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Overview of week

BASICS OF CLIMATE SCIENCE
E51-315 - 5:30pm—6:30pm - B.B. Cael

Given the hype and controversy surrounding climate change, we'll start with the basics, surveying the history &
fundamentals of climate science, radiation and greenhouse gases, the carbon cycle, and the earth’s heat storage.

CLIMATE POLICY 107: EVALUATING CLIMATE POLICY OPTIONS
E51-315 - 6:30pm—7:30pm - Samantha Houston and Katie Mulvaney

How can the world respond to what science reveals about climate change? To understand options for climate
policy, we'll go over basic economic concepts, climate policy instruments, and tools for evaluating policy.




Overview of week

MECHANISMS OF CLIMATE CHANGE
E51-315 - 5:30pm—6:30pm - Mara Freilich

There are many feedback systems and possible tipping points in the climate system; this nonlinearity makes
prediction difficult. We will discuss mechanisms of the climate system; Earth system models; the role of clouds,
oceans, land cover, and biology in the climate system; and how extreme weather relates to climate change.

CLIMATE POLICY 102: CLIMATE GOVERNANCE
E51-315 - 6:3OPM—7:30PM Samantha Houston and Katie Mulvaney

Climate policy can be enacted at both the international and the domestic level. We will go over the history and
status of international climate governance (including the 2015 Paris Climate Negotiations), as well as national

forums for climate governance.
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CLIMATE CHANGE & UNCERTAINTY
E51-315 - 5:30pm—6:30pm - Megan Lickley

In this session we will discuss the sources of uncertainty in climate projections, the range of possible future
outcomes, and how that translates into uncertainty in climate impacts both globally and locally. We will
cover topics such as the rate of warming, sea level rise, storm activity, and precipitation changes and how

uncertainty in these changes make it more challenging to adequately prepare and adapt to climate change.

CLIMATE POLICY IN ACTION

E51-315 - 6:30pm—7:30pm - Interactive Panel Discussion

Local climate science and policy leaders discuss implementing creative solutions to climate change, from
community activism to policy at the local and national scale.
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WORLD CLIMATE NEGOTIATIONS SIMULATION
E51-315 - 5:30pm—7:30pm - Interactive Group Project

Designed as part of Climate Interactive’s World Climate Project, this activity provides participants with some

insight into the challenges of coming to a global climate agreement. Participant groups will represent regions
of the world with various goals for mitigation, adaptation, and economic growth, then participate in a mock
international climate negotiation. The computer simulation C-ROADS will be used to examine the outcomes of
the mock negotiation in real-time.
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Local climate science and policy leaders discuss implementing creative solutions to climate change, from
community activism to policy at the local and national scale.
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WORLD CLIMATE NEGOTIATIONS SIMULATION
E51-315 - 5:30pm—7:30pm - Interactive Group Project

Designed as part of Climate Interactive’s World Climate Project, this activity provides participants with some
insight into the challenges of coming to a global climate agreement. Participant groups will represent regions
of the world with various goals for mitigation, adaptation, and economic growth, then participate in a mock
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Local climate science and policy leaders discuss implementing creative solutions to climate change, from
community activism to policy at the local and national scale.
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Overview of today

* History of Climate Science
 Radiation & Greenhouse Gases

e Carbon Cycle

 Heat Storage

Intended Learning Outcome:

Be comfortable discussing the fundamental

scientific principles which describe how the
climate system can change
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What is ‘Climate’?

. The weather outside today
. The difference between the weather

here & the weather in Singapore

. The average of the weather here over

the last year

. The average & variability of the weather

here over the last 30 years

. The range In weather across the history

of the earth
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What is ‘Climate’?

The statistics [mean & variability| of
weather over decadal timescales

What is ‘Climate Change’™

Changes in the statistics [mean & variability]
of weather over decadal timescales -
typical states’ of the earth are different



What is ‘Climate Change’
for the world as we know It?

Permian-Triassic

(250 million years ago)

—d] -
7 LN

-~y

M

R ———

o

S

Paleocene-Eocene Thermal Maximum

(55 million years ago)

ST /N NN TN
A BRSO

A TN Wy

@ -\

R\ \/ ab .
N

E— S z



What ‘Impacts of Climate
Change’ do we hear about”



A Brief History of Climate Science

e 1824: Joseph Fourier describes the greenhouse eftect - ‘the
temperature [of earth] can be augmented by the interposition of the
atmosphere’
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A Briet History of Climate Science

e 1824: Joseph Fourier describes the greenhouse effect - ‘the

temperature [of earth] can be augmented by the interposition of the
atmosphere’

 1861: John Tyndall shows water vapor & other gases cause the
greenhouse eftect

e 1896: Svante Arhenius concludes industrial coal burning will
enhance the greenhouse effect: a few °C for a doubling of CO?2
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A Briet History of Climate Science

e 1824: Joseph Fourier describes the greenhouse effect - ‘the
temperature [of earth] can be augmented by the interposition of the
atmosphere’

 1861: John Tyndall shows water vapor & other gases cause the
greenhouse eftect

e 1896: Svante Arhenius concludes industrial coal burning will
enhance the greenhouse eftect: a few °C for a doubling of CO?2

« 1938: Guy Callendar shows temperatures had risen over the
previous century

 1957: Roger Revelle: ‘human beings are now carrying out a large
scale geophysical experiment...

e 1989: Margaret Thatcher calls for a global treaty on climate Change

e [Lots more from there .




Energy Balance




Black Body Radiation
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Black Body Radiation + Absorption

Radiation Transmitted by the Atmosphere
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So a Greenhouse Gas is What?
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GhG Bookkeeping

100
75
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25
0 Concentration
- . in 1994
Combination of: —
1.Concentration 358 000 ppb
2.Lifetime
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4.Available photons, location..
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Nitrous oxide (N,O) 120 310
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Carbon

RECENT MONTHLY MEAN CO, AT MAUNA LOA
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Carbon Cycle
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Billion tonnes carbon per year (Gt C / yr)

Carbon Cycle is Slow

Idealised CO, emission profiles
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Energy (ZJ)
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e.g. Warming ‘Hiatus’

Long-Term Warming and Short-Term Variation
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Putting It logether

Energy balance,
augmented by greenhouse gases,
neating the atmosphere,

though the ocean is the reservaolr.
Definitely not the whole story!

Stick around for the other
talks to learn about:

Elements:

Radiation Some key interactions

A handful of gases The uncertainty that arises
Heat What we do about it

Complexity is in their interactions



Resources // Questions?

E

INTERGOVERNMENTAL PANEL ON
climate change




