

Decarbonization and the Expanding Focus of Energy Security

Jennifer Morris

MIT Joint Program on the Science and Policy of Global Change

MIT Global Change Forum XLV

March 23-24, 2022

Based on work with: Angelo Gurgel, Sergey Paltsev, Howard Herzog, John Reilly, Adam Schlosser, Bryan Mignone, Haroon Kheshgi, Lucas Desport, Steve Rose

Original Focus of Energy Security

Stability of supply... of fossil fuels

- Imports: amount; stability and diversity of suppliers
- Geopolitical disruptions
- High price spikes / price volatility
- Domestic production, reserves and energy independence

\rightarrow Still relevant

Reduce fossil fuel use

- Increase energy efficiency
- Diversify energy mix
 - Expand domestic low-carbon energy sources

Availability, Accessibility, Affordability, Acceptability

Risk and Resilience

→ Not just risk of geopolitical disruptions, but disruptions from natural disasters/ extreme weather events, (cyber)terrorism, pandemics, aging infrastructure, changing climate, societal transitions...

Main Decarbonization Pathway

1) Decarbonize electricity, with heavy focus on **renewables**

2) Electrify as much of the economy as possible

Domestic strategy that reduces energy security concerns regarding fossil fuels

GLOBAL CHANGE

Stability of supply... of critical minerals

Materials Used in Low-Carbon vs. Fossil Generation Technologies

An offshore wind plant requires 13x the mineral resources of a similarly sized gas-fired power plant

Materials Used in EVs vs. ICEs

A typical electric car requires 6x the mineral resources of a conventional car

Stability of supply... of critical minerals

Share of top three producing countries in extraction (2019)

Share of top three producing countries in processing (2019)

GLOBAL CHANGE

Heavy Dependence on Electricity

- Low diversity of energy mix
- Huge increase in electricity demand
 - Electrification
 - Green hydrogen
 - DAC
- Enormous infrastructure requirement
- Growing stressors threatening reliability and resilience of electricity system

Electricity System under Multiple and Compounding Stressors

Supply gaps estimated based on climate impacts on generation technologies and electricity demand

- "Medium risk" assumes RCP4.5 climate impacts: supply gaps of 6-9% in Lakes-Mid Atlantic; 8-10% in SEAST
- "High risk" assumes RCP8.5 climate impacts: supply gaps of 14-21% in Lakes-Mid Atlantic; 15-19% in SEAST
- Additional electricity demand from climate impacts has a greater effect than losses in energy supply
- Scenarios relying more on renewables are subject to lower supply gaps
- Annual supply and demand vs. extreme events

DOF

Project

Decarbonizing Hard-to-Abate Sectors

Difficult-to-eliminate GHG emissions from other sectors (e.g., agriculture)

Total non-CO₂ GHGs in 2020 ~3 Gt CO₂e

GLOBAL CHANGE

Need Negative Emissions

How balance released emissions vs. negative emissions?

GLOBAL CHANGE

11

Role of Land-Based CDR

- 2C scenarios exploring different combinations of availability of:
 - Afforestation/reforestation (A/R) offsets
 - BECCS
 - International emissions trading

Project with ExxonMobil

Work with Bryan Mignone Haroon Kheshgi

Where Is Land-Based CDR Happening?

Preliminary results

Scale of Offset Trading

Emissions Traded Globally

Preliminary results

14

Who's Buying the Offsets?

2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100

■ USA ■ CAN ■ MEX ■ JPN ■ ANZ ■ EUR ■ ROE ■ RUS ■ ASI

CHN IND BRA AFR MES LAM REA KOR IDZ

Preliminary results

Gt CO2 2060 -CDR Trade -NoCDR Trade

Fossil CO2

■ Coal ■ Oil ■ Gas ■ Nuclear ■ Hydro ■ Wind&Solar ■ Bio-Oil ■ Bio-Elec

Preliminary results

Stability of supply... of land

Stability of supply... of water

Stability of supply... of biomass

Stability of supply... of CO2 Storage locations

Role of DACCS

Project with

What about DACCU?

- Potential pathway to produce valuable low-carbon fuels, chemicals, or building materials to help decarbonize hard-to-abate sectors
- Potential for sustainable aviation fuels

Stability of supply... of captured CO2

Project with

FAA

Image: https://airlines.iata.org/analysis/realizing-the-potential-of-sustainable-aviation-fuel

- Growing focus on affordability, accessibility and acceptability
- Decarbonization broadens scope of availability concerns and highlights multi-sector considerations
- Blurring lines between energy security and resilience of energy systems
 - Growing need to focus on wide range of stressors, uncertainties and risks
 - MIT Socio-Environmental Risk Triage (SERT) Platform

MIT Uncertainty Framework

Thank you!

Jen Morris

holak@mit.edu