2011 MIT Joint Program Energy and Climate Change Outlook John Reilly

The MIT Joint Program on the Science and Policy of Global Change http://globalchange.mit.edu November 10, 2011

The MIT Joint Program on the Science and Policy of Global Change Questions or comments? Contact: John Reilly jreilly@mit.edu

Purpose of the Outlook

Projections of energy mix and impacts on the climate.

Regional tables with energy and emissions.

One emission scenario, three climate sensitivity scenarios.

Reflects Copenhagen Accord pledges for 2020.

Keeps 2020 goals afterwards with no additional policy.

Goal of the webinar: introduce the Outlook structure and major results, provide regional Excel files for feedback.

Hope: to make the MIT JP Outlook an annual publication.

Major Points

Temperature increases are substantial.

Most emissions growth is in developing regions.

Emissions in developed regions are flat, so a smaller lever to further impact global emissions.

Transition to alternative energy is starting in developed countries and China, but the Copenhagen targets will not complete it.

Vehicle growth is substantial in developing regions.

Land emissions are important.

A lot more work is needed if the world wants to avoid substantial climate change.

Global Emissions

Fossil CO₂ Emissions by major group

GHG Emissions by major group

Global Energy Use

Energy Use by major group

Global Population

Population (millions)

The MIT Joint Program on the Science and Policy of Global Change

OB

Global GDP

GDP (trillions of 2004 \$)

The MIT Joint Program on the Science and Policy of Global Change

OB

Energy Intensity by EPPA Region

Vehicle Stock

Vehicle Stock by EPPA Region

Land Use

Land Use by major group

Example of a regional Excel file

16 regions

USA EU Rest of Eurasia Canada Japan Aus. & N.Z. Russia China India Mexico Brazil

Middle East Africa Rest of Latin America Dynamic Asia Rest of Asia

Example of a regional Excel file

Economic Indicators	(bil 2005 \$)	2010	2015	2020	2025	2030	2035	2040	2045	2050
Consumption	(bil 2005 \$)	8,397	- 2557	10,000	11,249	13,383	5,170		19,329	21,848
GDP growth	(% / yr)	1.0	20	2.4	2.3	2.6	26		2.5	2.5
Population GDP per capita	(millions) (2005 \$)	310.4	43 000	46 464	50.154	55,115	60.787	66 865	73 638	403.1
	(,	,	,							,=
GHG Emissions	(14) (202)									
fossil	(IVILCO2)	5,549	5,534	5,205	4,870	4,871	4,871	4,871	4,871	4.872
industrial		52	57	61	65	70	75	80	86	91
CH4	(Mt)	31.8		31		ON	31.8	32.3	32.9	33.6
PFCs	(IVIT) (kt CF4)	1.16	1.03	0.93	0.86	0.81	0.75	0.72	0.69	0.68
SF6	(kt)	1.68	1.80	1.85	1.93	2.09	2.32	2.55	2.82	3.12
HFCs	(kt HFC-134a)	157	194	226	271	312	348	389	434	484
Total GHG emissions	(NIt CO2eq)	6,829	6,879	6,586	6,308	6,394	6,486	6,583	6,689	6,811
Primary Energy Use	(EJ)									
Coal		20.2	19.7	17.6	15.2	14.2	13.4	12.7	12.2	11.8
Gas		22.5	23.4	23.3		23.6	24.4	25.2	25.6	26.0
Nuclear		8.0		83	U.O	9.2	9.5	9.7	10.0	10.3
Hydro Denovembles (selen and wind)		2.7	2.8	2.9	3.1	3.2	3.2	3.4	3.5	3.7
Biofuels		3.0	3.4 1.6	2.2	4.2	2.5	2.6	2.6	2.7	2.7
Total primary energy use		84.6	85.5	82.8	79.9	80.8	80.9	81.9	83.0	84.2
Electricity Production	(T)M(b)									
Coal	(1000)	1,965	1,988	1,861	1,678	1,648	1,620	1.591	1,565	1,546
Oil		173	177	172	161	164	168	171	171	172
Gas		577	620					a la companya de la c		1,086
Hydro		280	24	30	38	3 22				378
Renewables (solar and wind)		307	346	388	434	462	497	534	576	623
Total electricity		4,116	4,264	4,271	4,201	4,324	4,461	4,595	4,726	4,857
Transportation										
Number of vehicles	(millions)	208	222	233	244	258	272	287	300	313
Miles per gallon realized on-road	(trillions)	2.49			2.92	3.09		3.43	3,59	3.75
average	(mpg)	20.7		2.8	22 6	2 3	14.0	2	25 0	25.5
Oil consumption for transport	(bil gallons)	120.2	125.5	128.1	129.0	132.4	136.1	139.9	143.5	146.7
Land Use	(billion Ha)									
Cropland	. ,	181.9	184.0	186.5	188.2	190.9	198.4	202.5	206.2	209.5
Biofuels		17.3	21.7	25.2	25.3	24.3	16.9	15.9	14.8	13.7
Managed forest		54.8	17	4 6	39.9	37.4	35.1	32.7	30.7	29.0
Natural grassland		85.6	L A 5 B	8.6	85.6	85.6	85.6	85.6	85.6	85.6
Natural forest		323.6	324.0	324.4	324.7	324.9	325.1	325.2	325.3	325.4
Other		119.6	119.6	119.6	119.6	119.6	119.6	119.6	119.6	119.6
Air Pollutant Emissions	(Tg)									
SO2		7.78	6.80	5.66	4.72	4.22	3.81	3.44	3.12	2.84
Ammonia		3.23	3.34	3.44	9.76	9.75 3.64	3.87	9.95 4.08	4.32	4.59
Volatile organic compounds		9.46			9.61		10.3	1 .8		11.52
Black carbon		0.23		0.79	0.1B		0.15			0.14
Carbon monoxide		45.39	45.00	43.77	42.11	42.67	43.60	44.52	45.49	46.59

Climate Sensitivity

G

OB

Temperature Increase

The MIT Joint Program on the Science and Policy of Global Change

Ocean Acidity

• A decrease of 1 in pH scale corresponds to a factor of 10 increase in acidity.

Regional Temperature Change

OA

ÍGE

Regional Precipitation Change

Currently the average global precipitation is about 3 mm/day

Regional Ocean Acidity

2011-2020 MEAN

CHANGES IN pH FROM THE 2001-2010 MEAN LOW CLIMATE SENSITIVITY MEDIAN CLIMATE SENSITIVITY HIGH CLIMATE SENSITIVITY

Major Points

Temperature increases are substantial.

Most emissions growth is in developing regions.

Emissions in developed regions are flat, so a smaller lever to further impact global emissions.

Transition to alternative energy is starting in developed countries and China, but the Copenhagen targets will not complete it.

Vehicle growth is substantial in developing regions.

Land emissions are important.

A lot more work is needed if the world wants to avoid substantial climate change.

Thanks are due:

Henry Jacoby Sergey Paltsev Valerie Karplus **Erwan Monier** Andrei Sokolov **Tony Smith-Grieco** Ioanna Karkatsouli Adam Schlosser Angelo Gurgel Yongxia Cai Jeff Scott Stephanie Dutkiewicz

Frances Goldstein

The MIT Joint Program on the Science and Policy of Global Change

- 1. Thank you for joining us today at the second in the MIT Joint Program Sponsors Webinar series.
- 2. At the conclusion of the Webinar, online attendees will be presented with a brief survey. We hope that you will take a few minutes to provide feedback on today's session and make suggestions for future webinar topics. For those participating by telephone only, we welcome your comments at any time to Frances Goldstein by phone (+1.617.253.2682) or email (fkg@mit.edu).
- 3. Today's webinar has been recorded, and will be available in our webinar archive in the 'Sponsors Only" section of the Joint Program website, at:

http://globalchange.mit.edu/sponsors/sponsorsonly/webinars.html (Click on the "Archived webinars" tab)

4. The next webinar in the series will be:

Date: January (date TBD), 2012 Time: 10:30 a.m. - 12:00 p.m. EST Title: TBD Presenter: TBD

> We do hope you hold this date on your calendar and plan to attend. Details will be sent as we move closer to the event.

