

Science-based, not scenario-based Measuring progress to a long-term temperature goal

MYLES ALLEN

School of Geography & the Environment & Dept. of Physics, University of Oxford

myles.allen@ouce.ox.ac.uk

Warming currently at 1°C, rising at 0.2°C per decade

A simple way of computing outstanding carbon budgets for science-based targets

- Start with a truism: if warming continues at the current rate, then time to exceed $T_{\rm max}$ is

$$t_{\text{exceed}} = \frac{\left(T_{\text{max}} - T_{\text{now}}\right)}{\left.\frac{dT}{dt}\right|_{\text{now}}}$$

- But how to estimate T_{now} and $\frac{dI}{dt}\Big|_{\text{now}}$?
- Need human-induced, not total, warming.

OXFO

24 years to 1.5° C at the current rate

Another truism:

- If warming rates fall at a constant rate from now on, then time to stabilize at $\,T_{\rm max}$ is

$$t_{\text{stabilize}} = \frac{2\left(T_{\text{max}} - T_{\text{now}}\right)}{\frac{dT}{dt}}$$

So we have almost 50 years to reduce warming rate to zero, starting now

Current rate of warming determines future warming under constant deceleration

OXFORD

So how does this relate to carbon budgets? First, what will it take to fail?

- If CO₂ emissions and warming both continue at their current rate, then temperature will exceed T_{\max} after we have emitted a further

$$\int_{\text{now}}^{\text{exceed}} E \, dt = \frac{E_{\text{now}} \left(T_{\text{max}} - T_{\text{now}} \right)}{\frac{dT}{dt}}$$

Or about 24 years x 40 GtCO₂/yr ≈ 960 GtCO₂

Next, what will it take to succeed?

• If CO₂ emission rates fall at least as fast as the rate of human-induced warming, then to stabilize temperatures at $T_{\rm max}$:

Inequality because non-CO₂ forcing contributes a scenario-dependent (but positive) future warming in addition to CO₂.

Inequality works for AR5 WG3 mitigation scenarios

Forecast budgets to peak warming based on warming and warming rate in 2020 & 2035

And predicts c. 0.6° C future warming under RCP2.6 (low net non-CO₂ warming in this scenario)

How to include non-CO₂ forcing?

- Express it as CO₂-forcing-equivalent emissions
 not GWP-based CO₂-eq
- Convert forcing to CO₂-equivalent concentrations and diagnose required CO₂ emissions by inverting a carbon cycle model (Wigley, 1998)

or

• Use the handy approximation (Allen et al, 2018):

$$\int E_{\text{CO2-fe}} \approx \frac{H \times \Delta F}{\text{AGWP}_{H}(\text{CO}_{2})} \approx \left[1250 \,\text{GtCO}_{2} / \left(\text{Wm}^{-2}\right)\right] \times \Delta F$$

Current level and rate of human-induced warming determines outstanding CO₂-fe emissions budgets

Predicted CO_2 -fe emissions to peak warming (10³ GtCO₂)

Current level and rate of human-induced warming determines time to 1.5° C at current rate

Current level and rate of human-induced warming determines required warming reduction rate

Current level and rate of human-induced warming determines maximum future CO₂ emission budget

24 years' emissions at current rate ≈ 960GtCO₂

Direct estimates of the carbon budget for 1.5° C

- Using the definitions of GMST and pre-industrial adopted by the UNFCCC, 1.5° C is ~24 years away at the current warming rate (likely range 12-34 years).
- Which means we have almost 50 years to get CO₂ emissions to zero if reductions start immediately and we reduce the rate of non-CO₂ warming at the same rate as we reduce CO₂ emissions.
- Implying a future 1.5° C carbon budget of 24x current annual emissions, or ~960GtCO₂ (likely range 500-1,400 GtCO₂).

So much for global targets, but what of companylevel targets?

- What is your strategy for achieving net zero, and who will pay for it?
- How do you propose to monitor progress to net zero as the world warms?

OXFORE

MARTIN SCHOOL

Oxford Martin Principles for

OXFORD MARTIN SCHOOL

BRIEFING FEBRURARY 2018

Climate-Conscious Investment

OXFORD

MARTIN

SCHOOL

OXFORD

Published by the Oxford Martin Net Zero Carbon Investment Initiative

This briefing is adapted from Millar, R.J., Hepburn, C., Beddington, J. and Allen, M.R. Principles to guide investment towards a stable climate. *Nature Climate Change* 8, 2–4 (2018).

An example: excerpt from ExxonMobil "Energy and Carbon Summary", 2018

Characteristics of "cost-effective" <2° C scenarios

Figures courtesy of Richard Millar based on IIASA database

OXFORD MARTIN

SCHOOL

Another way of plotting <2° C scenarios

Net fraction of extracted carbon that is re-injected through CCS, Bioenergy with CCS (BECCS) or Direct Air Capture (DAC)

eci

Figures courtesy of Richard Millar based on IIASA database

OXFORD MARTIN

SCHOOL

When "we're in with the scenarios" is not enough: A metric of progress for the fossil fuel industry

- To reach net zero by 2° C, the fraction of carbon extracted that is permanently sequestered must increase, on average, by 10% per 0.1° C warming from now on.
- Linear increase implies 20% sequestration by 2030...
- Quadratic increase implies 4% sequestration by 2030.

When "we're in with the scenarios" is not enough: A metric of progress for the fossil fuel industry

- To reach net zero by 1.5° C, the fraction of carbon extracted that is permanently sequestered must increase, on average, by 20% per 0.1° C warming from now on.
- Linear increase implies 40% sequestration by 2030...
- Quadratic increase implies 16% sequestration by 2030.
- Even if entirely passed on to the consumer, 16% sequestration would be far, far less economically disruptive than a 2030 carbon price of >\$100/tCO₂ required in conventional mitigation scenarios.

Unhelpful indicators

Where did these figures come from: the origins of the AR5 SPM "likely below 1.5° C" budget figure

Years

Cumulative emissions since 1870 (GtC)

OXFORD

Where did these figures come from: the origins of the AR5 SPM "likely below 1.5° C" budget figure

Years

Cumulative emissions since 1870 (GtC)

OXFORD

Where did these figures come from: the origins of the AR5 SPM "likely below 1.5° C" budget figure

Years

Cumulative emissions since 1870 (GtC)

OXFORD