

Technology Options in Power Generation

Sergey Paltsev

Massachusetts Institute of Technology MIT Global Change Forum

Cambridge, MA October 16, 2014 CO_2 emissions in power sector are about 40% of energy-related emissions in 2011 (IEA, 2013).

2011 global shares of generation: Coal – 41%; Natural Gas – 22%; Hydro – 16%; Nuclear – 12%; Oil – 5%; Renewables – 4%.

2011 global shares of CO_2 emissions in power generation: Coal – 73%; Natural Gas – 20%; Oil – 7%.

Low-Carbon Options:

Nuclear, Hydro, Wind, Solar, Biomass, CCS

Plenty of carbon in the ground

Based on SRREN Figure 1.7

Move to low-carbon energy

Low climate stabilization scenarios are dependent on decarbonization

Based on AR5 WGIII Figure 6.7

Rising GHG emissions in no-policy scenarios

Mitigation requires dramatic changes

6

GLOBAL CHANGE

No negative emission technologies in power sector imply more effort in other sectors

http://globalchange.mit.edu/

GLOBAL CHANGE

2004 – 2007 Optimism about CCS

Short-term increase in gas

By 2100 coal and gas with CCS and Renewables

2014 – Less optimism about CCS, More optimism on nuclear, renewables and energy efficiency

Based on EPPA results for US CCSP (2007)

2050 global shares of generation: 2007 study -- fossil - 75%, renewables - 15% 2014 study -- fossil - 30%, renewables - 50%

- Generation today:
 - Fossil fuels: 68%
 - Renewables: 20%

- Generation 2DS 2050:
 - Renewables: 65 79%
 - Fossil fuels: 20 12%

New Policies Scenario

450 Scenario

2035 global shares of generation in 450 scenario: Coal – 14%; Natural Gas – 19%; Hydro – 20%; Nuclear – 19%; Oil – 1%; Renewables – 28% (including wind – 13%, solar – 7%, bio – 6%).

Based on IEA (2013)

http://globalchange.mit.edu/

Different modeling groups - no dominant technology for decarbonization

Contribution of Low Carbon Technologies to Energy Supply (430-530 ppm CO, eq Scenarios)

Based on AR5 WGIII Figure 7.11

Some low-carbon technologies can compete with conventional

Some Mitigation Technologies for Electricity Generation

* Median Value in Mitigation Scenarios (430-530 ppm CO, eq by 2100)

¹ In gCO₂/kWh; Based on Lifecycle Emissions

² Levelized Cost of Electricity in USD₂₀₁₀/MWh; Based on High Full Load Hours

Based on AR5 WGIII Figure 7.7

Levelized Cost and Benefits Calculations are challenging...

Gas not wind

Net costs and benefits per year per MW compared with coal baseload generation United States, \$'000

The Economist (2014) based on Frank (2014)

How to move to low-carbon energy?

\$544bn

Global subsidies

\$101bn

In 2012 **fossil fuel** subsidies far outweighed those for **renewables**

Conclusions

Aggressive climate stabilization targets (2-3C) require drastic changes in power generation technology options

Future costs and the resulting technology mixes are uncertain

Policy: Target emissions reductions from any source, rather than focus on boosting certain kinds of renewable energy.

Thank you

Questions or comments? Please contact Sergey Paltsev at paltsev@mit.edu.

http://globalchange.mit.edu/