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Abstract 
Methane (CH4) possesses a notably higher warming potential than carbon dioxide 1 
despite its lower atmospheric concentration, making it integral to global climate 2 
dynamics. Wetlands stand out as the predominant natural contributor to global 3 
methane emissions. Accurate modeling of methane emissions from wetlands is 4 
crucial for understanding and predicting climate change dynamics. However, such 5 
modeling efforts are often constrained by the inherent uncertainties in model 6 
parameters. Our work leverages machine learning (ML) to calibrate five physical 7 
parameters of the Energy Exascale Earth System Model (E3SM) land model 8 
(ELM) to improve the model’s accuracy in simulating wetland methane 9 
emissions. Unlike traditional deterministic calibration methods that target a single 10 
set of optimal values for each parameter, Bayesian calibration takes a probabilistic 11 
approach and enables capturing the inherent uncertainties in complex systems and 12 
providing robust parameter distributions for reliable predictions. However, 13 
Bayesian calibration requires numerous model runs and makes it computationally 14 
expensive. We employed an ML algorithm, Gaussian process regression (GPR), 15 
to emulate the ELM’s methane model, which dramatically reduced the 16 
computational time from 6 CPU hours to just 0.72 milliseconds per simulation. 17 
We exemplified the procedure at a representative FLUXNET-CH4 site (US-PFa) 18 
with the longest continuous methane emission data. Results showed that the 19 
default values for two of the five parameters examined were not aligned well with 20 
their respective posterior distributions, suggesting that the model’s default 21 
parameter values might not always be optimal for all sites, and that site-specific 22 
analysis is warranted. In particular, analyses at sites with different vegetation 23 
types and wetland characteristics could reveal more useful insights for 24 
understanding methane emissions modeling. 25 

 

1 Introduction and Motivation 26 

Greenhouse gas (GHG)-induced climate change poses unprecedented challenges and serious risks 27 
for human society and natural environment. Methane is the second most important GHG, with ~25 28 
times stronger 100-year global warming potential than carbon dioxide [1, 2]. Since the Industrial 29 
Revolution, the atmospheric concentrations of CH4 have sharply risen and doubled since pre-30 
industrial times. Alarmingly, its growth rate in 2021 marked the highest record since 1984 [3–5]. 31 
Such increases have profound implications for global warming and highlight the urgency to manage 32 
its emissions effectively. Wetlands account for approximately 30% of global methane emissions and 33 
are the primary natural source [6]. However, wetland methane emission estimates based on 34 
biogeochemistry models remain highly uncertain [7, 8], mainly because CH4 dynamics rely on a 35 
large number of poorly constrained model parameters to characterize a diverse array of physical, 36 
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biological, and chemical processes [9, 10]. While these parameters typically have fixed (default) 37 
values, their exact values are often ambiguous and present large uncertainty. The parameter values 38 
are usually determined within their theoretically plausible uncertainty ranges based on the most 39 
reliable knowledge available. One of the essential paths to achieve reduced biases in methane 40 
emission estimates is to identify the most critical model parameters via sensitivity analysis and 41 
determine their optimal distribution through calibration. 42 

Traditional deterministic calibration methods focus on identifying an optimal parameter value by 43 
comparing model output to observations, frequently neglecting the inherent predictive uncertainties 44 
and incorrectly assuming that there is always a single set of optimal values for all parameters [11]. 45 
Nevertheless, a single optimal set may not always exist for a problem. Even if it exists, the associated 46 
uncertainties could be large. Moreover, several alternative parameter configurations may yield 47 
similarly accurate results, challenging the notion of a single optimal parameter set [12, 13]. 48 
Considering these challenges posed by the deterministic calibration methods and the inherent 49 
complexities of methane models, there is a need for a more nuanced and statistically rigorous 50 
approach to parameter calibration. Probabilistic approaches like Bayesian calibration handle these 51 
issues by statistically representing parameter uncertainties [14]. The input parameter space is 52 
represented as probability distributions of parameters. Multiple parameter samples are drawn from 53 
this distribution, and simulations are conducted for these samples, inherently creating an ensemble 54 
of model predictions. An objective function is used to evaluate the prediction range by comparing 55 
these simulation outputs with observations. After calibration, final posterior distributions of the 56 
parameters are obtained. When samples are drawn from these distributions, the resulting 57 
simulations, forming an ensemble, more closely match the observations. However, it is important 58 
to note that this approach generally requires massive computational power to simulate the methane 59 
model multiple times. Hence, there is a compelling need for strategies like machine learning that 60 
can facilitate this process but also retain accuracy. ML-based emulators have emerged as a pivotal 61 
tool to emulate the behavior of complex earth system models for achieving this goal. These 62 
emulators are first trained on a subset of model simulations to learn the intricate relationships 63 
between inputs and outputs. The trained emulators can then be used to predict the model's response 64 
for a new set of parameters, effectively eliminating the need for exhaustive simulations every time 65 
there is a change in parameter values. This approach is particularly advantageous for Bayesian 66 
calibration, where thousands of simulations are needed to explore the parameter uncertain space 67 
adequately. Until now the attempt is still very few for applying this probabilistic approach to predict 68 
wetland methane emissions from land models. 69 

This study aims to bridge the gap between the intensive computational demands of Bayesian 70 
calibration and the desired accuracy in wetland methane emission modeling. This is achieved by 71 
emulating the ELM with the Gaussian Process Regression (GPR) ML algorithm. We leverage 72 
observed CH4 emission data from a specific FLUXNET-CH4 site (US-PFa) as a case study. We 73 
select five model parameters and train GPR for estimating the error associated with methane 74 
emission outputs. Our primary objective is to minimize the error between the emulator-estimate 75 
emissions and corresponding observations. While we only focus on one site, the demonstrated 76 
methodology is expected to be easily extended to other FLUXNET-CH4 sites with much broader 77 
applicability. 78 

2 Model parameters and FLUXNET-CH4 site (US-PFa) data 79 

We configured the most recent version of the Energy Exascale Earth System Model (E3SM) land 80 
model (ELM) (https://github.com/E3SM-Project/E3SM), which contains many added new features 81 
for the CH4 dynamics modeling [15]. In previous studies, a comprehensive sensitivity analysis was 82 
conducted for 19 ELM parameters associated with different CH4 dynamic processes and five 83 
parameters are identified as sensitive for methane emission [16]. These five sensitive parameters are 84 
presented in Table 1 along with their default values, theoretical ranges, and brief description. A 85 
uniform prior distribution is assumed for these parameters. Our objective is to identify a posterior 86 
distribution of these five parameters to minimize the emission prediction error. 87 

FLUXNET-CH4 is a global network of sites that provides continuous, high-frequency, and quality-88 
checked CH4 emission flux measurements. US-PFa [17](https://ameriflux.lbl.gov/sites/siteinfo/US-89 
PFa) with longest continuous available data is chosen for our study. The monthly averaged data 90 
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from this site is used to evaluate the monthly averaged site-specific simulated emissions from ELM 91 
model for various parameter samples.  92 

Table 1: List of 5 ELM parameters used and their default values, ranges, and brief description. 93 
Mechanism Parameter Default Range Units Description 

Production 𝑄!" 2 [1.5 4] - CH4 production 𝑄10 

 𝑓#$! 0.2 [0.1 0.3] - Ratio between CH4 and CO2 production 
below the water table 

Substrate 
availability 𝑧% 0.5 [0.1 0.8] m e-folding depth for decomposition 

Diffusion 𝑓&"  1 [1 10] m2 s−1 Diffusion coefficient multiplier 

Oxidation 𝐾'#  2×10−2 [2×10−3 

2×10−1] mol m−3 O2 half-saturation oxidation coefficient 

3 Methodology and Results 94 

A commonly adhered guideline [18] suggests using a sample size ten times the number of model 95 
parameters for training ML models. Following this, we generated sixty samples (exceeding the 10*5 96 
criterion) of diverse parameter values using Latin Hypercube Sampling (LHS) [19] to train the GPR. 97 
Another set of 20 independent LHS samples are generated to test the GPR fit. Simulations are also 98 
conducted with the ELM methane model based on these 80 samples and the corresponding root-99 
mean-square-error (RMSE) for each simulation is evaluated using observed monthly averaged 100 
emissions. The RMSE values from these 80 simulations is normalized by dividing with RMSE value 101 
from the simulation with default parameter values. This is referred to as normalized RMSE 102 
(nRMSE). Any value of nRMSE < 1 implies that the parameter sample is better than default. Ideally, 103 
we would want nRMSE closer to 0. GPR is trained with normalized parameter values in the ranges 104 
from Table 1 (normalized to [0 1] using MinMax scaling) as inputs and nRMSE values as outputs 105 
with the 60 simulations. Subsequent testing of the trained GPR on 20 test samples results in an R2 106 
value of 0.92, indicating a strong model fit. This GPR model is subsequently employed for Bayesian 107 
calibration.  108 

Bayesian calibration is a process of updating our beliefs about model parameters based on observed 109 
data. We start with prior beliefs (priors), minimize nRMSE (likelihood), and then update our beliefs 110 
to obtain the posterior distribution. Markov Chain Monte Carlo (MCMC) [20] is employed (using 111 
‘emcee’ package [21], which is particularly efficient for multi-dimensional problems) to construct 112 
a Markov chain where the stationary distribution (the distribution to which the chain converges over 113 
time) is the desired posterior distribution. By running the chain for a sufficient number of steps 114 
(12000) and discarding an initial set of “burn-in” samples (3000), we obtain samples that 115 
approximate the posterior distribution. Convergence of the MCMC chains is ensured by 116 
implementing the Gelman-Rubin diagnostic (𝑅&) to check for convergence [22, 23]. A value of 𝑅& 117 
close to 1 for all parameters indicate convergence. 𝑅&!,),*,+,, = (1.022, 1.032, 1.042, 1.011, 1.019). 118 
This implies that the parameters converged to a posterior distribution minimizing the nRMSE and 119 
the distributions are presented in Figure 1. The mean nRMSE of the posterior distribution of 120 
parameters is 0.228, which is a remarkable 77.2% reduction in error compared to default. The 2s 121 
range (95% confidence) of nRMSE is [0.199 0.254], which depicts a significant improvement from 122 
default. 123 

The posterior distribution of parameters in Fig. 1 offers several insights. The default parameter 124 
values for Q10 and fCH4 are outside the 2s interval, which indicates these parameters likely have true 125 
values different from the default values. Even though zt	has its default value within the 2s interval, 126 
it is less likely than the values near the bounds (a bi-modal distribution). The posterior distribution 127 
of KO2	 is closer to uniform distribution, which is our prior distribution, implying that this 128 
parameter is not very sensitive to methane emission at US-PFa site.  129 
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 130 

Fig. 1: Posterior distribution of five parameters following Bayesian calibration, plotted over a 131 
normalized parameter range. The red vertical line denotes the default value of the parameter. The 132 
green horizontal line denotes the prior distribution, which was the uniform distribution. The 2s 133 
interval, encompassing 95% of the distribution's values, is marked by violet vertical lines. 134 

4 Conclusions and Future Work 135 

Our study delves into the crucial challenge of accurately predicting wetland methane emissions by 136 
adjusting ELM parameters using Bayesian calibration. Employing a machine learning algorithm 137 
(GPR) as an emulator for the ELM demonstrates significant potential in reducing computational 138 
demand. A remarkable improvement of 77% (normalized RMSE) was achieved compared to the 139 
default model parameters. This deviation of posterior distributions from the default values highlights 140 
that models may require fine-tuning to address site-specific nuances, particularly when addressing 141 
heterogeneous systems like wetlands. While our study focused on the US-PFa FLUXNET-CH4 site, 142 
the presented methodology is universally applicable. This methodology can be easily extended to 143 
global wetland ecosystems with different vegetation types to get further insights into wetland 144 
methane emissions dynamics and relevant parameters. As methane emissions have seasonal 145 
fluctuations, it is our future interest to explore whether the posterior distributions change relative to 146 
seasons.  147 
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