Vehicle fuel economy standards: A global policy update and implications

Valerie J. Karplus JP Sponsors Webinar March 20, 2014

This presentation

United States: Fuel economy regulations and other measures

- Light-duty vehicles account for ~17% of CO₂ emissions in the United States (EPA, 2012).
- Fuel economy/per-mile emissions standards for cars and light-duty trucks (manufacturer sales-weighted average)
 - 2012-2016: 250 g/mile (35.5 mpg)*
 - 2017-2025: 163 g/mile (54.5 mpg)*
- **Gas Guzzler Tax** imposed only on cars (not minivans, trucks, or SUVs) with low fuel economy
- Tax credits for PHEVs, EVs
 - Evidence suggests that HEVs and short-range PHEVs may offer greatest benefits (Michalek et al., 2011)
- Medium- and heavy-duty vehicle fuel economy/per-mile emissions regulations (2011)
- Zero-emissions Vehicles mandates (California and 9 other states)
- Renewable fuel standards

*If achieved through fuel economy alone.

Fuel economy in the United States has been gradually rising

Month-Year

Shows on-road fuel economy*

Michael Sivak and Brandon Schoettle University of Michigan Transportation Research Institute

*Based on "window-sticker" ratings published in the EPA fuel economy guide.

Zero-emissions vehicle mandate is imposed on top of the national fuel economy program

■ ZEV Floor ■ TZEV, Type 0 ZEVs, or NEVs ■ AT PZEVs ■ PZEVs

ZEV Credit Percentage Requirement for

Each Manufacturer

European Union: Passenger vehicle per-mile CO₂ regulation

- Passenger cars are responsible for about 12% of CO₂ emissions in the EU.
- Vehicle CO₂ emissions controls introduced in 2009 (DG Clima).
- Latest emissions rules:

Passenger cars:

- 2015: 147 g CO₂/km for all manufacturers combined (weight adjusted)
- 2020: 95 g CO₂/km (95% of vehicles)
- 2021: 95 g CO₂/km (100% of vehicles)

Vans:

2020: 147 g CO₂/km for all manufacturers combined

PASSENGER CARS

Source: ICCT, 2014.

On average gasoline prices in the EU are twice the level of prices in the United States

Germany

United States

Unaffordability: Portion of a day's wages needed to buy a gallon of gas. **Income spent:** Portion of annual income spent on gas purchases. Data for Q3 2013.

Source: Bloomberg, 2014.

Mainland China

- Subsidies to for vehicles that outperform current Phase III standards (MIIT, 2014).
- Subsidies for PHEVs/EVs based on vehicle range (MOST and MIIT, 2014).

A limit of 5.0L/100 km has been proposed for 2020 (Phase IV) (January 2014).

Per-mile CO₂ emissions standards by region

Source: ICCT, 2013

Future of global fuel economy policy: Transatlantic or G20 harmonization?

Framing Questions: How to think about the combined global impact of fuel economy standards?

• Considerations:

- How will higher passenger vehicle efficiency affect fuel use and prices?
- By how much will vehicle cost change due to efficiency improvements? How will consumer vehicle demand react?
- Considering both direct and indirect effects of policy, what is the energy, CO₂ emissions and economic impact?
 - Rebound and leakage effects.
 - Effects of policy cost on broader economy *welfare effects*

• Our approach:

 Uses a carefully calibrated CGE model with a disaggregated passenger vehicle sector to investigate energy, emissions, price, and sensitivities to mobility demand assumptions.

The MIT EPPA model is used to simulate the impact of fuel economy standards

		Technology & Fleet Detail		Sector coverage & macro-level feedbacks		
Author	Method	Includes advanced vehicle technologies and fuels	Fleet turnover – vehicle sales and scrap	Economy-wide coverage of energy use	Macro- economic feedbacks to income and prices	Fuel economy responds endogenously to prices
Bandivadekar et al., 2008	Fleet modeling / scenarios	х	х			
Yang et al., 2008	Fleet modeling / scenarios	х	x			
Greene & Plotkin, 2011	Fleet modeling / scenarios	х	х			
Morrow et al., 2010	NEMS model (sector-specific models ties to a macro-model)	х	~	x	~	
Schafer & Jacoby, 2006	Coupled CGE, MARKAL, mode share models	~		х	х	~
Karplus, 2011	CGE model	X	X	X	X	X

 \sim - indicates that the issue is partially addressed.

MIT EPPA model is used to simulate the impact of fuel economy standards

The MIT Emissions Prediction and Policy Analysis Model

- Multi-sector, multi-regional computable general equilibrium model
- Technologies compete based on cost
- Prices are determined inside the model
- Can apply policies, e.g. cap-and-trade, fuel tax

Europe Eastern Euro

Russia-plus

Middle East

Rest of Asia

Latin America

Passenger vehicle transport in a CGE framework: Three main developments

(1) Travel demand trends

- Empirically-based relationship: Income and travel demand
- Trends in developed / developing countries

(2) Fuel efficiency improvement opportunities

- New vehicle efficiency increases with fuel price
- New and used vehicles represented explicitly

(3) Alternative fuel vehicles and fuels

- Alternative fuel vehicles : HEV, PHEV, EV, CNGV, H2FC, FF
- Alternatives fuels : electricity, hydrogen, natural gas, biofuels

Modeling Approach: Household-owned passenger vehicles

Initial year new New vehicle $\longrightarrow FES_t \leq A_t \left(Q_{f,t_0} / Q_{VKT,t_0} \right) \leftarrow$ vehicle fuel fuel economy in economy year t

Global demand for refined oil use in passenger vehicles continues to increase through 2050 with policy

• Model results: Current FES policies would reduce global refined oil use by around 16% in 2050 relative to baseline—much of the reduction comes from the developed countries (lower red lines).

Current fuel economy policies results in downward pressure on global refined oil prices

Current fuel economy standards reduce passenger vehicle refined oil use most in the advanced industrialized countries

(reduction shown in percent for each regional group)

China and India contribute a growing share of total passenger vehicle refined oil use

Fuel economy policy is applied in this simulation. Includes light-duty passenger vehicle fuel use only.

FE standards are not very effective at reducing global CO₂ emissions – only 4% reduction under current policy

Impact on one non-target sector: Refined oil use by road vehicles not classified as passenger vehicles

Impact on one non-target sector: Refined oil use by road vehicles not classified as passenger vehicles

Assumes all improvements come from off-the-shelf technologies, no "loopholes".

Recent Joint Program United States Climate Policy Comparison:

New vehicle CO₂ limits is an expensive climate change policy!

Source: Rausch and Karplus, 2014. JP Report.

Impacts of the United States Fuel Economy Program *considering general equilibrium effects* Not shown: Economy-wide consumption loss in 2025 is around 5%.

If fuel economy standards are such an expensive way to reduce CO₂ emissions, why are they so widespread?

So far, we have seen politics win out over economics.

Takeaways

- Fuel economy/per-mile CO₂ emissions standards are now well established as part of climate policy in many nations.
- Current passenger vehicle fuel economy standards will have limited impact on energy security and global climate.
 - Current announced fuel economy standards reduces global passenger vehicle fuel use by 16% in 2050.
 - Globally, CO_2 emissions are reduced by 4% in 2050.
- Tough fuel economy requirements in the U.S. and Europe may subsidize use overseas.
- Making hidden costs more visible could strengthen support for policy alternatives.
 - Point out economy-wide indirect effects (leakage and rebound).
 - Raise awareness of global fuel market context in national policy process.

Thank you for your attention.

Source: The New Yorker/CondeNast Collection.

