

Science Based Targets & Electric Power Sector Decarbonization

MIT XLI Global Change Forum, Boston, MA March 27, 2018

ELECTRIC POWER RESEARCH INSTITUTE

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Introduction

Background

- Many companies have or are considering greenhouse gas reduction targets
 - Environmental organizations creating methodologies they want applied
- Companies also asked to evaluate the impacts of efforts to manage climate
- Technically challenging activities, with issues and uncertainties relevant to all
- EPRI project developing technical resources for informed public dialogue & decisions

Presentation outline

- The Science Based Target Initiative (SBTi) methodology
- Technical issues for companies to consider
- Insights for company emissions reduction goal setting

tion targets ied age climate relevant to all dialogue &

Main Elements of the SBTi Methodology

SBTi is an initiative of CDP (formerly Carbon Disclosure Project), World Resources Institute (WRI), World Wide Fund for Nature (WWF), UN Global Compact (UNGC).

"SBT": "...GHG emissions reduction targets are considered 'science-based' if they are in line with the level of decarbonization required to keep global temperature increase within 2°C of pre-industrial levels."

- sciencebasedtargets.org

SBTi Main Elements

- 1. 2°C goal
- 2. Carbon budget
- 3. Emissions scenario
- 4. Company emissions reduction allocation

2°C carbon budget (1010 GtCO2)

IPCC 4AR (A-450 ppm CO2eq)

IPCC 5AR (Overshoot < 0.4 W/m2)

IPCC 5AR (RCP 2.6)

IEA 2DS (ETP 2016)

Sector-based approach (Convergence/Contraction)

Absolute-based approach (Contraction)

Economic-based approach (Contraction)

Source: SBTi Manual

SBTi Allocation Approaches

- 1. Absolute emissions contraction
- 2. Climate Stabilization Intensity Targets (CSI)
- 3. Context-based Carbon Metric (CSO)
- 4. Corporate Finance Approach to Climatestabilizing Targets (C-FACT)
- 5. Greenhouse Gas Emissions per Value Added (GEVA)
- 6. Sectoral Decarbonization Approach (SDA)
- 7. 3% Solution (US only)

Most apply a uniform target (reduction, growth rate, intensity) across regions, sectors, or companies based on global results

Informa	ition	Absolute	<u>CSI</u>	Context-Based	Metric (CSO)	C-FACT	GEVA	SDA	3% Solution
		Emissions							
Raco Vo	a r	Elovible	Eloviblo	2005		Eloviblo	Floviblo	Elevible from	Elovible (2005
base re		FIEXIDIE	FIEXIBLE	2005		prefers 2009	prefers 2010	2010 onward	2010)
Target Year		Flexible	Flexible through 2050	Flexible throug	Flexible through 2050		Flexible through 2050	Flexible through 2050	2020
Emissions scenario		Flexible	Flexible, although IPCC Fourth Assessment Report used in current implementation	Flexible		Flexible, altho Fourth Assess used in currer implementati	ugh IPCC ment Report nt on	IEA 2DS	Based on proprietary cost abatement curves
Level of sector None differentiation		None	None	None		None	None	Sectoral	Sectoral (designed for companies with substantial U.S. emissions)
Allocation Mechanism		Contraction (absolute)	Contraction (intensity)	Contraction (in	tensity)	Contraction (absolute)	Contraction (intensity)	Convergence (for homogeneous sectors)	Contraction (absolute)
								Contraction (for heterogeneous sectors)	
Input Data	Base year	 Absolute emissions, scope 1+2+3 if desired 	 Combined scope 1 and 2 intensity Gross Profit 	 Scope 1 and 2 absolute and intensity emissions (separately) Gross Profit, Revenue, Physical Activity 	 Absolute scope 1, scope 2, or scope 1+2+3 if desired Gross Profit, Revenue 	• Either inten absolute sco or scope 1+2 • Gross Profit	sity or ope 1, scope 2, 2	 Scope 1 and 2 absolute emissions (separately) Physical Activity; Gross Profit 	 Scope 1 and 2 absolute emissions
Target year• Growth Projection (specified by method scenario)• Growth Projection (As projected by company)• Growth Projection (As projected by company)• Growth Projection (As projected by company)• Gross Profit/Margin Target (as determined by company)• Growth Projection (As projected by company)• Growth Projection (As projected by company)		• Growth Proj (specified by scenario)	ection / method	 Growth Projection (as projected by company and only for homogeneous sectors) 	 Growth Projection (As projected by company) – requires change in market share 				
Target Year Outputs		Absolute reduction, scope 1+2+3 if desired	Combined scope 1 and 2 intensity	Scope 1 and 2 a intensity emiss	absolute and ions (separately)	Presents intensity and absolute reductions	Intensity target or absolute target	Scope 1 and 2 absolute emissions and intensity (separately)	Scope 1 and absolute emissions

Source: SBTi Manual

© 2018 Electric Power

Sectoral Decarbonization Approach (SDA)

- Documentation (2015)
- SDA Spreadsheet Tool
 - Latest version v8.1
 - Uses International Energy Agency (IEA) ETP 2016 scenario data

targets in line with climate science

A product of the Science Based Targets Initiative DRIVING AMBITIOUS CORPORATE CLIMATE ACTION

RIVING AMBITIOUS CORPORATE CLIMATE ACTIO

Version 1 | MAY 2015

SECTORAL DECARBONIZATION APPROACH (SDA): A method for setting corporate emission reduction

WORLD RESOURCES INSTITUTE

SDA Allocation of Carbon Budget to Sectors

A 2011-2050 carbon budget created for each <u>large</u> <u>global sector</u> based on IEA ETP 2DS scenario emissions (net non-included sectors) TABLE 1. SECTORAL CO2 BUDGETS FOR SDA AND RCP 2.6, 2011-50

	Sector	Subsector	Cumulative CO ₂ emissions 2011–50	
			(01002)	
	Power Generation	N/A	300	
		Iron & Ctool	112	
		Cement	89	
		Aluminum	11	
	Industry	Pulp & Paper	8	
		Chemicals & petrochemicals	78	
		Other industry	51	
	Transport Services	Passenger transport - Air	36	
		Passenger transport – Light road	93	
SDA		Passenger transport – Heavy road	15	
		Passenger transport - Rail	1	
		Other transport	91	
		Trade / Retail		
		Finance		
		Real estate		
		Public administration		
	Buildings	Health	32	
		Food and lodging		
		Education		
		Other commercial ser- vices		
	Non-included sectors*	N/A	138	
	Total cumulative emissions		1,055	
	Fossil fuels and industry	N/A	979	
RCP 2.6	Land use change*	N/A	104	
	Total cumulative em	issions	1,083	

Power Sector SDA – Sample Results*

Technical Issues for Companies to Consider

- What 2°C represents?
- Our understanding of the relationships between global average temperature and...
 - Carbon budgets?
 - Global emissions pathways?
 - Sub-global emissions (sector, country, countrysector, company)?
- Non-climate related uncertainties?
- Comparison of target setting alternatives?
 - E.g., cost (to companies, customers, society), environmental effectiveness
- Robust strategies for companies?

SBTi Main Elements

- 2°C goal 1.
- Carbon budget 2.
- 3. **Emissions scenario**
- 4. allocation

Company emissions reduction

What 2°C Represents?

- 2°C is a policy ambition, not a scientific threshold (e.g., damages not infinite > 2°C)
 - And, Paris Agreement country emissions reduction pledges are voluntary with their implementation uncertain
- Limiting warming to 2°C is extremely challenging geophysically, technologically, economically, politically
- For companies, uncertainty about whether the world will be able to follow global pathways for limiting warming to 2°C and the specific policies that will be implemented

Regional Costs for Increasingly Ambitious Emissions Reduction Goals (Reductions in Discounted Average Per Capita Consumption through 2100)

	US	EU	Other G20	China	India	Other Countries	Max °C		
S1							6.9 (3.8-9.6)		
S2	0.2%	0.3%	0.3%	1.4%	0.1%	-0.2%	6.0 (3.4-8.3)		R
S 3	0.3%	0.4%	0.6%	2.3%	0.0%	-0.5%	5.4 (3.0-7.4)		
S4	0.5%	0.7%	1.1%	4.8%	-0.1%	-0.7%	5.0 (2.8-7.0)		l inc
S5	0.5%	0.7%	1.0%	4.8%	0.8%	-0.6%	3.8 (2.2-5.3)		
S6	0.5%	0.7%	1.0%	4.9%	2.0%	0.2%	2.7 (1.6-3.8)		ind
S7	0.5%	0.8%	1.0%	5.1%	4.3%	2.1%	2.3 (1.4-3.1)		
S8	2.1%	2.2%	5.2%	12.3%	14.1%	6.5%	2.0 (1.3-2.6)	┨┤	Ļ

egional costs crease at an creasing rate

Source: Rose et al (2017)

2°C Attainability? Model Feasibility, Policy Objectives, and Technology e.g., Energy Modeling Forum 27th Study on the Role of Technology in Achieving Climate Objectives

models producing scenario / # models that tried

	FullTech	LowEl	NoCCS	NucOff	LimSW	LimBio	Conv	
Baseline	13/13	13/13	2	11/11	11/11	13/13	13/13	
550 ppm	13/13	13/13	12/12	11/11	11/11	13/13	13/13	
450 ppm	10/11	9/10	4/11	9/10	9/10	9/11	8/11	

Greatest fraction of model infeasibilities occurred with CCS constrained (fossil & biomass CCS)

Source: Krey et al. (2014)

Global Climate Goals and the Relationship to Companies

Company

Global Climate Goals and the Relationship to Companies

Potential energy systems and electric sectors?

Pieces, factors connecting them, underlying them, and uncertainties critical

ELECTRIC POWE **RESEARCH INSTITUTE**

The Relationship Between Temperatures and Carbon Budgets

- A range of 2050 carbon budgets are consistent with a global average temperature outcome
 - SBTs based on a single 2011 onward carbon budget of 1010 GtCO₂ (1055 GtCO₂ in SDA)
- Also, new literature suggests that current budget estimates may be too small

13 * IPCC adjusted for an assumed level of non-CO₂ forcing. 2011 onward budgets would net out pre-2011 emissions of 1630-2150 (avg. 1890) GtCO₂. ** 10-90th percentile range shown. Will be revised to reflect full range.

Probability of staying pelow 2°C	Probability of staying below 3°C
63-88%	97-99%
39-68%	90-97%
16-46%	81-92%
7-26%	65-86%
5-12%	57-74%
0-3%	17-45%
0%	2-8%

Developed from IPCC WGIII (2014)

The Relationship Between Temperatures and Global Emissions

- A range of pathways and 2030 & 2050 reductions consistent with a global temperature goal
- Scenario ensembles provide ranges, not distributions (not amenable to statistics). Full uncertainty larger.
 - Emissions scenarios are not requirements _
 - SBT uses particular global emissions scenario result that is treated as a prescription/requirement

60,000 2030 (51% to -81% relative to 2010) 40,000 2050 (14% to -96%) 20,000 MtCO₂/yr 0 2040 2050 2010 2020 2030 -20,000 -40,000 Range and select scenarios shown -60,000

Global CO₂ Pathways Consistent with 40+% Chance < 2°C (IPCC Cat 1 & 2)

Change in Emissions from 2010

Category		2030	2050	n*
1	Max	36%	-30%	122
	Min	-81%	-96%	
2	Max	51%	14%	294
	Min	-69%	-90%	
3	Max	76%	16%	232
	Min	-40%	-70%	
4	Max	52%	52%	147
	Min	-21%	-67%	
5	Max	38%	43%	60
	Min	-6%	-40%	
6	Max	60%	101%	149
	Min	-5%	-4%	
7	Max	95%	175%	167
	Min	18%	40%	

Developed from IPCC WGIII (2014)

The Relationship Between Temperatures and Electric Sector Emissions

			Global Elec C
	Global CO ₂	Global Elec CO ₂	negative emis
Max	14%	-2%	-13%
Min	-96%	-163%	-100%
n	408	/ 373	55
		/	

2050 IPCC category 1 & 2 emissions changes from 2010

Negative emissions generation being deployed. Represents subsidy payments to operators. Depends on acceptability of negative emissions technologies and policy design (global & economy-wide here).

Many models can't find solutions for achieving very low emissions pathways without a negative emissions technology

Developed from IPCC WGIII (2014)

The Relationship Between Temperatures and Electric Sector Emissions

	Global CO₂	Global Elec CO₂	Global Elec Conception of the second
Max	14%	-2%	-13%
Min	-96%	-163%	-100%
n	408	373	55

2050 IPCC category 1 & 2 emissions changes from 2010

Category 1 & 2 2010-2050 carbon budgets (GtCO₂)

	Global CO ₂ budget	Global Elec CO ₂ budget	Global Elec Connegative emises budget
Min	465	94	144
Max	1692	642	512
n	408	373	55

Developed from IPCC WGIII (2014)

vs. SDA budget 300 GtCO₂

Global Electrification Consistent with 40+% Chance < 2°C (IPCC Cat 1&2) With economy-wide policies and w/ and w/o negative emissions (CDR = carbon dioxide removal)

Developed from IPCC WGIII (2014)

Without negative emissions technologies (CDR)...

Slower growth in global electricity consumption and final energy share.

But also increased possibility that staying below 2C unattainable (55 vs. 373 models able to find a solution)

Policy Design Matters

- Will affect cost (to companies, customers, society), environmental effectiveness, and the costeffective role of sectors and individual companies
- Represents another uncertainty for companies
- Most scenarios assume global action and economy-wide emissions caps (globally or regionally)
- However, real policy is unlikely to proceed that way. Various factors to consider...
 - Sector/emissions coverage
 - Eligible technologies
 - Policy instrument type
 - Offsets (uncovered emissions)
 - International partnerships
- SBTi advocates a particular policy instrument company targets with uniform emissions objective (e.g., global sector emissions intensity)
 - And, constrains cost-effective coordination (e.g., precluding offsets, discouraging cooperation, creating a mixture of company approaches)

General Insights for Company Emissions Reduction Goal Setting

- The cost-effective emissions reduction target for a company will likely differ from what is cost-effective at the global, country, or sector level
- Companies should consider uncertainty, want flexibility, and strive for robust strategies
 - Uncertainty about limiting warming to 2°C, temperature–emissions relationships, technologies, policy design, non- climate uncertainties (e.g., economic growth, energy markets)
 - A strategy is robust if it still makes sense in different future contexts —
 - A strategy is more than a target (or range), it is an approach that recognizes uncertainty and can respond appropriately
- Given uncertainties...
 - It is likely difficult to identify a unique company-level target that is robust to all future possibilities _
 - Therefore, a strategy with flexibility is needed to contain company, and therefore societal, costs —
- Identifying robust technical insights helps inform robust decisions
 - e.g., future global emissions need to be lower than today to limit warming to < 2°C, and a broad range is relevant

Thank you!

Steven Rose

Energy & Environmental Analysis Research Group <u>srose@epri.com</u>, (202) 257-7053

Resources

- Fawcett, AA, LE Clarke, S Rausch, JP Weyant, 2014. Overview of EMF 24 Policy Scenarios. The Energy Journal 35 (Special Issue) 1 – The EMF 24 Study on U.S. Technology and Climate Policy Strategies).
- IPCC WGI, 2013. Summary for Policymakers. In: *Climate Change 2013: The Physical Science Basis. Contribution of Working* Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- IPCC WGIII, 2014. Clarke L., K. Jiang, K. Akimoto, M. Babiker, G. Blanford, K. Fisher-Vanden, J.-C. Hourcade, V. Krey, E. Kriegler, A. Löschel, D. McCollum, S. Paltsev, S. Rose, P. R. Shukla, M. Tavoni, B. C. C. van der Zwaan, and D.P. van Vuuren, 2014: Assessing Transformation Pathways. In: *Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Rose, SK, R Richels, G Blanford, T Rutherford, 2017. The Paris Agreement and Next Steps in Limiting Global Warming. *Climatic* Change 142(1), 255-270.
- Science Based Targets Initiative, 2015. Sectoral Decarbonization Approach (SDA): A method for setting corporate emission reduction targets in line with climate science. http://sciencebasedtargets.org/wp-content/uploads/2015/05/Sectoral-Decarbonization-Approach-Report.pdf.
- Science Based Targets Initiative, 2017. Science-based Target Setting Manual, Draft, Version 3.0, April 4, 2017. http://sciencebasedtargets.org/wp-content/uploads/2016/10/SBT-Manual-Draft.pdf.

Policy Design Matters – e.g., Regulation vs. Cap & Trade

Regulations found to be more costly than marketbased approaches due to their partial coverage

US Electric Sector CO₂ Pathways

e.g., Energy Modeling Forum 27th Study on the Role of Technology in Achieving Climate Objectives

Cost-effective US electric sector CO₂ pathway (and electrification) ranges and their viability will depend on:

Available generation options

The <u>range</u> of climate targets considered

Policy design (global & economy-wide assumed in these results)

Source: Developed from EMF-27 study

