO2 0.5 to 0.9 GtCO2e

Optimistic 
policy 

assumptions

Emissions 
Cap
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US 2050 cost uncertainty for 
different ˚C pathways

GDP per capita % change

-15% to +1%

Consumption per capita % change

2˚C 2˚C

About 1.5˚C About 1.5˚C

1.5˚C 1.5˚C

-15% to -1%

-30% to 0% -25% to -2%

-∞ to +1% -∞ to -2%

1.5˚C could not be solved 
with pessimistic assumptions

Substantial cost uncertainty – due 
primarily to pessimistic context, and the 

uncertainty increases with policy 
ambition

Pessimistic

Optimistic

Preliminary. EPRI-MIT work in progress.23



USA EU China India

Brazil Other Latin AmericaIndonesia Africa

CO2e emissions for selected regions under Almost 1.5˚C scenario

Preliminary. EPRI-MIT work in progress. SELLERSNET-NEGATIVE24



USA EU China India

Brazil Other Latin AmericaIndonesia Africa

Consumption Impact for selected regions under Almost 1.5˚C scenario

consumption/capita % change from ReferencePreliminary. EPRI-MIT work in progress.25



What about an intermediate scenario? Pessimistic + BECCS

Pessimistic policy 
assumptions

Optimistic 
policy 

assumptions

Pessimistic + 
BECCS

Pessimistic + 
BECCS

Preliminary. EPRI-MIT work in progress.

US 2050 uncertainty for 2˚C global emissions pathway

Optimistic 
policy 

assumptions

Pessimistic policy 
assumptions
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What if the world continues to address climate change in the way it 
has so far—through piecemeal actions and growing social and 
technological pressures? 
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Growing Pressures Scenario (MIT-Shell) 
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2020: No new coal generation in USA, EU, Canada, Australia & New Zealand

2030: No new coal generation in Japan; no coal use in final demand (heating and cooking)
2040: No new coal generation in Russia and former Soviet Union; slowing down 
new coal generation in the rest of the world; uptake of electric cars

2090: No oil in final demand (heating and cooking); no more coal generation

2100: Carbon-free refined oil alternatives in developed regions

2120: Carbon-free refined oil alternatives in rest of the 
world

2110: Electrification of energy-intensive industries
in rest of the world

2045: No new coal generation in China
2050: No new coal generation in rest of the world; No new gas generation in 
developed regions (USA, EU, Canada, Japan, Australia & New Zealand); Decline in 
cost of renewables reaches the floor (75% of 2020 cost)

2060: No natural gas in final demand (heating and cooking); EVs replace ICEVs globally
2070: No new gas generation in rest of world

2075: Cost-competitive long-term electricity storage; 
electrification of energy-intensive industries in developed regions

Change related to:
Coal
Gas
Oil
Electrification



Growing Pressures Scenario (MIT-Shell) 
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Stepping up actions (e.g. deploying 
carbon pricing, developing negative 
emission technologies, etc.) is 
crucial to accelerate the transition
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Morris, J., D. Hone, M. Haigh, A. Sokolov and S. Paltsev (2022): Future 
energy: In search of a scenario reflecting current and future pressures and 
trends. Environmental Economics and Policy Studies, doi: 10.1007/s10018-
021-00339-1 (https://link.springer.com/article/10.1007/s10018-021-00339-1) 

https://link.springer.com/article/10.1007/s10018-021-00339-1


Closing Thoughts

• NETs have great potential in low-carbon futures–providing a more cost-
effective pathway to meeting a given target, or enabling the achievement of 
a more stringent target

• There are still many challenges– MRV, sustainability, political acceptance…
• Net-zero, net-negative and 1.5C targets represent a major divergence from 

the policies we see being actually implemented today

30



Closing Thoughts

• NETs have great potential in low-carbon futures–providing a more cost-
effective pathway to meeting a given target, or enabling the achievement of 
a more stringent target

• There are still many challenges– MRV, sustainability, political acceptance…
• Net-zero, net-negative and 1.5C targets represent a major divergence from 

the policies we see being actually implemented today
• Need to also explore other, more realistic scenarios
• Many uncertainties about the future, including about climate policy design
• Broad ranges of potential societies consistent with any individual global 

emissions pathway
• Need to consider the full range for risk assessment and planning

• Must be prepared for future without a lot of negative emissions
• Deep mitigation is needed
• Importance of adaptation and resilience (e.g. how to best deal 

with / mitigate the consequences of not achieving 1.5C… or 2C)
31



Thank You

Jennifer Morris
holak@mit.edu
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