Science-based, not scenario-based
Measuring progress to a long-term temperature goal

MYLES ALLEN

School of Geography \& the Environment \& Dept. of Physics, University of Oxford myles.allen@ouce.ox.ac.uk

Warming currently at $1^{\circ} \mathrm{C}$, rising at $0.2^{\circ} \mathrm{C}$ per decade

"At the current level of warming of $0.85^{\circ} \mathrm{C}$ above pre-industrial alevels..."

UNFCCC Report on the Structured Expert Dialogue on the 2013-2015 review

A simple way of computing outstanding carbon budgets for science-based targets

- Start with a truism: if warming continues at the current rate, then time to exceed $T_{\max }$ is

$$
t_{\mathrm{exceed}}=\frac{\left(T_{\mathrm{max}}-T_{\mathrm{now}}\right)}{\left.\frac{d T}{d t}\right|_{\mathrm{now}}}
$$

- But how to estimate $T_{\text {now }}$ and $\left.\frac{d T}{d t}\right|_{\text {now }}$?
- Need human-induced, not total, warming.

24 years to $1.5^{\circ} \mathrm{C}$ at the current rate

Another truism:

- If warming rates fall at a constant rate from now on, then time to stabilize at $T_{\max }$ is

$$
t_{\text {stabilize }}=\frac{2\left(T_{\max }-T_{\text {now }}\right)}{\left.\frac{d T}{d t}\right|_{\text {now }}}
$$

So we have almost 50 years to reduce warming rate to zero, starting now

Current rate of warming determines future warming under constant deceleration

So how does this relate to carbon budgets? First, what will it take to fail?

- If CO_{2} emissions and warming both continue at their current rate, then temperature will exceed $T_{\max }$ after we have emitted a further

$$
\int_{\text {now }}^{\text {exceed }} E d t=\frac{E_{\text {now }}\left(T_{\text {max }}-T_{\text {now }}\right)}{\left.\frac{d T}{d t}\right|_{\text {now }}}
$$

- Or about 24 years x $40 \mathrm{GtCO}_{2} / \mathrm{yr} \approx 960 \mathrm{GtCO}_{2}$

Next, what will it take to succeed?

- If CO_{2} emission rates fall at least as fast as the rate of human-induced warming, then to stabilize temperatures at $T_{\text {max }}$:

$$
\int_{\text {now }}^{\text {peak }} E d t \leq \frac{E_{\text {now }}\left(T_{\max }-T_{\text {now }}\right)}{\left.\frac{d T}{d t}\right|_{\text {now }}}
$$

- Inequality because non- CO_{2} forcing contributes a scenario-dependent (but positive) future warming in addition to CO_{2}.

Inequality works for AR5 WG3 mitigation scenarios

Forecast budgets to peak warming based on warming and warming rate in 2020 \& 2035

And predicts c. $0.6^{\circ} \mathrm{C}$ future warming under RCP2.6 (low net non- CO_{2} warming in this scenario)

How to include non- CO_{2} forcing?

- Express it as CO_{2}-forcing-equivalent emissions
- not GWP-based CO_{2}-eq
- Convert forcing to CO_{2}-equivalent concentrations and diagnose required CO_{2} emissions by inverting a carbon cycle model (Wigley, 1998)

or

- Use the handy approximation (Allen et al, 2018):

$$
\int E_{\mathrm{CO} 2-\mathrm{fe}} \approx \frac{H \times \Delta F}{\operatorname{AGWP}_{H}\left(\mathrm{CO}_{2}\right)} \approx\left[1250 \mathrm{GtCO}_{2} /\left(\mathrm{Wm}^{-2}\right)\right] \times \Delta F
$$

Current level and rate of human-induced warming determines outstanding CO_{2}-fe emissions budgets

Current level and rate of human-induced warming determines time to $1.5^{\circ} \mathrm{C}$ at current rate

OXFORD MARTIN SCHOOL

Current level and rate of human-induced warming determines required warming reduction rate

Current level and rate of human-induced warming determines maximum future CO_{2} emission budget

OXFORD MARTIN SCHOOL

24 years' emissions at current rate \approx $960 \mathrm{GtCO}_{2}$

Direct estimates of the carbon budget for $1.5^{\circ} \mathrm{C}$

- Using the definitions of GMST and pre-industrial adopted by the UNFCCC, $1.5^{\circ} \mathrm{C}$ is ~ 24 years away at the current warming rate (likely range 12-34 years).
- Which means we have almost 50 years to get CO_{2} emissions to zero if reductions start immediately and we reduce the rate of non- CO_{2} warming at the same rate as we reduce CO_{2} emissions.
- Implying a future $1.5^{\circ} \mathrm{C}$ carbon budget of $24 x$ current annual emissions, or $\sim 960 \mathrm{GtCO}_{2}$ (likely range 500-1,400 GtCO_{2}).

So much for global targets, but what of companylevel targets?

Published by the Oxford Martin Net Zero Carbon Investment Initiative
This briefing is adapted from Millar, R.J., Hepburn, C., Beddington, J. and Allen, M.R. Principles to guide investment towards a stable climate. Nature Climate Change 8, 2-4 (2018).

- At what global temperature will your activities, and the products you sell, be consistent with net zero carbon dioxide emissions?
- What is your strategy for achieving net zero, and who will pay for it?
- How do you propose to monitor progress to net zero as the world warms?

An example: excerpt from ExxonMobil "Energy and Carbon Summary", 2018

Global energy-related CO_{2} emissions ${ }^{(9)}$
(billion tonnes)

Characteristics of "cost-effective" <2 ${ }^{\circ}$ C scenarios

Total emissions in scenarios in IPCC WGIII "430-480ppm" (lowest) scenario category

Colours show total policy cost in US\$ 2005

Figures courtesy of Richard Millar based on IIASA database

Another way of plotting $<2^{\circ} \quad \mathrm{C}$ scenarios

Net fraction of extracted carbon that is re-injected through CCS, Bioenergy with CCS (BECCS) or Direct Air Capture (DAC)

Delayed deployment of CO_{2} disposal is associated with mitigation costs $>\$ 60$ T\$ $2005 /$ year

Figures courtesy of Richard Millar based on IIASA database

When "we're in with the scenarios" is not enough:
A metric of progress for the fossil fuel industry

- To reach net zero by $2^{\circ} \mathrm{C}$, the fraction of carbon extracted that is permanently sequestered must increase, on average, by 10% per $0.1^{\circ} \mathrm{C}$ warming from now on.
- Linear increase implies 20\% sequestration by 2030...
- Quadratic increase implies 4\% sequestration by 2030.

When "we're in with the scenarios" is not enough:

A metric of progress for the fossil fuel industry

- To reach net zero by $1.5^{\circ} \mathrm{C}$, the fraction of carbon extracted that is permanently sequestered must increase, on average, by 20% per $0.1^{\circ} \mathrm{C}$ warming from now on.
- Linear increase implies 40% sequestration by 2030...
- Quadratic increase implies 16% sequestration by 2030.
- Even if entirely passed on to the consumer, 16% sequestration would be far, far less economically disruptive than a 2030 carbon price of $>\$ 100 / \mathrm{tCO}_{2}$ required in conventional mitigation scenarios.

Unhelpful indicators

OXFORD
MARTIN
SCHOOL

Carbon Countdown
As of the start of 2017, how many years of current emissions would use up the IPCC's carbon budgets for different levels of warming?

Made for minds.

Analysis: Just four years left of the 1.5C carbon budget

Opinion: Goodbye to an unrealistic climate goal

Where did these figures come from: the origins of the AR5 SPM "likely below 1.5° C" budget figure

OXFORD

Where did these figures come from: the origins of the AR5 SPM "likely below 1.5° C" budget figure

OXFORD

Where did these figures come from: the origins of the AR5 SPM "likely below 1.5° C" budget figure

OXFORD MARTIN SCHOOL

