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Changes in surface temperature

(a) Global surface temperatures are more likely than not unprecedented in the past 125,000 years
Kaufman et al The latest decade was warmer than any multi-century period
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© 2.07 Temperatures have increased faster over land

(b) Warming accelerated after the 1970s, but
than over the oceans

not all regions are warming equally
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e Still warming... as warm as it was
125,000 years ago.

« Warming rate acceleated over
past few decades

« Warming eginning to follow the
classic "COWL" (cooler ocean
warmer land) pattern.




(a) Atmospheric CO, concentrations
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Carbon Dioxide concentrations and growth rates highest in millions of years



FAQ 5.4: What are Carbon Budgets?

The term carbon budget is used in several ways. Most often the term refers to the total net amount of carbon dioxide
(CO,) that can still be emitted by human activities while limiting global warming to a specified level.
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Effect of a one year pulse of present-day emissions on global surface temperature

Response after 10 years (H=10)

Response after 100 years (H=100) Net effect, 5% to 95% range
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Climate feedbacks
Ocean warming/freshening
Wind stress
Climate extreme events v~
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GLOBAL CARBON BUDGET
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What is the Global Carbon Budget? @

The Global Carbon Budget quantifies how much CO,
is added to the atmosphere by emissions from human activities
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Trends of the net land CO, sink and related
vegetation observations during 1980-2019

* Land has been a consistent sink for CO,
over the past few decades.

« Recent downward trend in the strength of
the global land sink.

* Signs of weaking in (simulated) gross
primary production




Correlation with
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latitude

In response to increasing CO, - land
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Change in carbon from 2015 to 2100 under SSP scenarios

SSP1-2.6
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In response to increasing CO, -
land dominates NH & ocean
dominates SH in terms of
uptake.

Across IPCC scenarios —
widespread uptake across high
latitude NH lands and SH

ocean.
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Potential influence of climate-induced vegetation shifts on future land use and
associated land carbon fluxes in Northern Eurasia

Climate-induced vegetation shifts permit expansion of areas devoted to cellulosic biofuel production (25%) and pastures (21%)
Reduce the expansion of areas devoted to food crop production by 10%.
In both climate scenarios, vegetation shifts further reduce the areas devoted to timber production by 6-8% over this same time period.

Fire associated with climate-induced vegetation shifts causes the region to become more of a carbon source than if no vegetation shifts occur.
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Boulton et al., Nature Climate Change (2022)

Indications of weakened Amazon

rainforest resilience since early 2000s

Boulton et al. (2022) study focused on
remotely sensed data on monthly
"vegetation optical depth” (VOD).

Study finds that lag-1 autocorrelation is
strengthening — thus, a weaker rebound
and less “resilience”.

s the preponderance of weaker rebound
found in “damaging” VOD events?

Nevertheless - continued Amazon
deforestation, combined with a warming
climate, raises the probability that this

ecosystem will cross a tipping point into a
dry state in the 21st century (IPCC AR6)




Characteristics of carbon dioxide * Earth system feedbacks * Side effects

removal (CDR) methods I Strengthening I ncrease I Trade-offs ' Neutral
I Weakening ' Decrease I Co-benefits No evidence
«Biogeophysical or technical I Strengthening or weakening | WM Increase or decrease Il Co-benefits or trade-offs Not applicable
sequesrra ion potential Neutral Confidence [® . ose
‘ No evidence Low Medium High
Small ' <0.3 GtCO2yr o Biogeochemical effects & Biophysical effects Co-benefits / Trade-offs
& & &
Moderate ) 0.3-3GtCO2 yr! Qqﬁ@ zg\@ e & & . @@\ ﬁ&&b
& § S & FHR
A g\(ﬁ ()éb Q& ’\‘Q\éo é\‘? 0(\\\‘, ‘b(} Qbf Q‘$
Timescale of CDR methods Large . >3 GtCO2 yr o&'b \,/b(\b 00@ o° S) ¢ SN

carbon storage

Afforestation, reforestation
and forest management

Decades  Soil carbon sequestration
to

centuries )
Biochar .
Peatland restoration .
Blue carbon .
Conturies | Ocean iron fertilisation
to
nillenia s .
MHENE L Artificial ocean upwelling N Lo e
100100 | Ocean alkalinisation oo eee e

thousand
years

Jpce

Enhanced weathering
Climate Change 2021
The Physical Science Basis

Bioenergy with carbon

Potentially capture and storage (BECCS)
permanent

H

Direct air carbon capture
and storage (paccs)

00 00,0 .04 O
B
[t



Climate tipping elements:

What are they and how worried should we be?

Emerging Arctic Ozone Hole
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