Economic Impacts of Climate Change

Jennifer Morris

MIT Joint Program on the Science and Policy of Global Change

MIT Global Change Forum XLVI

March 28-29, 2024

With slide contributions from Steve Rose (EPRI); and based on work with Angelo Gurgel, Sergey Paltsev, Brent Boehlert (lec), Ken Strzepek, Niven Winchester (AUT), Mei Yuan, Steve Rose

MAIN MESSAGE 1:

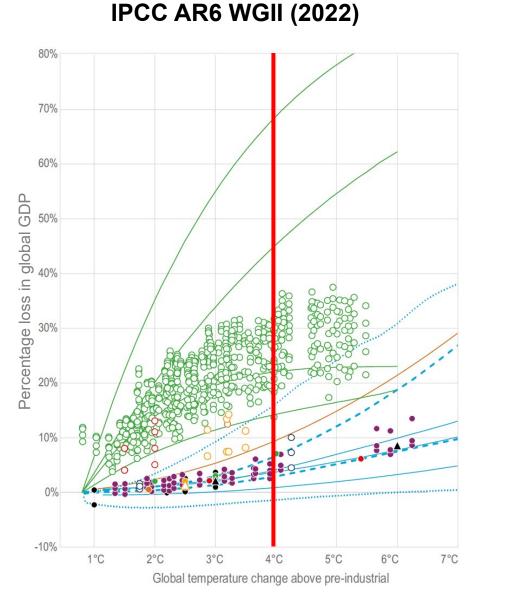
We do not have robust, comprehensive estimates of global economic impacts of climate change

Despite impressive recent advances, many scientific challenges remain

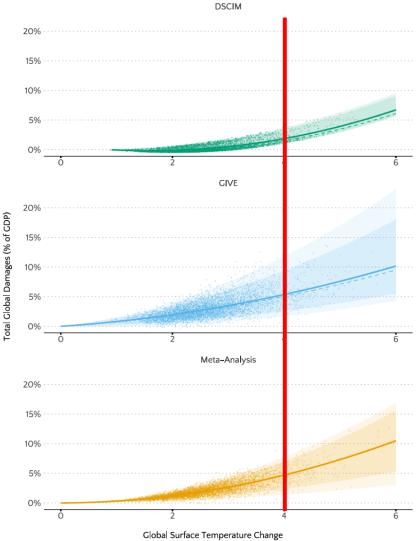
Estimates of Global Economic Impacts of Climate Change

(a) Statistical modeling

OKahn et al. (2019)
OKalkuhl & Wenz (2020)
OBurke et al. (2018) - SR
OPretis et al. (2018)
OMaddison & Rehdanz (2011)
—Burke et al. (2015)

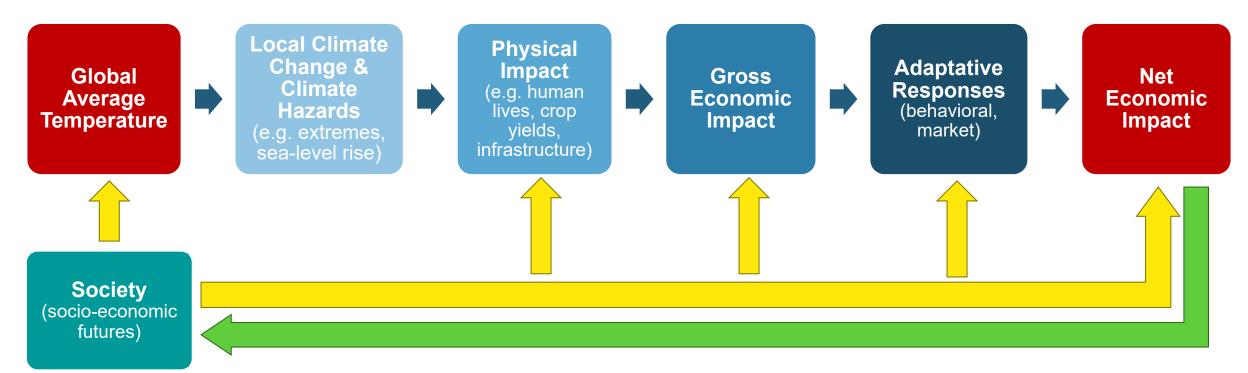

(c) Meta analyses ▲ Nordhaus & Moffat (2017)/Nordhaus (2016) ▲ Tol (2018) — Howard & Sterner (2017)

(b) Structural modeling


- Takakura et al. (2019)
- Dellink, Lanzi & Chateau (2019)
- Kompas et al (2018)
- Roson & van der Mensbrugghe (2012)
- Bosello et al. (2012)
- -Rose et al. (2017)
- Rose et al. (2017) FUND 5th & 95th
- ----Rose et al. (2017) PAGE 5th & 95th

(d) AR5 various methods

AR5


USEPA (2023)

Relative to 1850–1900 (°C)

Figure 2.3.2: Annual Consumption Loss as a Fraction of Global GDP in 2100 due to an Increase in Annual Global Mean Surface Temperature in the three Damage Modules

Estimating of Global Economic Impacts of Climate Change

Studies vary significantly in if/how each piece is represented

Methods:

- -Statistical Analysis
- -Process/Structural Modeling
- -Meta Analysis

Scopes: -Geographic: global, regional, local -Impacts: aggregates, by impact category -Economic: simple macro, multi-sector CGE

Statistical

Observational relationships

Strengths:

- Based on observations
- Reflects net outcomes

Concerns:

- Constrained by available data
- Out-of-sample extrapolations (economic and climate)
- Estimating weather (not climate) relationships
- Model specification sensitivity;
- Impact and response mechanisms not explicit

[e.g., Auffhammer (2018), Dell et al. (2014), Burke et al. (2015), Hsiang et al. (2017), Pretis et al. (2018), Kahn et al. (2019)]

Older Approaches:

- Pure Time Series Comparisons: measure short-run response to weather, not long-run response to climate
- Cross Sectional Comparisons: good at long-run response to climate, but confounding effects hard to tease out
 - > Panel "Weather" Models: weather not climate

Newer Approaches

- Long Differences: great but need tons of data
- Panel "Adaptation" Models: response as function of not just climate but also income

Adapted from Max Auffhammer

<u>Statistical</u> Observational relationships

Strengths:

- Based on observations
- Reflects net outcomes

Concerns:

- Constrained by available data
- Out-of-sample extrapolations (economic and climate)
- Estimating weather (not climate) relationships
- Model specification sensitivity;
- Impact and response mechanisms not explicit

[e.g., Auffhammer (2018), Dell et al. (2014), Burke et al. (2015), Hsiang et al. (2017), Pretis et al. (2018), Kahn et al. (2019)]

Process/Structural

Process-based modeling of components

Strengths:

- Projects future process or economic conditions and responses;
- Evaluates how impacts enter and transmit
- Models adaptation responses
- Explicit and interpretable

Concerns:

- Can be computationally intensive
- Can omit relevant impact channels, interactions and market dynamics
- Can lack empirical basis for calibration / observational grounding
- Difficult to do for global analysis

[e.g., Anthoff and Tol (2014); Sieg et al. (2019); Narita et al. (2020); Darwin and Tol (2001), Reilly et al. (2007), Roson and Van der Mensbrugghe (2012), Anthoff and Tol (2014), Dellink et al. (2019), Takakura et al. (2019)] <u>Meta</u> Estimating functions treating literature as data points

Strengths:

 Accounts for estimates across literature

Concerns:

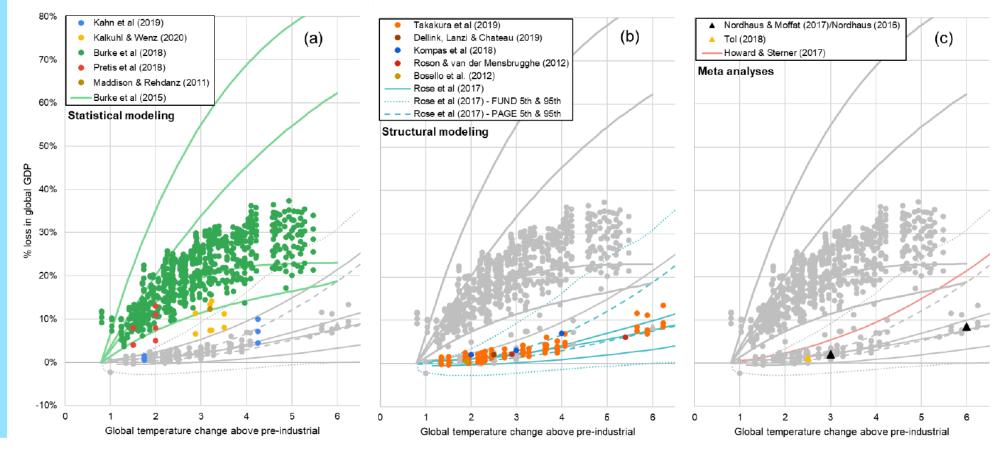
- Limited assessment of data
- Limited consideration of methodological differences and details

[e.g., Howard and Sterner (2017), Nordhaus and Moffat (2017), Tol (2018, 2024)]

See IPCC AR6 WGII for references

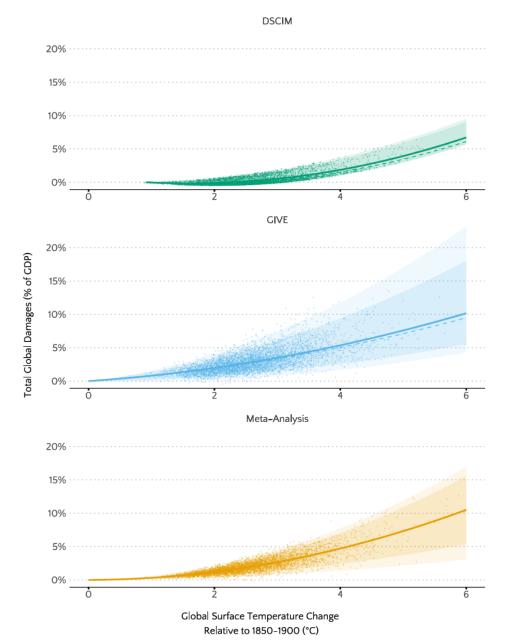
Slide adapted from Steve Rose (EPRI)

Issue: Incomparability of Methods


IPCC assessed global estimates and found methodological differences cannot be ignored

"The wide range, and the lack of comparability between methodologies, does not allow for identification of a robust range of estimates with confidence (high confidence)"

"Evaluating and reconciling differences in methodologies is a research priority for facilitating use of the lines of evidence (high confidence)"


NASEM (2017) also raised this comparability issue

Global aggregate economic impact estimates by global warming level (% global GDP loss, all estimates from a paper have the same color)

Source: Rose, S, D Diaz, T Carleton, L Drouet, C Guivarch, A Méjean, F Piontek. Cross-Working Group Box ECONOMIC | Estimating Global Economic Impacts from Climate Change. In Climate Change 2022: Climate Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the IPCC, Chapter 16 (O'Neill et al, Key Risks Across Sectors and Regions), <u>https://www.ipcc.ch/report/ar6/wq2/</u>. Slide credit: Steve Rose (EPRI)

Same issue in USEPA (2023) Social Cost of GHGs

DSCIM (Climate Impacts Lab): sum of 5 impact categories, primarily based on separate <u>statistical</u> modeling

GIVE (Resources for the Future): sum of 4 impacts categories, each based on separate <u>structural</u> modeling

Meta-Analysis (Howard and Sterner, 2017): <u>meta-analysis</u> of global aggregate functions in previous literature

8

Slide adapted from Steve Rose (EPRI)

Issue: Limited Coverage of Climate Impacts

- Temperature-Related Mortality
- Labor Productivity
- Agricultural Crop Productivity
- Energy Consumption
- Coastal Infrastructure (Sea Level Rise)
- Rainfed crop productivity
- Irrigated crop productivity
- Livestock productivity
- Water availability
- Water quality
- Hydropower production
- Marine fisheries
- Erosion
- Forest cover changes
- Reservoir sedimentation
- Spread of disease
- Tourism
- Education
- Air quality

Suggested read: Rising, J., Tedesco, M., Piontek, F. *et al.* (2022). The missing risks of climate change. *Nature* 610, 643–651. https://doi.org/10.1038/s41586-022-05243-6

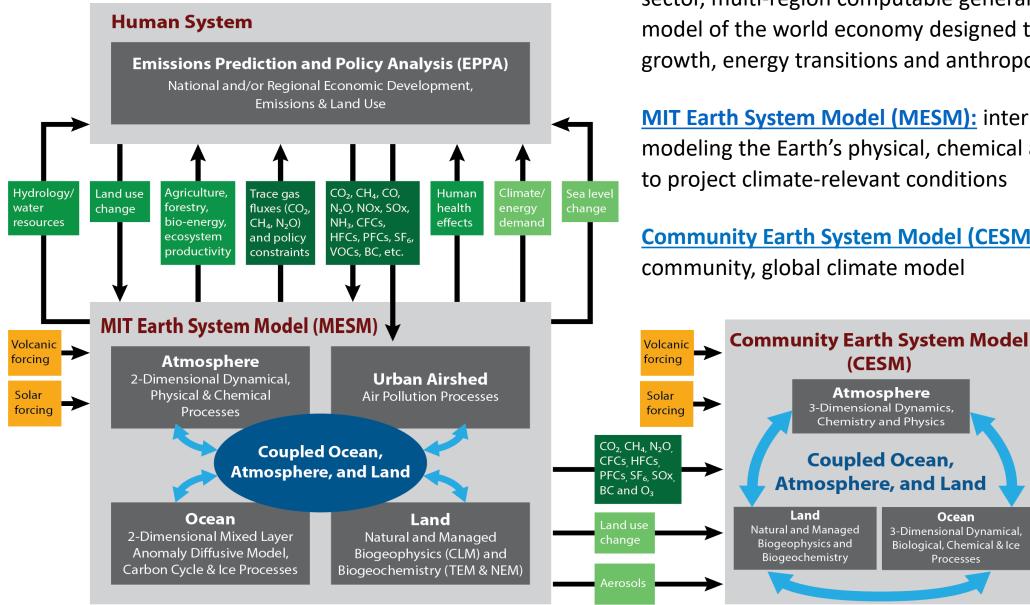
- Inland/urban flooding
- Road infrastructure
- Bridge infrastructure
- Rail infrastructure
- Grid infrastructure
- Tropical storms/hurricanes
- Subsidence
- Wildfire
- Ecosystem services & recreation
- Species loss / biodiversity
- Crime & conflict
- Mass migration
- Extreme events
- <u>Tipping Points</u>

Issue: Incomplete Assessment of Individual Impacts

Example: Labor Impacts

- Labor supply losses due to mortalities
- Medical expenditure increases due to work-related mortalities and morbidity
- Lost working hours due to morbidity
- Labor productivity decreases due to heat/cold stress
- Lost labor time due to disruptions (e.g. from extreme events like flooding, wildfires, hurricanes)

→ Due to insufficient data or methodological limitations, most studies include only a subset of these impact channels, often focusing on lost work hours or lost productivity due to <u>heat</u>



Scientific Challenges

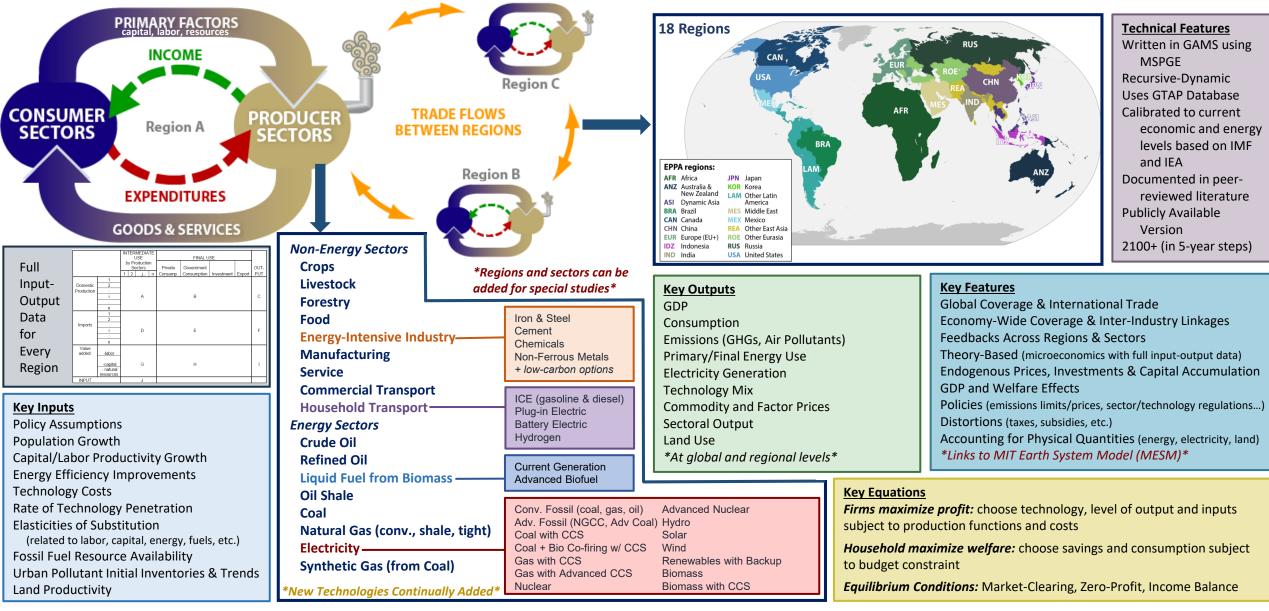
- Comparability of different methodologies and results
- Assessment & incorporation of alternative estimates within a category
- Accounting for more climate impacts
 - Sufficiency of data, scientific understanding (e.g. physical system dynamics)
- Accounting for uncertainty
- Accounting for potential adaptation
- Aggregating across categories and regions
 - Interactions, feedbacks, spatial heterogeneity
 - Consistency across modules (projections of climate and society)
- Considering equity, justice and risk
 - Distribution of impacts across space, time, social groups

MIT Joint Program Efforts on Economic Impacts of Climate Change

MIT Integrated Global System Modeling (IGSM) Framework

Economic Projection and Policy Analysis (EPPA) model: multisector, multi-region computable general equilibrium (CGE) model of the world economy designed to project economic growth, energy transitions and anthropogenic emissions

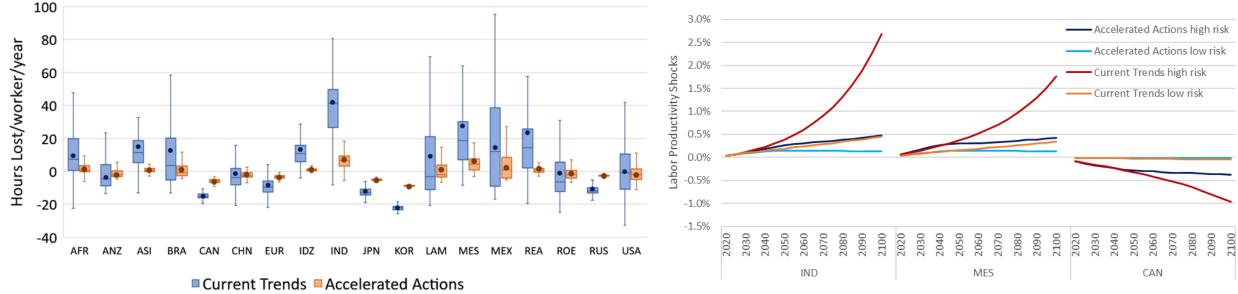
MIT Earth System Model (MESM): intermediate complexity, modeling the Earth's physical, chemical and biological systems to project climate-relevant conditions


Ocean

Processes

Community Earth System Model (CESM): fully-coupled, community, global climate model

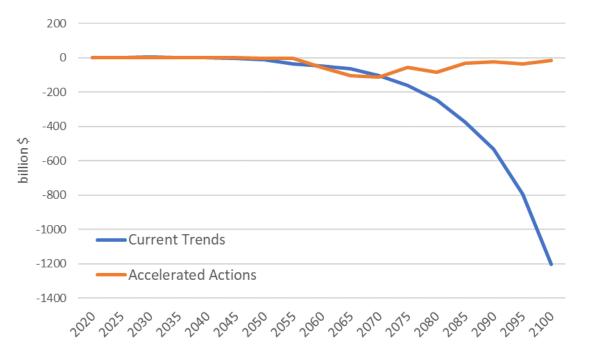
MIT Economic Projection and Policy Analysis (EPPA) Model


Multi-sector, multi-region computable general equilibrium (CGE) model of the world economy for energy, economy and emissions projections

https://globalchange.mit.edu/research/research-tools/human-system-model

Exploring Climate Impacts on the Economy in EPPA: Labor

- Climate Impact Lab: response functions for temperature impacts on labor (hours worked) for ~24,000 administrative units in the world, for two classes of labor (high-risk workers and low-risk workers) (Rode *et al.*, 2022)
- Drove functions with temperature and GDP/capita projections from our 2023 Outlook scenarios
- Aggregated labor impacts to EPPA's 18 regions by taking a population-weighted average of administrative units
- Imposed regional impacts in EPPA as labor productivity shocks for each scenario to find the economic implications



Population-Weighted Regional Average

Direct impact of climate on labor of high-risk workers by region in 2100, in terms of hours of labor lost per worker per year (positive values = hours lost; negative values = hours gained). Box and whisker plots reflect the variation across the administrative units within an EPPA region. Points reflect the population-weighted average hours lost across administrative units in each EPPA region.

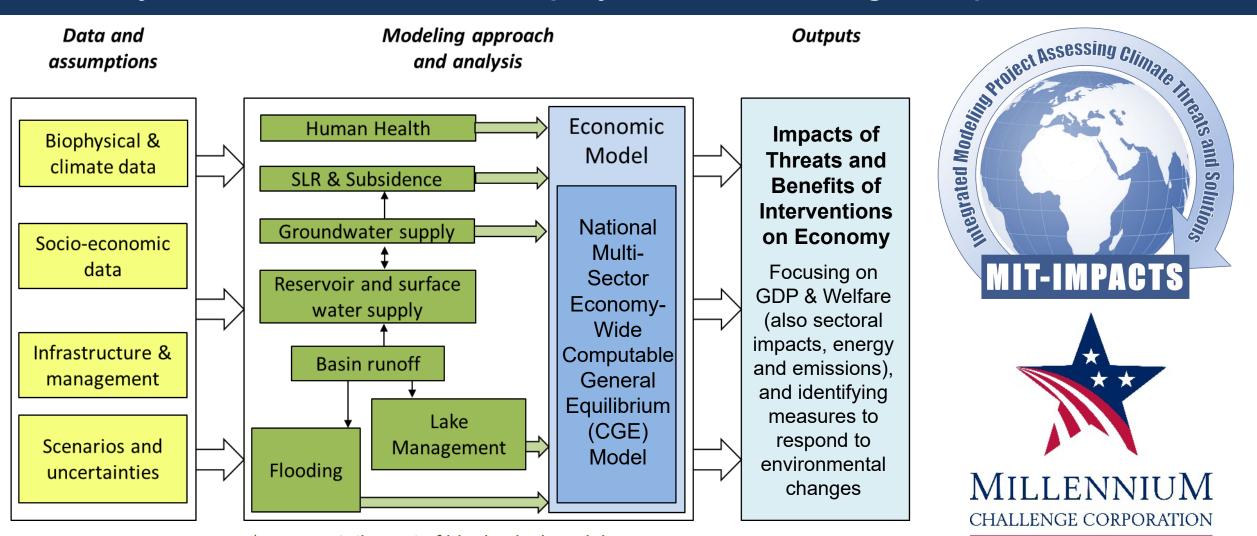
Regional differences in labor productivity impacts High-risk workers face non-linear labor impacts in response to temperature: temperature tipping points at which high-risk workers face exponential decreases in hours worked.

Exploring Climate Impacts on the Economy in EPPA: Labor

Global changes in GDP due to climate impacts on labor

Global economic impact small through mid-century, then grows rapidly through 2100 in Current Trends (linear temperature increase but exponential labor losses and economic impact).

Impacts can be largely avoided through strong mitigation -\$1 billion vs. \$1.2 trillion in 2100


GDP impacts vary significantly by region

	Current	Accelerated		
	Trends	Actions		
IND	-704	-98		
MES	-304	-61		
AFR	-152	-7		
REA	-101	-14		
BRA	-99	-19		
ASI	-99	-25		
LAM	-88	-12		
MEX	-75	-23		
USA	-50	65		
IDZ	-44	4		
ROE	-2	8		
ANZ	1	4		
RUS	16	-1		
CAN	38	20		
JPN	43	17		
CHN	56	4		
KOR	69	21		
EUR	294	103		

Tropical regions generally face more negative impacts, while more temperate and colder regions can see positive impacts

EPA FrEDI estimates \$51 billion in USA at end of century

Country-Level Economic-Biophysical Modeling: "Impact Channels"

*representative set of biophysical models

Impact Channels = specific <u>pathways</u> by which biophysical changes and adaptive measures link to changes in the economy-wide model

INDUSTRIAL ECONOMICS, INCORPORATED

UNITED STATES OF AMERICA

Indonesia Example: Channel for Flooding

1) Spec	cify Scen	Without Adaptation	With Adaptation		
				Continued Land Degradation	No Further Land Degradation
	Low Threat	Mean	Baseline Precipitation		
	Impacts	Flooding	Future Precipitation		
	High Threat		Baseline Precipitation		
Impacts		Flooding	Future Precipitation		

- 2) Specify impact channels and CGE hooks:
 - (1) Capital: decreases in sector-specific capital and aggregate capital
 - (2) Labor: decreased labor productivity

3) Estimate magnitudes of CGE model shocks for each impact channel:

- Flood runoff models for 752 drainage basins in Indonesia to estimate flood peak magnitudes considering land use change and climate change
- Processed into infrastructure damages using damage functions for transportation sector developed by Wright et al. (2012), and on labor productivity by Hu et al. (2019)
- Impacts aggregated to 514 districts using spatial averaging, and then from districts to national level based on capital density (capital effects) and population (labor productivity)
- 4) Implement the shocks in CGE model
- 5) Analyze impacts on GDP

Example: Economic Costs of Flooding

INPUT INTO CGE (from Biophysical Modeling) Values of <u>CAPITAL</u> Shocks from Flooding for a Scenario of 50-Year Flooding

Economic Sector	Abbreviation	Baseline Precip, Current Land Degradation	Baseline Precip, 2030 Land Degradation	Baseline Precip, 2045 Land Degradation	2030 Precip, Current Land Degradation	2030 Precip, 2030 Land Degradation	2045 Precip, Current Land Degradation	2045 Precip, 2045 Land Degradation
Paddy Rice	pdr	1.97%	2.11%	2.31%	3.28%	3.42%	3.39%	3.51%
Refined Oil Production	oil	0.01%	0.02%	0.02%	0.02%	0.02%	0.02%	0.02%
Natural Gas Production	gas	0.01%	0.02%	0.02%	0.02%	0.02%	0.02%	0.02%
Non-Metallic Minerals: cement, pla	nmm	0.08%	0.08%	0.08%	0.12%	0.12%	0.12%	0.13%
Ferrous metals	i_s	0.08%	0.08%	0.08%	0.12%	0.12%	0.12%	0.13%
Metals nec	nfm	0.08%	0.08%	0.08%	0.12%	0.12%	0.12%	0.13%
Metal products	fmp	0.08%	0.08%	0.08%	0.12%	0.12%	0.12%	0.13%
Motor vehicles and parts	mvh	0.08%	0.08%	0.08%	0.12%	0.12%	0.12%	0.13%
Transmissoin and distribution	TnD	0.01%	0.02%	0.02%	0.02%	0.02%	0.02%	0.02%
Water	wtr	0.56%	0.60%	0.65%	0.91%	0.94%	0.93%	0.97%
Human Health and Social Work	hht	0.07%	0.07%	0.08%	0.11%	0.12%	0.12%	0.12%
Coal Production	COL	0.01%	0.02%	0.02%	0.02%	0.02%	0.02%	0.02%
Other mining	OMN	0.01%	0.01%	0.01%	0.01%	0.02%	0.01%	0.02%
Agriculture	AGR	1.97%	2.11%	2.31%	3.28%	3.42%	3.39%	3.51%
Crude Oil	CRU	0.01%	0.02%	0.02%	0.02%	0.02%	0.02%	0.02%
Food	FOOD	0.11%	0.12%	0.13%	0.19%	0.19%	0.19%	0.19%
Other manufacturing	MANF	0.57%	0.60%	0.65%	0.91%	0.96%	0.93%	0.99%
Chemical, rubber, plastic products	CRP	0.08%	0.08%	0.08%	0.12%	0.12%	0.12%	0.13%
Coal electricty	ecoa	0.01%	0.02%	0.02%	0.02%	0.02%	0.02%	0.02%
Gas electrcity	egas	0.01%	0.02%	0.02%	0.02%	0.02%	0.02%	0.02%
Hydro electricity	ehyd	0.01%	0.02%	0.02%	0.02%	0.02%	0.02%	0.02%
Oil electricity	eoil	0.01%	0.02%	0.02%	0.02%	0.02%	0.02%	0.02%
Other electricity	eoth	0.01%	0.02%	0.02%	0.02%	0.02%	0.02%	0.02%
Transportation	TRN	1.76%	1.76%	1.77%	2.29%	2.35%	2.35%	2.45%
Services	SER	0.58%	0.60%	0.64%	0.88%	0.91%	0.90%	0.92%

INPUT INTO CGE (from Biophysical Modeling) Values of Average Annual <u>LABOR PRODUCTIVITY</u> Loss Relative to Baseline for Flooding

Climate Change/Land Use Setting	Mean Flood	50-year Flood
Baseline Precip, Current Land Degradation	0.00%	2.66%
Baseline Precip, 2030 Land Degragation	0.02%	2.84%
Baseline Precip, 2045 Land Degradation	0.05%	3.09%
2030 Precip, 2030 Land Degragation	0.24%	4.27%
2030 Precip, 2030 Land Degragation	0.26%	4.36%
2045 Precip, Current Land Degragation	0.48%	4.51%
2045 Precip, 2045 Land Degradation	0.53%	4.59%

OUTPUT FROM CGE GDP Impacts of Flooding as Percent Deviations from the Base Case

			50-yr Flood Compared to:				
	Mean Flood		Mean Flood Base		50-yr Flood Base		
Setting	2030	2045	2030	2045	2030	2045	
JUST CAPITAL							
Baseline Precip, Baseline Land Degradation	0%	0%	-0.17%	-0.10%	0%	0%	
Baseline Precip, Changing Land Degradation	0.00%	0.00%	-0.18%	-0.11%	-0.01%	-0.01%	
Changing Precip, Baseline Land Degradation	-0.01%	-0.01%	-0.27%	-0.15%	-0.09%	-0.06%	
Changing Precip, Changing Land Degradation	-0.01%	-0.01%	-0.27%	-0.16%	-0.10%	-0.06%	
JUST LABOR							
Baseline Precip, Baseline Land Degradation	0%	0%	-0.83%	-0.51%	0%	0%	
Baseline Precip, Changing Land Degradation	-0.01%	-0.01%	-0.89%	-0.59%	-0.06%	-0.08%	
Changing Precip, Baseline Land Degradation	-0.07%	-0.09%	-1.35%	-0.87%	-0.51%	-0.36%	
Changing Precip, Changing Land Degradation	-0.08%	-0.10%	-1.38%	-0.89%	-0.54%	-0.38%	
CAPITAL AND LABOR							
Baseline Precip, Baseline Land Degradation	0%	0%	-1.01%	-0.61%	0%	0%	
Baseline Precip, Changing Land Degradation	-0.01%	-0.01%	-1.07%	-0.70%	-0.06%	-0.09%	
Changing Precip, Baseline Land Degradation	-0.08%	-0.10%	-1.62%	-1.03%	-0.61%	-0.42%	
Changing Precip, Changing Land Degradation	-0.09%	-0.11%	-1.65%	-1.05%	-0.64%	-0.44%	

Indonesia Example: Overall Impacts of Threats on GDP and Benefits of Action

		Impact on GDP vs. Base Case			Benefits of Action			
		Without	ī	With Action			-	
Threat	Scenario	2030	2045	2030	2045	2030	2045	
Development-Related Threats	5							
Inadequate WASH coverage	Full coverage by 2045	0%	0%	0.12%	0.64%	0.12%	0.64%	
Insufficient water storage	No Climate Change	-0.47%	-1.04%	0.26%	-0.23%	0.74%	0.82%	
Peatland and lowland development	Considering NDCs	1.70%	-0.53%					
Groundwater over-extraction	Low end subsidence	-0.77%	-1.01%	-0.25%	-0.49%	0.52%	0.52%	
	High end subsidence	-1.33%	-1.32%	-0.25%	-0.49%	1.08%	0.83%	
Climate-Change Driven Threat	Climate-Change Driven Threats							
Sea level rise	Median climate	-0.69%	-1.98%					
	High warming	-0.77%	-2.40%					
Flooding	Wet climate; mean	-0.09%	-0.11%	-0.08%	-0.10%	0.01%	0.01%	
	Wet climate; 50-yr	-1.65%	-1.05%	-1.62%	-1.03%	0.04%	0.02%	
Insufficient water storage	Dry climate	-0.93%	-2.50%	0.04%	-1.35%	0.97%	1.15%	
	Wet climate	-0.44%	-0.59%	0.32%	0.13%	0.77%	0.72%	

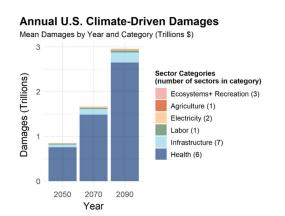
Framework can:

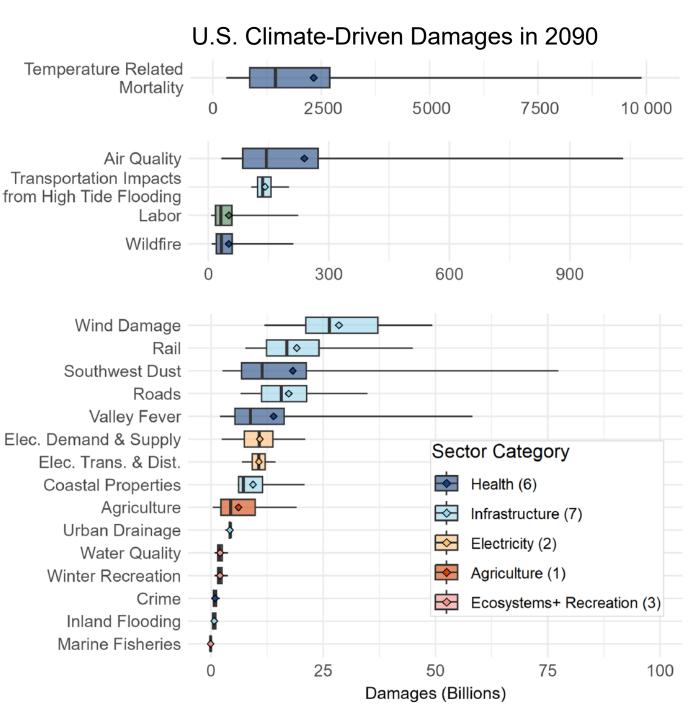
- Quantify/identify greatest threats to growth
- Quantify trade-offs of different policy and investment decisions

Impact Channels for this Partnership

N°	CHANNEL OF IMPACT	DESCRIPTION AND MACRO HOOK				
Wate	r, Agriculture, Energy, and La	ind Use				
1	Rainfed Crop production	Agricultural productivity shocks. Based on crop yield responses to water availability from monthly temperature and precipitation.				
2	Irrigated crops	Agricultural productivity shocks. Based on crop yield responses to water availability from monthly temperature and precipitation				
3	Water availability	Capital investments . Uses a water systems model to evaluate changes in water availability to municipal and industrial uses, and resulting implications for water supply infrastructure investments.				
4	Hydropower production	Hydropower shocks . Impacts on energy generation resulting from changes in river runoff. Requires a more involved modeling approach and a water systems model.				
5	Livestock production	Livestock productivity shocks . Based on relationships between temperature and livestock growth and death rates. Also assess rangeland production losses due to climate change.				
Huma	n Capital and Development					
6	Heat and labor productivity	Labor productivity shocks. Labor type-specific curves based on sectoral work intensities from temperature.				
7	Human health and labor supply	Labor supply shocks. Damage to total labor supply based on statistically modeled effects of temperature on the spread of disease, and the resulting losses in labor supply.				
8	Water supply and sanitation: Labor supply	Labor supply shocks. Water borne diseases negatively affect the economy by reducing labor supply/productivity.				
Infras	structure					
9	Inland flooding	Capital damages , considering floodplains, design flood events, and spatial distribution of capital. Precipitation events routed through the TR-20 model.				
10	Roads and bridges: Capital	Capital damages . Impacts to road and bridges infrastructure due to temperature, precipitation, and flooding effects across paved, gravel, and dirt roads.				
11	Roads and bridges: Labor	Labor disruptions. Impacts to road and bridges infrastructure due to temperature, precipitation, and flooding effects across paved, gravel, and dirt roads.				
12	Grid Infrastructure	Capital damages. Impacts of climate events to the infrastructure components of the electrical grid, including transmission and distribution lines, transformers, substations, and power poles.				
13	Sea level rise	Capital damages . Coastal flooding due to sea level rise. A reduced form approach using temperature and proxies (e.g., road density) to represent coastal capital.				

USREP-FrEDI


United States Environmental Protection Agency

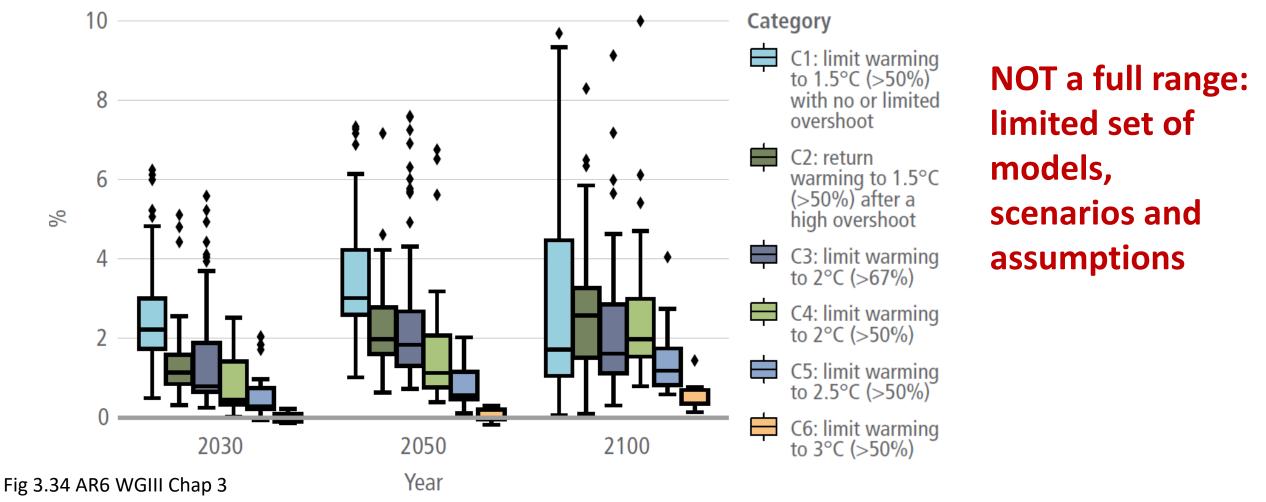


EPA's Framework for Evaluating Damages and Impacts (FrEDI)

 Draws on over 30 climate change impact models from peer-reviewed studies to develop relationships between mean surface temperature change and climate-driven impacts across 20 sectors within U.S. borders through the end of the 21st century

Incorporate these impacts into USREP, our state-level CGE model of the U.S.

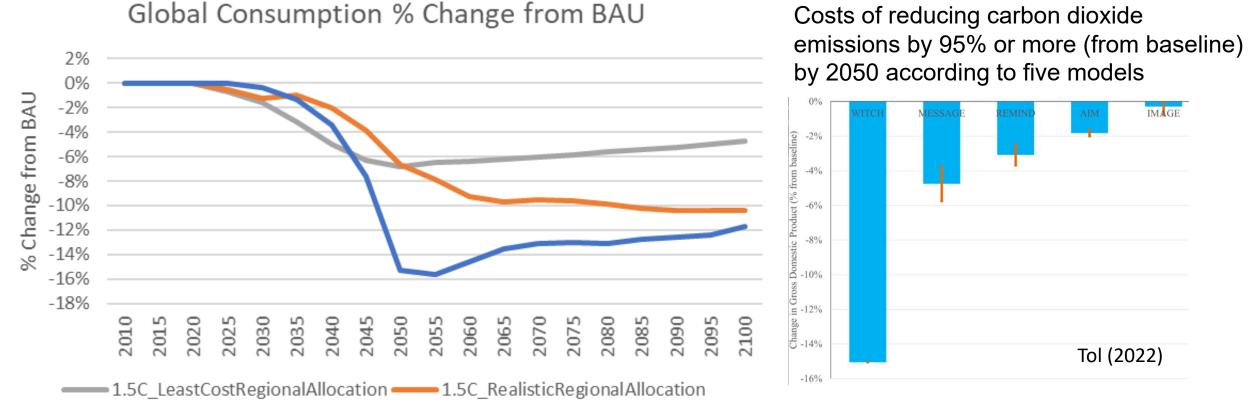
MAIN MESSAGE 2:


We do not have robust estimates of global climate change mitigation costs

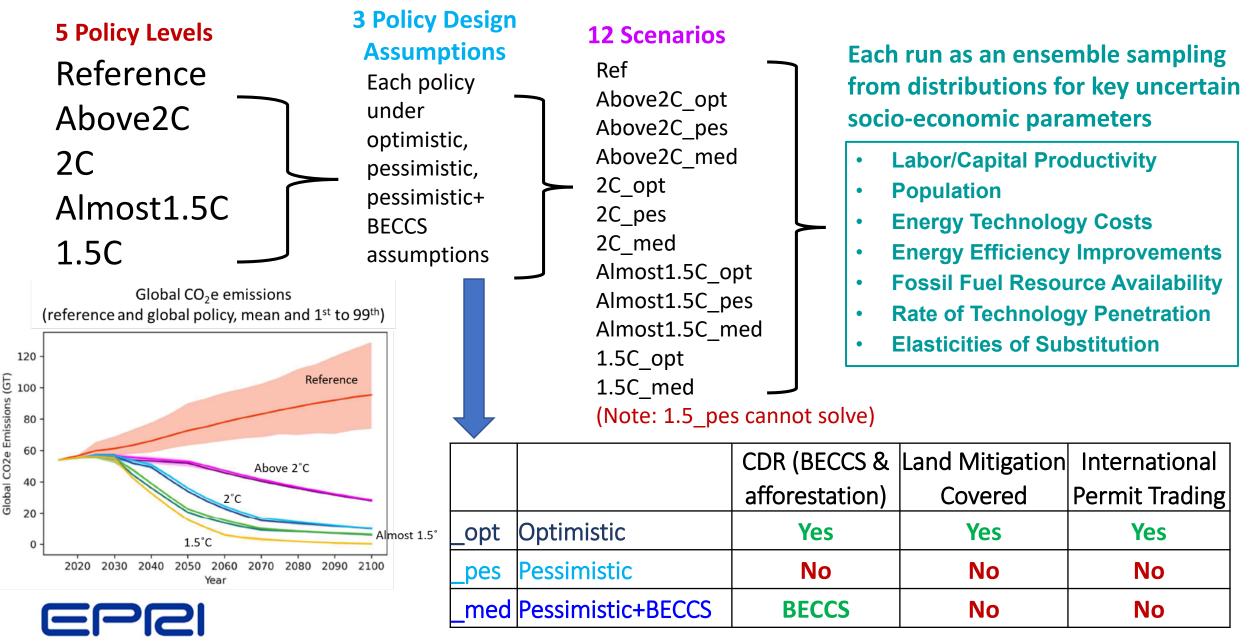
Despite abundance of research efforts, estimates are highly uncertain

Cost of Achieving Climate Targets

IPCC (2022) costs range from 0-10% of GDP in 2100


Global GDP loss compared to baselines (not accounting for climate change damages) in 2030, 2050 and 2100 for mitigation pathways **with immediate global action**.

Cost of Achieving Climate Targets


Specific assumptions matter immensely

EPPA:

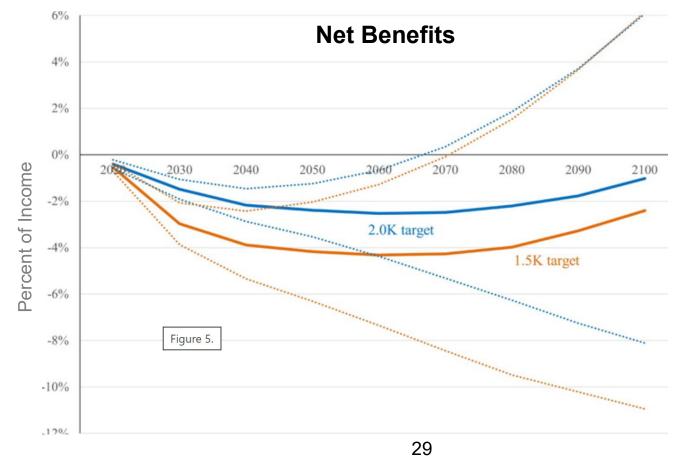
Global NZE

Implications of Socio-Economic and Policy Design Uncertainty

Implications of Socio-Economic and Policy Design Uncertainty

2050 Global Consumption Loss Relative to Reference

- Substantial cost uncertainty: increases with policy ambition and driven by socioeconomic uncertainty <u>and policy design uncertainty</u>- more realistic policy designs
 = higher costs
- Costs are estimated based on technologies we know of today... in 30 to 100 years there will likely be considerable innovation that will bring costs down
- Even under high cost estimates, economy still growing relative to today


MAIN MESSAGE 3:

Caution is needed in how economic impact and mitigation cost estimates are interpreted

Beware cost-benefit analysis

Tol (2023): "The Paris targets do not pass the cost-benefit test unless risk aversion is high and discount rate low."

Central estimate of costs of climate policy (Rogelj et al., 2018): 3.8–5.6% of GDP in 2100 Central estimate of benefits of climate policy (Toll, 2022): 2.8–3.2% of GDP in 2100

Tol (2023): "The Paris targets do not pass the cost-benefit test unless risk aversion is high and discount rate low."

Central estimate of costs of climate policy (Rogelj et al., 2018): 3.8–5.6% of GDP in 2100 Central estimate of benefits of climate policy (Toll, 2022): 2.8–3.2% of GDP in 2100

- Uncertainty about the benefits is larger than the uncertainty about the costs
- Uncertainty about benefits is skewed toward higher benefits: Negative climate surprises are more likely than positive surprises of similar magnitude
- Estimates are incomplete: Some impacts are omitted altogether because they resist quantification, others are dropped because they do not fit the method
- Assumptions about adaptation are stylized: either overly optimistic (e.g. rational agents with perfect expectations in markets without distortions) or overly pessimistic (e.g. dumb farmers)
- Valuation of nonmarket impacts is problematic
- Extrapolation of observed (or rather inferred) values to unobserved situations has proven difficult
- → Comparing the sectoral coverage of various estimates, Tol (2022) finds an average <u>underestimate of 63%</u>

Rising, J., Tedesco, M., Piontek, F. *et al.* (2022). The missing risks of climate change. *Nature* 610, 643–651. https://doi.org/10.1038/s41586-022-05243-6 IPCC (2022): "Comparing economic costs and benefits of mitigation raises a number of methodological and fundamental difficulties. Monetising the full range of climate change impacts is extremely hard, if not impossible, as is aggregating costs and benefits over time and across individuals when values are heterogeneous."

- "A complete appraisal of economic effects and welfare effects at different temperature levels would include the macroeconomic impacts of investments in low-carbon solutions and structural change away from emitting activities, co-benefits and adverse side effects of mitigation, (avoided) climate damages, as well as (reduced) adaptation costs, with high temporal, spatial and social heterogeneity using a harmonised framework."
- Recommend **cost-effectiveness** approaches that analyze how to achieve a defined mitigation objective at least cost or while also reaching other societal goals.
- Financial value of health benefits from improved air quality from mitigation alone is projected to be greater than the costs of meeting the goals of the Paris Agreement (high confidence).

Closing Points

- Much more research is needed on the economic impacts of climate change
 - Existing global estimates are incomplete and underestimates
 - Many useful insights from country-level / impact specific research
- Mitigation cost assessments should consider a greater variety of assumptions, especially about policy design
- Many studies are simply not comparable (different methods, scales, impacts, scenario assumptions, etc.)
- Heterogeneity of costs across space, time, groups, etc. matters
- More representation of uncertainty and adaptation is needed
- Be wary of cost-benefit assessments
- More attention to irreversible damages and tipping points is needed
 - Weitzman: mean estimates of damages are largely irrelevant to cost-benefit assessment
- Need to move toward more integrated modeling/scenarios
- Uncertainty shouldn't stop action

Thank You

holak@mit.edu

References

- IPCC WGII, 2022. Rose, S, D Diaz, T Carleton, L Drouet, C Guivarch, A Méjean, F Piontek. Cross-Working Group Box ECONOMIC |Estimating Global Economic Impacts from Climate Change. In *Climate Change 2022: Climate Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the IPCC,* Chapter 16 (O'Neill et al, Key Risks Across Sectors and Regions), https://www.ipcc.ch/report/ar6/wg2/
- NASEM, 2017. Cropper, ML, RG Newell, M Allen, M Auffhammer, CE Forest, IY Fung, JK Hammitt, HD Jacoby, RE Kopp, W Pizer, SK Rose, R Schmalensee, JP Weyant, 2017.
 Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. National Academies of Sciences, Engineering, and Medicine, Committee on Assessing Approaches to Updating the Social Cost of Carbon. Washington, DC: National Academies Press.
- NASEM, 2016. Cropper, ML, RG Newell, M Allen, M Auffhammer, CE Forest, IY Fung, JK Hammitt, HD Jacoby, RE Kopp, W Pizer, SK Rose, R Schmalensee, JP Weyant, 2016. *Assessment of Approaches to Updating the Social Cost of Carbon: Phase 1 Report on a Near-Term Update*. National Academies of Sciences, Engineering, and Medicine. Committee on Assessing Approaches to Updating the Social Cost of Carbon, Board on Environmental Change and Society. Washington, DC: National Academies Press.
- EPRI, 2023. EPRI Technical Public Comments on U.S. EPA's Draft New Social Costs of Carbon and Other Greenhouse Gases Estimation Methodology and Use of Estimates in EPA's Proposed Oil and Gas Methane Rule (#3002026256). Submitted February 13, 2023.
- Rose, S, 2022. Putting science first in creating and using the social cost of carbon, The Hill, November 18, thehill.com.
- USEPA, 2023. EPA Report on the Social Cost of Greenhouse Gases: Estimates Incorporating Recent Scientific Advances. Supplementary Material for the Regulatory Impact Analysis for the Final Rulemaking, "Standards of Performance for New, Reconstructed, and Modified Sources and Emissions Guidelines for Existing Sources: Oil and Natural Gas Sector Climate Review." https://www.epa.gov/system/files/documents/2023-12/epa_scghg_2023_report_final.pdf.
- Tol, R.S.J., 2024. A meta-analysis of the total economic impact of climate change, *Energy Policy*, 185, 113922, <u>https://doi.org/10.1016/j.enpol.2023.113922</u>.
- Tol, R.S.J., 2023. Costs and Benefits of the Paris Climate Targets. *Climate Change Economics*, 14(4), 2340003, <u>https://doi.org/10.1142/S2010007823400031</u>
- Rising, J., Tedesco, M., Piontek, F. et al., 2022. The missing risks of climate change. Nature 610, 643–651. https://doi.org/10.1038/s41586-022-05243-6
- Morris, J., Y.-H.H. Chen, A. Gurgel, J. Reilly and A. Sokolov, 2023. Net Zero Emissions of Greenhouse Gases by 2050: Achievable and at What Cost?. *Climate Change Economics*, 14(4), 2340002, <u>https://doi.org/10.1142/S201000782340002X</u>
- Paltsev, S., A. Schlosser, H. Chen, X. Gao, A. Gurgel, H. Jacoby, J. Morris, R. Prinn, J. Reilly, P. Salunke and A. Sokolov, 2023. 2023 Global Change Outlook: Charting the Earth's Future Energy, Manages Resources, Climate, and Policy Prospects. MIT Joint Program Special Report, MIT Joint Program on the Science and Policy of Global Change, Cambridge, MA. Available at: https://globalchange.mit.edu/sites/default/files/newsletters/files/2023-JP-Outlook.pdf
- Hartin C., E.E. McDuffie, K. Novia, M. Sarofim, B. Parthum, J. Martinich, S. Barr, J. Neumann, J. Willwerth, & A. Fawcett. 2023. Advancing the estimation of future climate impacts within the United States. EGUsphere In Press, doi: 10.5194/egusphere-2023-114. Access online at: https://egusphere.copernicus.org/preprints/2023/egusphere-2023-114. Access online at: https://egusphere.copernicus.org/preprints/2023/egusphere-2023-114.