Joint Program's Input to the MIT Mobility of the Future Study

Webinar for the MIT Joint Program Sponsors

Sergey Paltsev

May 11, 2017

Mobility of the Future

- Question: How the interactions between advanced drivetrain options, alternative fuels, refueling infrastructure, consumer choice, vehicle automation, public transit options, mobility-as-a-service business models and government policy will shape the future for mobility?
- The goals are to explore how consumers and markets will respond to potentially disruptive technologies, business models, and government policies.
- The scope of the study is ground transportation with an emphasis on the movement of people.
- Intended timing of the project: 3-years (officially started in August 2016).

Webpage:

http://energy.mit.edu/research/mobility-future-study/

MIT Team

RANDALL FIELD

Executive Director, Conversion Research Program MIT Energy Initiative

GLOBAL ECONOMIC AND POLICY MODELING

SERGEY PALTSEV Senior Research Scientist MIT Energy Initiative; MIT Joint Program on the Science and Policy of Global Change

RECHARGING AND REFUELING INFRASTRUCTURE

JOHN HEYWOOD

Professor Mechanical Engineering; MIT Joint Program on the Science and Policy of Global Change

MOBILITY POLICY AND ANALYTICS

CHRISTOPHER KNITTEL

Professor Center for Energy and Environmental Policy Research; MIT Joint Program on the Science Policy of Global Change; Sloan School of Management

VEHICLES AND FUELS

WILLIAM GREEN

Professor Chemical Engineering

URBAN MOBILITY

MOSHE BEN-AKIVA Professor Civil and Environmental Engineering

SYSTEM DYNAMICS

CHINTAN VAISHNAV Senior Lecturer Sloan School of Management

VEHICLE AUTOMATION

MOBILITY CULTURE AND CHINA POLICY

BRYAN REIMER Research Scientist MIT AgeLab

JINHUA ZHAO Assistant Professor Urban Studies & Planning

Joint Program Team

Sergey Paltsev

Deputy Director, Joint Program Senior Research Scientist, Joint Program Senior Research Scientist, MITEI and CEEPR

paltsev@mit.edu Website

Phone: 617-253-0514 Office: E19-429F

Focus Areas Energy, Climate Policy, Regional Analysis

Abbas Ghandi Research Staff, Joint Program

aghandi@mit.edu Phone: 617-715-5254 Office: E19-429b

Focus Areas Energy

Paul Kishimoto

Research Assistant, Joint Program and China Energy and Climate Project Doctoral Degree candidate, Institute for Data, Systems, and Society

pnk@mit.edu Website

Focus Areas Energy, Regional Analysis

Y.-H. Henry Chen Research Scientist, Joint Program

chenyh@mit.edu Phone: 617-715-5432 Office: E19-429N

Focus Areas Energy, Climate Policy

Goals of the Global Economic and Policy Modeling Task

- To explore interactions between different transportation technologies (ICE, PHEV, BEV), fuel prices, transportation policies, energy policies, and climate policies in an economy-wide setting at a global level (disaggregated by 18 regions).
- To assess implications for GHG emissions, air pollutants, fuel consumption, fleet composition, economic growth, and macroeconomic cost of avoided CO₂ emissions.

Target Questions

- What are the impacts of energy, transportation, and climate policies on energy demand, on the economy, on the environment including global climate change?
- How will the vehicle fleet and fuel mix evolve in response to various policy scenarios?
- What are the macroeconomic costs of different policy options?

Model: EPPA

Major goals: Energy, economy, GHG and air pollutants projections.

Representation: All sectors of economy; Global coverage.

Features: Theory-based; Prices are endogenous; International Trade; Inter-industry linkages; Distortions (taxes, subsidies, etc); GDP and Welfare effects.

Cost: Aggregated representation of technologies.

Expected EPPA Reporting Outputs for the Study

 Fleet mix, fuel mix, electricity mix, GHG emissions, air pollutants, economic growth, and macroeconomic cost of avoided CO₂ emissions.

2C Policy

Baseline

Expected EPPA Regional Details on Private Transport

- Vehicle Stock (private cars and light trucks)
 ICE, PHEV, BEV, (FCHV);
 - New and Old.

Key Transport-related elements in the EPPA model

GLOBAL CHANGE

Disaggregated Household Transportation

MIT Economic Projection and Policy Analysis (EPPA) Model

Шii

Baseyear Data for the Model: Input-Output Table

Input-Output Table provides information about production structure (inputs to production – green line) and output use (blue line).

Full accounting (examples): Expansion of biofuels leads to expansion of agriculture production that uses fertilizer and energy inputs; Expansion of solar panel or wind mills production requires energy and capital.

Sectors in the Model

Non-Energy Crops Livestock Forestry Food Energy Intensive Industries Manufacturing Services Industrial Transport Household Transport

<u>Vehicle Types:</u> New ICE, Used ICE, New EV, Used EV (New PHEV, Used PHEV)

Energy Crude oil Refined oil Liquid fuel from biomass Oil Shale Coal Natural gas (conv, shale, tight, CBM) Electricity Synthetic gas (from coal)

Technologies Included

Fossil (oil, gas, coal) Advanced gas, Advanced coal Coal with carbon capture Gas with carbon capture Nuclear Hydro Wind, Solar, Wind with backup Biomass

Baseyear (2007) data collection and calibration for historic data (2010-2015)

- 1. Number of cars and VMT driven by new and used vehicles;
- Share (of total consumption) for expenditures on own vehicles (for future periods – income elasticity of demand);
- 3. Fuel and vehicle expenditures;
- 4. Service expenditure (residual);

LOBAL CHANGE

5. Relative cost of alternative vehicles.

Projections

- 1. Owned vs Purchased Transport Services;
- 2. Miles travelled;
- 3. Fuel (and the resulting MPG);
- 4. Pollutants (coefficient on fuel use);
- 5. Alternative fuels;
- 6. Change in car ownership (coefficient on demand function).

Status of own-supplied HH model settings development

Current features: ICE, EV ICE, EV fleet turnover (new, used) Fuel efficiency

Features under development: Income elasticity PHEV+BEV, (CNG in China) PHEV+BEV fleet turnover (new, used) Service with lower car ownership

Status of Historic Data Update (2005-2015)

- Number of private cars and light-duty trucks
- Global
 - Organization of Motor Vehicle Manufacturers (OICA): Passenger Cars, Commercial Vehicles
 - IEA (MoMo)
- USA
 - DoT, EIA
- China
 - Statistical Yearbook

Challenges for Historic Data Update

- Private household-owned light-duty vehicle is not a well-established category in primary sources of data
- Share of private household vehicles is changing in some countries/regions
- Need data sources with global coverage

Transport Primary Data Sources

	Data Source	Transport Parameter	Data Input
JOINT PROCESS	IEA	Light-Duty Vehicle Stock	Vehicle Registrations (Country Level)
	EIA	Light-Duty Vehicle Stock	Polk (IHS Markit)
	OICA (Organisation Internationale des Constructeurs d'Automobiles)	Registered Vehicles on Road (Passenger separate from commercial)	Ward's (US) Fourin (Other countries)
	Transport Energy Data Book	Vehicles per Thousand People	Ward's (Other Countries/Regions2004 and 2014)
			US (US DOT)
	US DOT	Light-Duty Vehicle	Highway Statistics (States Vehicle Registrations)
	US EPA	Passenger Cars	IHS Automotive Vehicle Registrations
	Ward's world motor vehicle data	Total Vehicles in Operation by Country Passenger and Commercial Cars	
	Polk (IHS Markit)	Passenger Cars	Vehicle Registrations Coverage: 45 countries
GLOBAL CHANGE	ei	19	

US DOT: Highway Total (Registered Vehicles)

- Before 2007
 - Passenger Cars (2006: 135 mln)
 - Other 2-axle 4-tire vehicles (2006: 99 mln)
 - (2006 Total: 234.5 mln)
- From 2007
 - Light duty vehicle, short Wheel base (2007: 196 mln)
 - Light duty vehicle, long Wheel base (2007: 39 mln)
 - (2007 Total: 235.5 mln)
- Common before and after 2007:
 - Motorcycle

Bus

- Truck, single-unit 2-axle 6-tire or more
- Truck, combination

OICA continues to use this category for US and other countries

US DOT/ DOE (EIA) Light-Duty Vehicle Specifications

- DOT: Light duty vehicle, short wheel base
 - includes passenger cars, light trucks, vans and sport utility vehicles with a wheelbase (WB) equal to or less than 121 inches
- DOT: Light duty vehicle, long wheel base
 - replaces Other 2-axle, 4-tire vehicle and includes large passenger cars, vans, pickup trucks, and sport/utility vehicles with wheelbases (WB) larger than 121 inche
 - EIA: Light-Duty Vehicle
 - Vehicles weighing less than 8,500 lbs (include automobiles, motorcycles, and light trucks)
 - Includes personal and fleet vehicles

Historic Data for Major Regions

Source: OICA (2017), DOT (2017) – for USA (cars+LDV)

Historic Data for EV (BEV+PHEV)

2015

USA: car stock – 120 mln, electric car stock – 0.4 mln car sales – 7.5 mln, electric car sales – 0.07 mln (IEA – 0.7% market share)

a: car stock – 120 mln, electric car stock – 0.3 mln
car sales – 21 mln, electric car sales - 0.15 mln
(IEA – 1% market share)

Source: OICA (2017), IEA (2016)

Scenario Setting (in progress)

- Baseline Scenario: Continue current policies with permanent extension after the last targeted date (e.g., CAFE extends beyond 2025 based on 2025 requirements); no Paris commitments; prices are determined by supply and demand.
- Policy Scenarios: Paris Forever, Paris to 2C.
 - Paris Agreement is modeled based on an assessment by Jacoby et al (2017) available at: <u>https://globalchange.mit.edu/publication/16547</u>
 - Extensions after 2030 are based on carbon price policy
- Exploration: low-high oil prices, battery costs, fuel/CO₂ standards for cars, support for electric cars, support for renewables.

Preliminary Results for EV (BEV+PHEV)

2050

GLOBAL CHANGE

USA:

LDV stock – 300 mln; EV stock: baseline – 1 mln, Paris Forever – 8.2 mln, Paris to 2C – 8.5 mln (EUR is about the same as USA) China: LDV stock – 250 mln; EV stock: baseline – 1 mln, Paris Forever – 40 mln, Paris to 2C – 50 mln

Note: PHEV and BEV are not represented explicitly yet. The work is in progress.

Current Major Findings - 1 (in progress)

- Climate policy goals affect all sectors of the economy:
 - most of the action is in electricity sector: energy use response, move to lower-carbon power generation;
 - other sectors are also affected, including private transportation: more efficient ICE, fewer miles travelled.
- These goals also result in a major acceleration on deployment of EV.
- 2050 global LDV stock: around 1,500-1,700 mln.
- 2050 global EV stock in the Baseline Scenario 20 mln, Paris Forever – 160 mln, Paris to 2C – 200 mln.

2050 EV share of total LDV stock in the Paris scenarios – 9-12%.

Current Major Findings - 2 (in progress)

- More aggressive emission reduction targets come at a higher economic cost:
 - global welfare cost of the Paris Forever scenario is about 1% in 2030 and about 1.5-2% in 2050;
 - additional global welfare cost of the Paris to 2C scenario is 1-1.5% in 2050.
- Crude oil prices (i.e., producer prices) are reduced in Paris scenarios:
 - 2020 price is about \$55/barrel;
 - 2050: Baseline \$75/barrel, Paris Forever \$60/barrel, Paris to 2C \$50/barrel.

Next steps

- Finish collection of historic data for LDVs and emissions by region.
- Calibrate income elasticity (affects fleet growth).
- Update data on battery cost and EV premium.
- Represent BEV and PHEV explicitly.
- Incorporate scenarios.
- Check preliminary results with the MIT team and MoF sponsors.

Interaction with other MoF teams

- Collaborate with Professor Heywood and Professor Green on updating ICE and alternative vehicles representation.
- Collaborate with Professor Green on updating fuel costs and efficiencies.
- Collaborate with Professor Knittel on the current transportation policies.
- Prices and costs to System Dynamics model.
- Methanol vehicles in China.

Detailed look at EV and air pollution impacts in China.

Thank you

Questions or comments? Please contact Sergey Paltsev at paltsev@mit.edu.

http://globalchange.mit.edu/