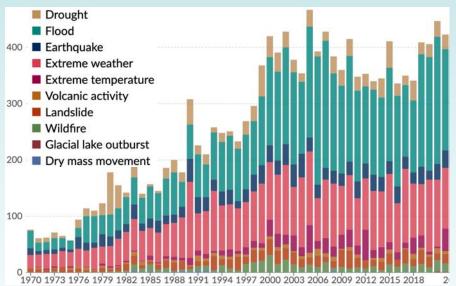
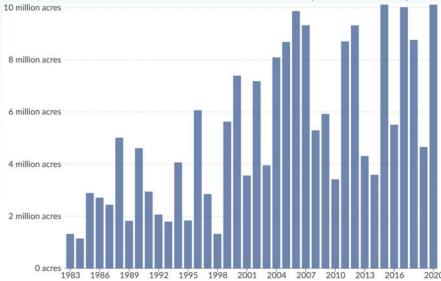
Physical Impacts of Global Climate Change: Insights, Adaptation, and Future Directions

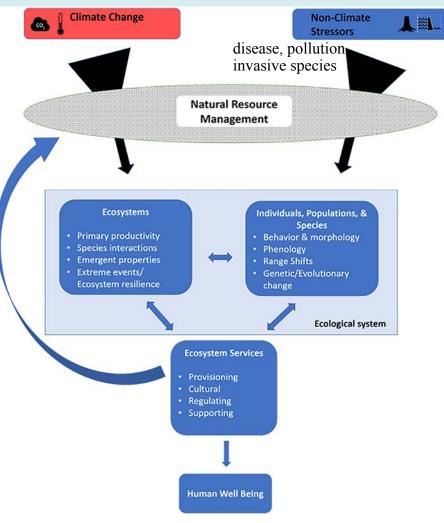

Xiang Gao MIT Joint Program on the Science and Policy of Global Change

XLVI MIT Global Change Forum


Climate Change Impact: A Complex Issue

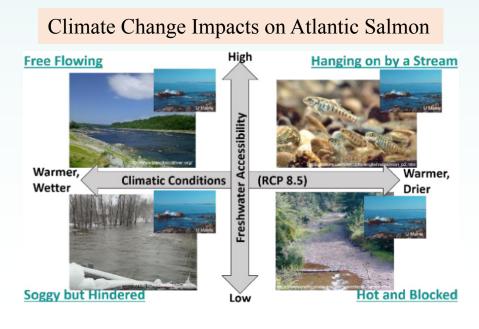
- Climate change is not just an increase in temperature, also includes much more.
 - ✓ Seal level rise (SLR)
 - ✓ Extreme weather & compound events
 - ✓ Water, Energy, Infrastructure
 - ✓ Agriculture, Ecosystems
 - ✓ Human health
- Impacts on different sectors are interrelated.
- Impacts are uneven across the world.
- Some alarming changes (NOAA)
 - ✓ SLR has accelerated from 1.7mm/yr in 20th century to 3.2 mm/yr since 1993
 - ✓ Average thickness of glaciers has decreased more than 60 feet since 1980
 - ✓ Arctic sea ice area has shrunk by 40% since 1979.

Global reported natural disasters by type (1970-2022)

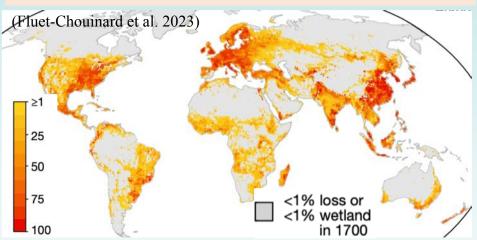


Wildfire acres burned in the US (1983-2020)

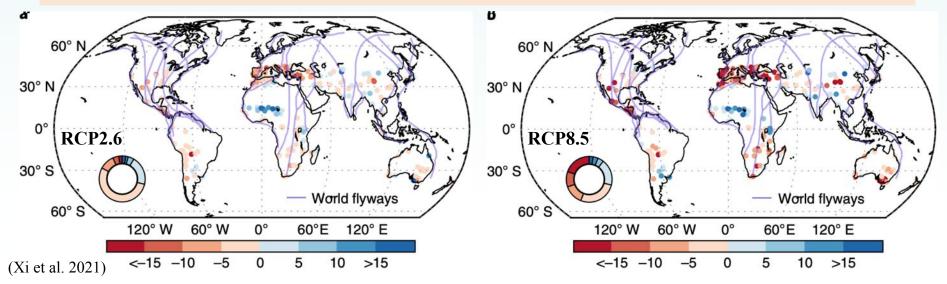
Biodiversity, Ecosystems, and Natural Resource Management


Climate change and non-climate stressors interact and affect ecological systems at multiple scales

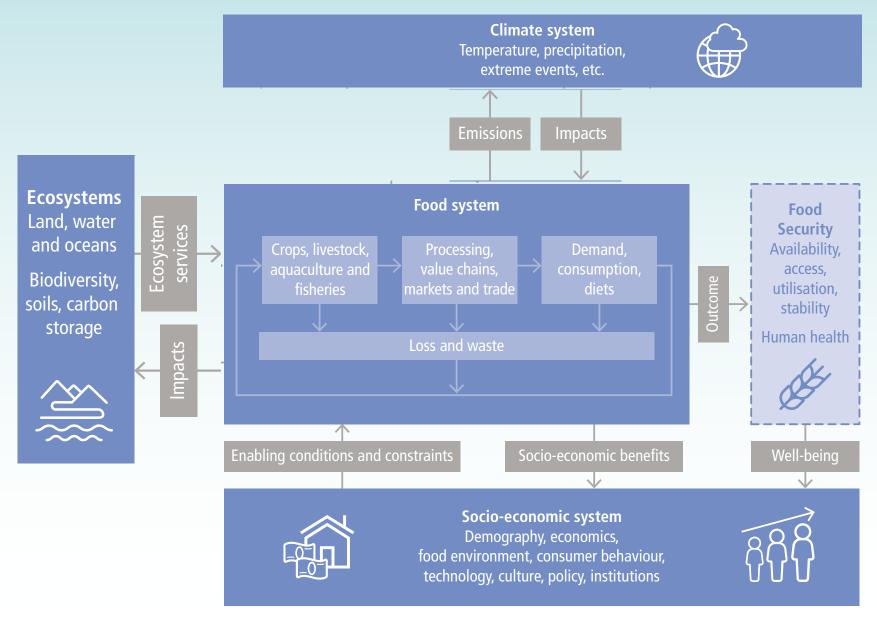
Sierra Nevada Forests


2012-2017 drought across California \rightarrow stress to trees and bark beetle outbreaks \rightarrow mortality of 129 million trees (ponderosa pine) \rightarrow incense cedar increases \rightarrow large wildfires increase \rightarrow drastically changed ecosystem

(Borggaard et al. 2019)

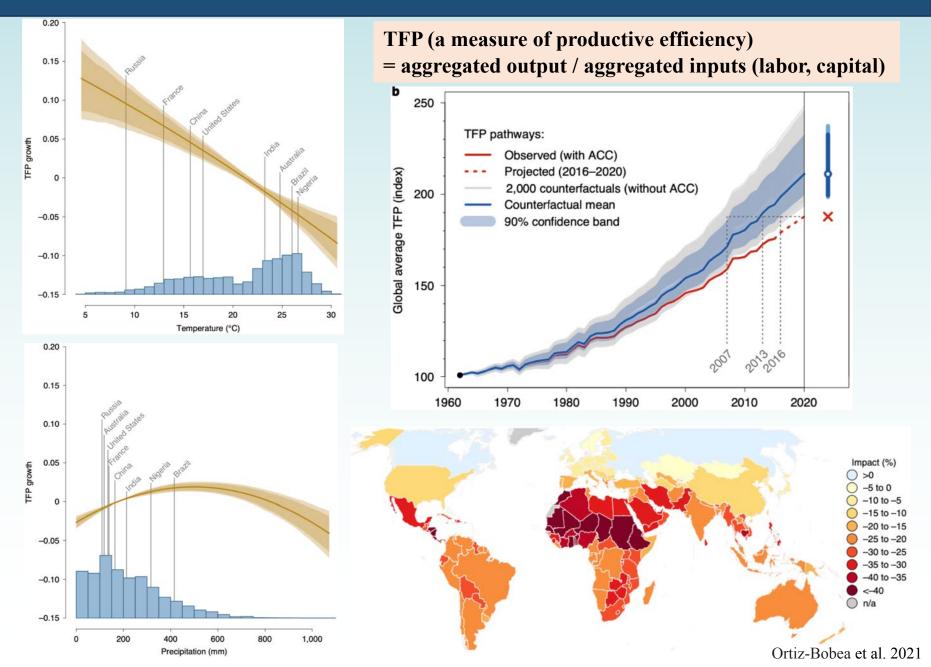

Wetlands: A Complex Social-Ecological System

- 5 ~ 8% of land surface and 20 ~ 30% of carbon pool.
- Provides many ecosystem services (flood control, water purification, biodiversity, food supply, carbon sequestration).
- Important in global carbon cycles, but also most vulnerable to climate change.



Wetland lost in 2020 (% of wetland area in 1700)

Change in wetland area (%) south of 45°N in winter (December-February) and waterbird migration

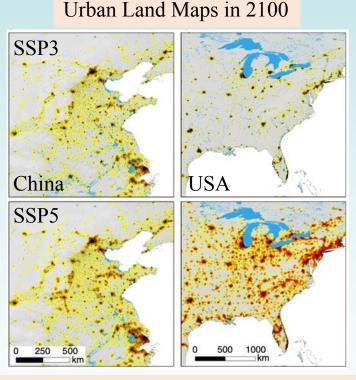


Food System

(Mbow et al. 2019)

Total Factor Productivity (TFP)

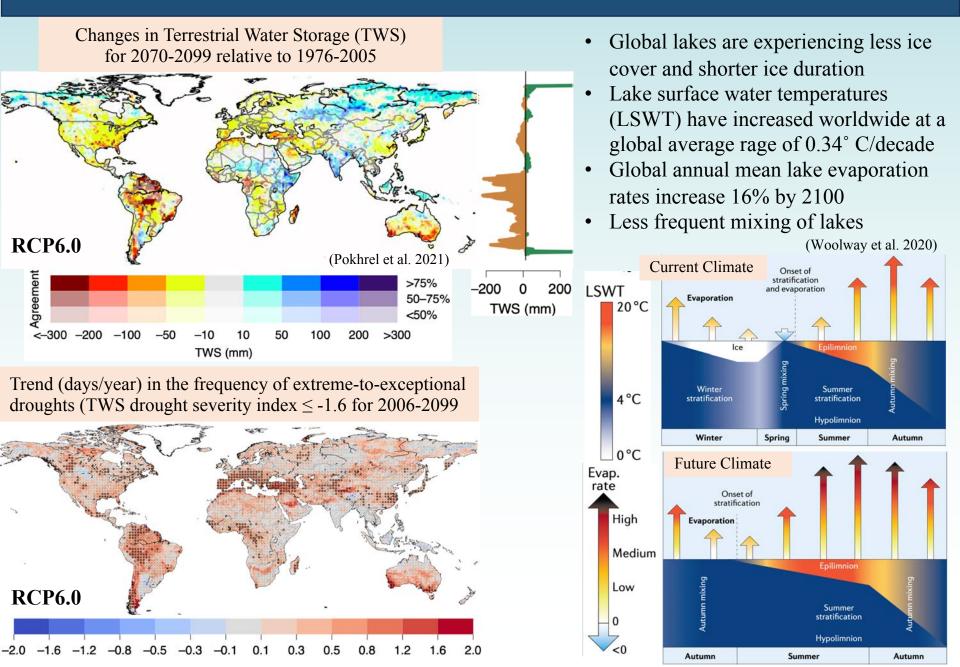



Urban Land Expansion and Food Production

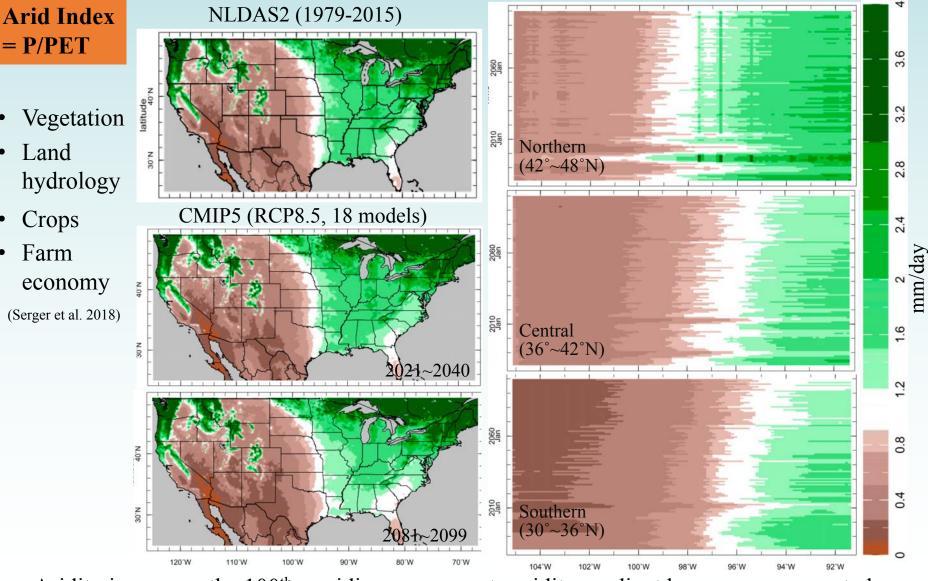
Global Urban Land Demand a $\times 10^3$ km² 2000 Global 1800 SSP1 SSP2 1600 SSP3 SSP4 1400 Urban area SSP5 1200 1000 800 600 400 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 Year Cropland and food production loss (%) caused by urban expansion by 2100 Rice SSP1 Wheat 4.0 Maize 3.5 Potato 3.0 Vegetables 2.5 Cropland area 2.0 1.5 SSP5 SSP2 1.0 0.5 0.0

(Chen et al. 2020) SSP4

SSP3

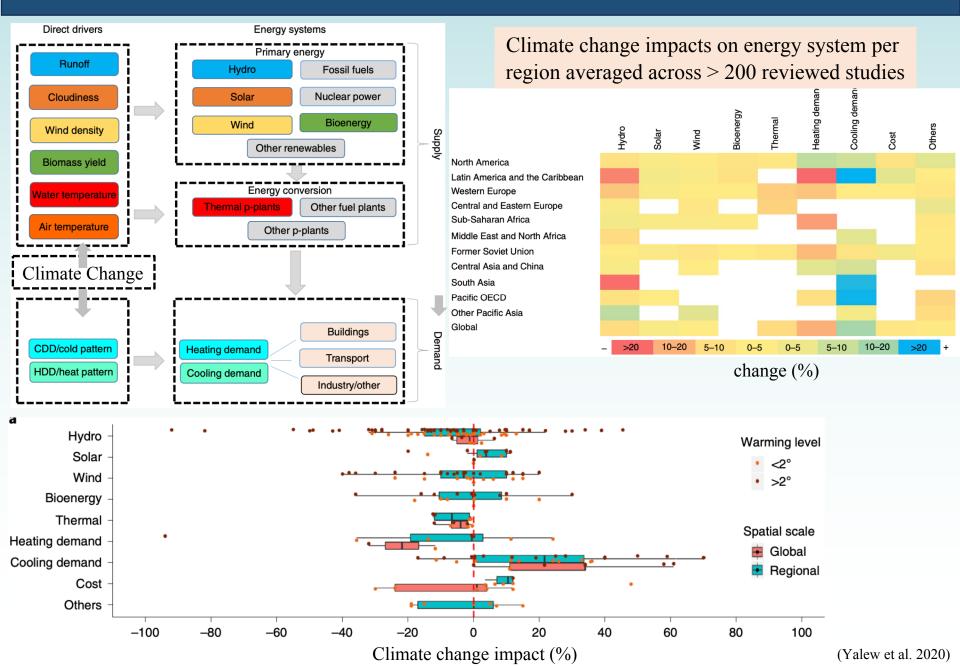

Global food production loss caused by urban expansion (10⁶ ton)

	SSP1	SSP2	SSP3	SSP4	SSP5
Rice	15.19	15.09	16.04	14.99	17.88
Wheat	10.31	10.35	7.99	8.98	19.19
Maize	11.53	11.21	7.56	8.41	24.84
Potatoes	5.46	5.47	4.29	4.42	10.50
Vegetables	19.99	19.84	18.17	18.06	29.67

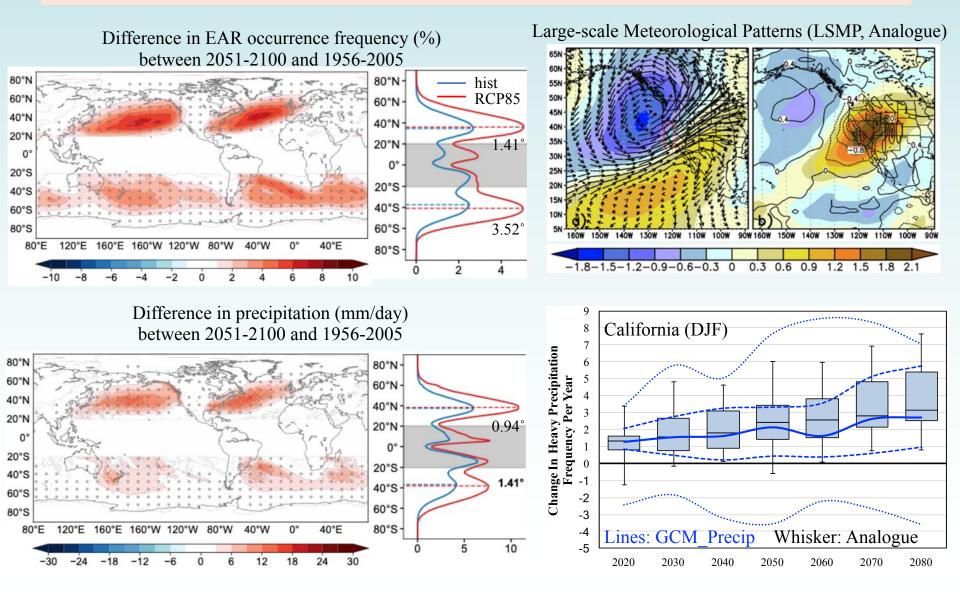

Population affected by food production loss (million)

Rice	281.77	279.86	297.51	278.03	331.62
Wheat	157.50	158.25	122.12	137.22	293.35
Maize	644.70	626.72	422.86	470.19	1388.70
Potatoes	159.91	160.09	125.48	129.36	307.31
Vegetables	183.55	182.18	166.79	165.79	272.44

Water Resources

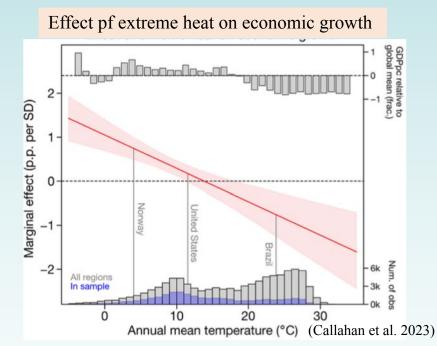


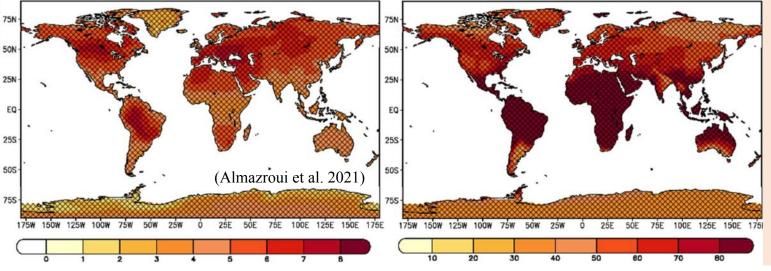
The 100th Meridian: Arid-Humid Divide


- Aridity increases, the 100th meridian moves east, aridity gradient becomes more muted
- Aridity's eastward shift is evident in the southern and central plains and less so in the north.

Energy Systems

Extreme Atmospheric Rivers (EAR)


AR: a long and narrow corridor of concentrated water vapor transported in the atmosphere



(Wang et al. 2023)

Extreme Heat

Trends in the highest daily maximum temperature of the year (regression on global mean temperature) in the GHCN-D station data 90N 2 Marginal effect (p.p. per SD) 60N 30N EQ **30S** -2All regions In sample 60S (Philip et al. 2022) 90S 120W 60W 6ÔE 120E 180

21 CMIP6 model ensemble-mean changes in annual hottest day temperature (left) and extreme heat wave days frequency (right) between 2070-2099 and 1985-2014 under SSP5-8.5 Scenario.

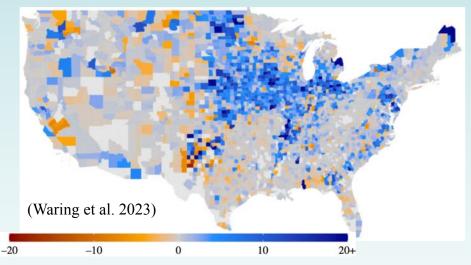
Adaptation Responses

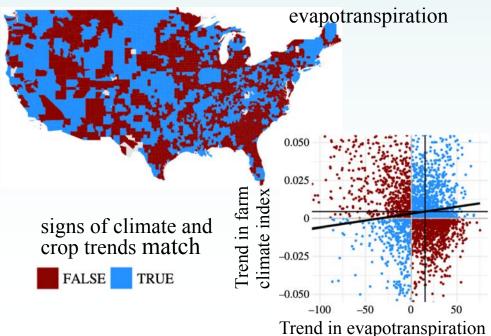
Types of Adaptation Responses

- Behavioral/cultural
 - change food consumption practices; adopt drought-tolerant plant/animal species
- Technological/infrastructural
 - desalination; rainwater harvesting; boreholes and tube wells for extracting water
- Natural-based
- protect landscapes to limit deforestation; restore ecosystems; improve land management practices
- Institutional
- creating policies, programmes, and regulations; establishing formal and informal organizations
- Integrated
- installation of urban green roofs for cooling; government-supported planting of droughtresistant seeds among subsistence farmers

Restoring meadows in the Sierra Nevada

Nature-based Infrastructure




Federal, state, and NGO partners restored four meadows with high ecological value in 2015

Living shoreline as coastal resilience structures for withstanding hurricane

Change in cover crops from 2012-2017 (10³ acres)

Transformational Adaptation (TA)

Dimensions	Scena											enar	arios of TA														
of TA	Low									High																	
Overall	Sporadic and limited with small adjustments										Widespread and full implementation																
Depth	Expansion of existing practices									Entirely new practices with deep structural reform																	
Scope	Localized and fragmented, lack of coordination across sectors									Widespread and substantial with most possible sectors and levels of governance												tors					
Speed	Implemented slowly									Rapid change																	
Limits	Don't challenge soft limits										Exceed many soft limits and challenge hard limits																
	Cities	Lood	Health	Povertv	Terrestrial	Water	Cities	Food	Health	Oceans	Poverty	Terrestrial	Water	Cities	Food	Health	Oceans	Poverty	Terrestrial	Water	Cities	Food	Health	Oceans	Poverty	Terrestrial	Water
Overall extent																											
Depth																-											
Scope Speed		+		-	+	+		-								-											
Limits		+	+	+	+	$\left \right $					2					-											
]	Noi	th A	me	rica				E	uroj	pe		Asia Australasia														
	Scenarios of TA Overall ex			xtent epth														-									
	High Medium			Scope																							
Lo	Croad																										
	sufficient Limits																										
inf	information Small Island States South and Central America Africa																										

Knowledge Gaps and Future Directions

Scientific Perspectives

- A new generation of high-resolution climate models that can explicitly represent relevant fine-scale processes and provide more detailed and precise projections of future climate and severe weather events, particularly at regional and local levels, to support robust climate mitigation and adaptation
- Exascale computing and data facility of unprecedented power, capacity, and scale to deliver the timely simulation, prediction and data analytics of the Earth system
- A global coordinated effort by a trained and well-resourced scientific workforce
- Advanced knowledge of tipping points and improved methodologies (e.g., IAM) for quantification of the complex risks (e.g., feedbacks and interactions between risks, uncertainty, unidentified risks, etc.)
- Interdisciplinary interactions and collaboration within and between natural and social science communities for sharing knowledge and expertise

Mitigation & Adaptation Perspectives

- Identify gaps in adaptation research and practice that address equality, justice, and power dynamics (towards developing more equitable adaptation practices).
- Leverage emerging new technology and infrastructure
- Strengthen governance
- Facilitate public participation and citizen engagement
- Global coordination, cooperation and commitment across localities, sectors of society, and scales of governance to ensure global sustenance