

The Role of Negative Emission Technologies

Jennifer Morris

MIT Joint Program on the Science and Policy of Global Change

MIT Global Change Forum XLIV

March 23-24, 2022

Based on work done with: Mathilde Fajardy, Howard Herzog, Niall Mac Dowell, Angelo Gurgel, Sergey Paltsev, Andrei Sokolov, Steve Rose, Martin Haigh, David Hone

Role of Negative Emission Technologies (NETs)

1) Offset difficult-to-eliminate emissions

Difficult-to-eliminate GHG emissions from other sectors (e.g., agriculture)

Total non-CO₂ GHGs in 2020 ~3 Gt CO₂e

Source: Davis et al., Science 360 1419 (2018)

Role of Negative Emission Technologies (NETs)

 Offset any emissions with marginal abatement cost > cost per ton negative emissions

Net-ZeroNet-NegativeLow-CarbonNegative EmissionsNegative EmissionsNegative Emissions=><</td>Released EmissionsReleased EmissionsReleased Emissions

Is low-carbon enough?

Net-Negative vs. Net-Zero vs. Low-Carbon

Breakdown of contributions to global net CO₂ emissions in four illustrative model pathways (IPCC 1.5C Report)

Additional Low-Carbon Pathways to 1.5C:

With BECCS

MIT-Imperial BECCS Study

Goal: Quantify potential scale of BECCS and its impact on the economy

- Considering technology and economics
- Excluding sustainability and political aspects

MIT News Apr 04, 2021 Negative emissions, positive economy
How bioenergy with carbon capture and storage (BECCS) could help stabilize the climate without breaking the bank
The long-term goals of the Paris Agreement—keeping global warming well below 2°C and ideally 1.5°C in order to avert the worst impacts of climate change—may not be achievable by greenhouse gas emissions-reduction measures alone. Mos scenarios for meeting these targets also require the

Fajardy M., J. Morris, A. Gurgel, H. Herzog, N. MacDowell and S. Paltsev (2021): The economics of bioenergy with carbon capture and storage (BECCS) deployment in a 1.5°C or 2°C world. *Global Environmental Change*, 68, 102262 (doi: 10.1016/j.gloenvcha.2021.102262) (https://www.sciencedirect.com/science/article/abs/pii/S0959378021000418)

Approach

- Integrate a BECCS technology into MIT EPPA model and explore implications under 2C and 1.5C scenarios
- Model accounts for all major components of BECCS process:
 - Land availability
 - Crop production and transport
 - Biomass conversion to electricity with CO2 capture
 - Transport and underground storage of CO2
 - Endogenous land use change
 - Direct and indirect land use change emissions

2°C and 1.5°C Policy Scenarios

Emissions **caps** with a **global carbon price** starting in 2020 to ensure that global mean surface air temperature in year 2100 does not exceed:

(a) 2°C above pre-industrial levels with a 66% probability

(b) 1.5°C above pre-industrial levels with a 50% probability

Total Primary Energy

- Bioenergy: 30-140 EJ in 2050; 320-390 EJ in 2100
- 3x fossil fuels vs. NO BECCS
- Most coal and gas with CCS
- Emissions from oil use offset by BECCS

GLOBAL CHANGE

8

Net CO₂eq Emissions

Global Carbon Price

BECCS effectively caps carbon price at about **\$240/tCO₂eq**, an **order of magnitude less** than price without BECCS

BECCS Revenue: Electricity vs. Carbon Permits

What if?

- 1) BECCS receives no CO₂ permits
- → Zero BECCS deployment

2) Cost of BECCS is doubled
→ BECCS in 2100 decreases from 21 to 13 GtCO₂/yr

- 3) "BAC" (biological air capture = BECCS without electricity production)
 → BECCS in 2100 decreases from 21 to 19 GtCO₂/yr
- 4) "BAC" 22% cheaper than BECCS
 → BECCS in 2100 back to 21GtCO₂/yr

Carbon permits drive deployment

Value of CO₂ removal > Value of electricity generation

Global Policy Cost

Percentage change in economy-wide consumption relative to consumption in the BAU scenario

Global Land Use Change With vs. Without BECCS

2C BECCS: by 2100, additional 490 Mha for bioenergy, displacing mostly cropland and pasture

1.5C BECCS: by 2100, additional 650 Mha for bioenergy, displacing far more natural grassland and forest (in 2100, 430 Mha under 1.5C vs 120 Mha under 2C)

Regional Distribution of BECCS under 1.5°C

Cumulative CO2 removal from BECCS under 1.5°C policy with BECCS. **84%** of BECCS deployment occurs in developing nations, with 26% alone in Africa.

Importance of knowledge, technology and financial transfers to developing countries

Global Food Price Index

BECCS with limited impact on global food prices

Findings

- BECCS can play a significant role in low-carbon futures
 - Lowers carbon price and policy cost, causes significant land use change, but only increases food prices by ~1.5%
- All technical components for large-scale BECCS currently exist
- Many challenges could limit BECCS deployment
 - Availability of sustainable biomass, availability of CO2 geologic storage sites, policy incentives, development of a credible accounting and valuation system for negative emissions, public acceptance, ecosystem impacts...

Stepping back....

Is a world with near-zero emissions limits, global carbon pricing and large amounts of negative emissions realistic?

Is it risky to bet on such a world?

MIT Uncertainty Framework

MIT-EPRI Study: Uncertainty in Climate Policy Design

	CDR (BECCS & afforestation)	Land Mitigation Covered	International Permit Trading
Optimistic	Yes	Yes	Yes
Pessimistic	Νο	Νο	Νο

19

US 2050 uncertainty for <u>a single 2°C</u> global emissions pathway

US 2050 uncertainty for <u>a single Almost 1.5°C</u> global emissions pathway

US 2050 uncertainty for <u>a single 1.5°C</u> global emissions pathway

US 2050 cost uncertainty for different °C pathways

Substantial cost uncertainty – due primarily to pessimistic context, and the uncertainty increases with policy ambition

23

CO₂e emissions for selected regions under Almost 1.5°C scenario

Preliminary. EPRI-MIT work in progress.

Consumption Impact for selected regions under Almost 1.5°C scenario

consumption/capita % change from Reference

What about an intermediate scenario? Pessimistic + BECCS

US 2050 uncertainty for 2°C global emissions pathway

What if the world continues to address climate change in the way it has so far—through piecemeal actions and growing social and technological pressures?

Growing Pressures Scenario (MIT-Shell)

28

Growing Pressures Scenario (MIT-Shell)

Stepping up actions (e.g. deploying carbon pricing, developing **negative emission technologies**, etc.) is crucial to accelerate the transition

Morris, J., D. Hone, M. Haigh, A. Sokolov and S. Paltsev (2022): Future energy: In search of a scenario reflecting current and future pressures and trends. Environmental Economics and Policy Studies, doi: 10.1007/s10018-021-00339-1 (https://link.springer.com/article/10.1007/s10018-021-00339-1)

29

GLOBAL CHANGE

Closing Thoughts

- NETs have great potential in low-carbon futures—providing a more costeffective pathway to meeting a given target, or enabling the achievement of a more stringent target
- There are still many challenges- MRV, sustainability, political acceptance...
- Net-zero, net-negative and 1.5C targets represent a major divergence from the policies we see being actually implemented today

The 1.5 degrees goal: Beware of unintended consequences

The 1.5 degrees goal can be a 'useful spur to action,' but it's not a make or break point. Importantly, each 0.1-degree increase avoided is 'cause for celebration and hope.'

Closing Thoughts

- NETs have great potential in low-carbon futures—providing a more costeffective pathway to meeting a given target, or enabling the achievement of a more stringent target
- There are still many challenges– MRV, sustainability, political acceptance...
- Net-zero, net-negative and 1.5C targets represent a major divergence from the policies we see being actually implemented today
- Need to also explore other, more realistic scenarios
- Many uncertainties about the future, including about climate policy design
- Broad ranges of potential societies consistent with any individual global emissions pathway
 - Need to consider the full range for risk assessment and planning
- Must be prepared for future without a lot of negative emissions
 - Deep mitigation is needed
 - Importance of adaptation and resilience (e.g. how to best deal with / mitigate the consequences of not achieving 1.5C... or 2C)

Thank You

Jennifer Morris holak@mit.edu

