IMPACTS ON CIVIL INFRASTRUCTURE Climate Change Risks on Roads, Bridges and Urban Drainage Kenneth Strzepek MIT Joint Program and Paul Chinowsky University of Colorado

> XXXIX MIT Global Change Forum 17 June 2016 Cambridge, MA USA

http://globalchange.mit.edu/

Why Talk about Infrastructure in a Water Session?

Sample impa

٠	S	stems	stressed	by floodi	ing

Supply risks for water users

Property

Sector

Water

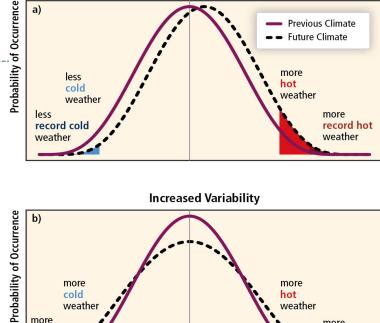
an 11		_	
the second value of the se	_		
	_		-

 Damage and destruction of property by flood, bushfire

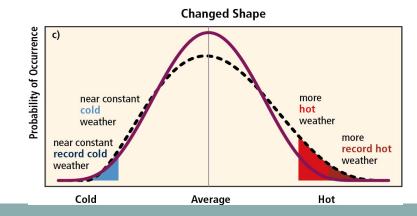
- Degradation of foundations
- Impaired health and productivity

Electricity

•

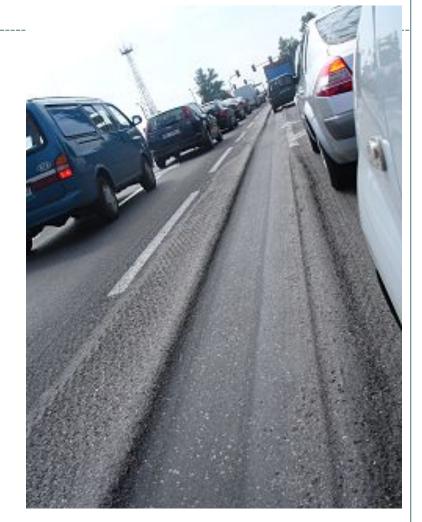

Road + Rail

- Damage from flood/fire
 Strain/collapse in heatwaves
- Impaired health and productivity
- Flood-induced washouts
- Heat induced rail buckling, road cracking
- Impaired transportation of people and goods

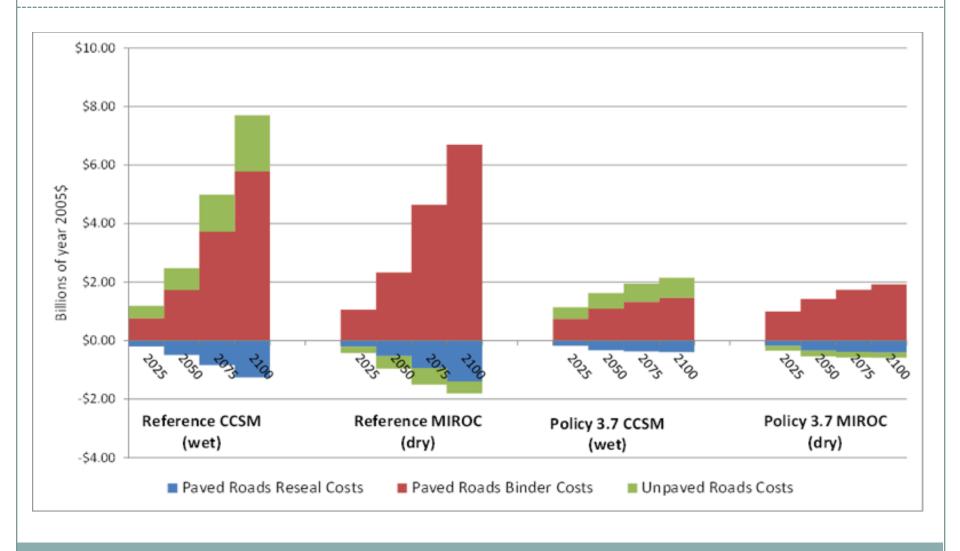

- Infrastructure is designed to risk-based standards.
- Vulnerable to changes in Extreme Events:
 - Temperature,
 - Precipitation
 - Flooding

Climate Change is Impacting the Risk of Crossing Design Threshold Shifted Mean a) **Previous Climate**

- - Future Climate



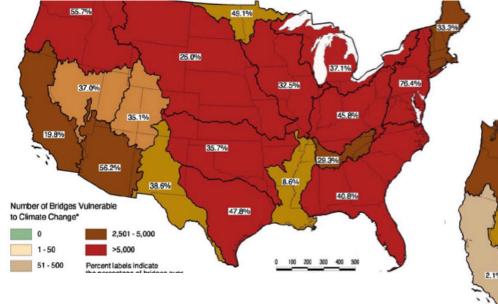
Temperature Impact on Pavement

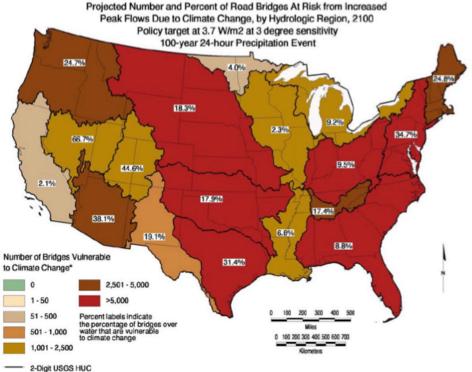


CLIMATE CHANGE IMPACT ON PAVEMENT

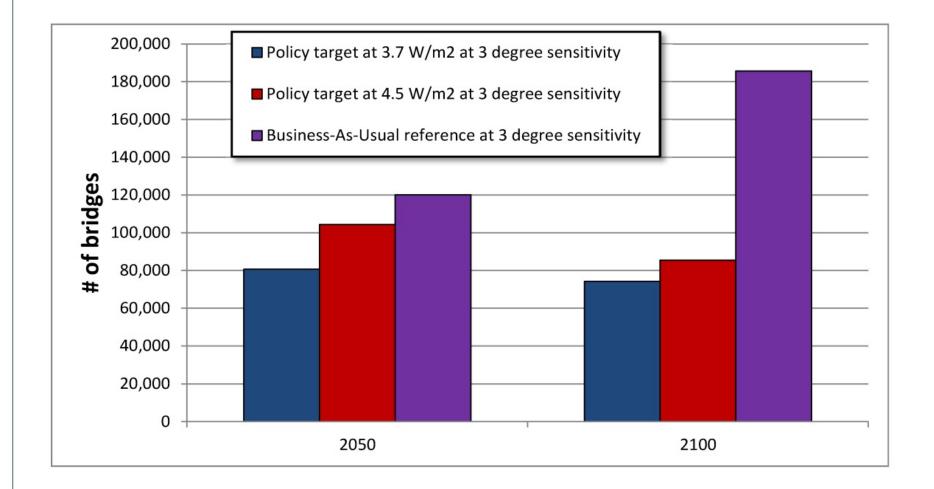
Table 1. Superpave binder performance grades and Costs							
7-day Maximum							
Performance	Pavement	Cost (year 2010\$					
Grade	Temperature (°C)	per lane mile)					
PG-46	46	\$197,000					
PG-52	52	\$210,000					
PG-58	58	\$225,000					
PG-64	64	\$241,000					
PG-70	70	\$258,000					
PG-76	76	\$276,000					
PG-82	82	\$295,000					

USA ROAD ADAPTATION COSTS





Bridges Vulnerable to Changes in 100 year-24 hours storm

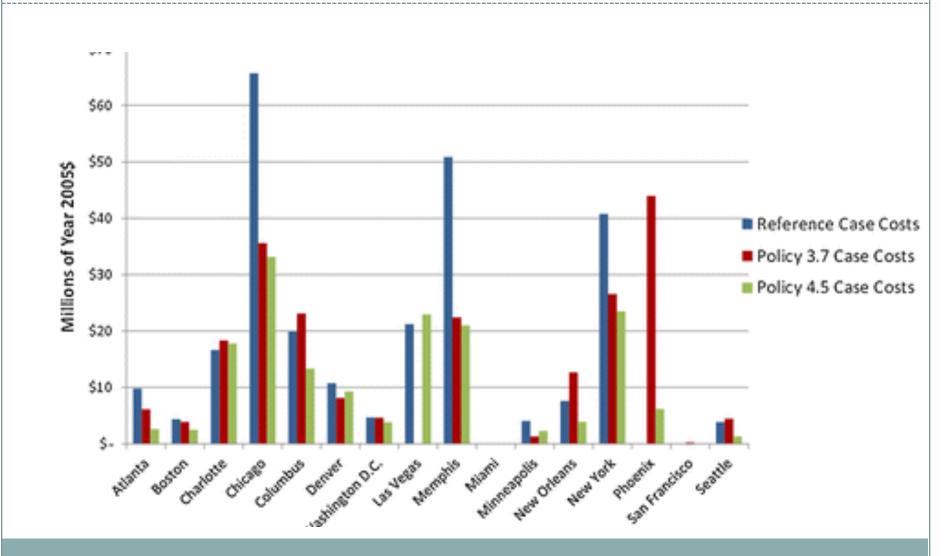

BAU

Bridges Vulnerable to Changes in 100 year-24 hours storm

Urban Drainage Impacts

TABLE 1. CITIES INCLUDED IN URBAN DRAINAGE ANALYSIS

СІТҮ	LAND AREA (SQUARE MILES)		
Atlanta, GA	132		
Boston, MA	48		
Charlotte, NC	242		
Chicago, IL	227		
Columbus, OH	210		
Denver, CO	153		
Houston, TX	579		
Las Vegas, NV	113		
Los Angeles, CA	469		
Memphis, TN	279		
Miami, FL	36		
Minneapolis, MN	55		
New Orleans, LA	181		
New York, NY	303		
Oklahoma City, OK	607		
Phoenix, AZ	475		
San Francisco, CA	47		
Seattle, WA	84		
Washington, D.C.	61		



Memorial Drive Flooded in Houston, TX, May 26, 2015 (Photos by Cody Duty / Houston Chronicle)

Flood in Oklahoma City, Oklahoma, May 23, 2015 (Photo by Jim Beckel / The Oklahoman)

Annualized urban drainage adaptation costs by city and scenario in 2050 (millions 2005\$)

USA¹ ECONOMIC IMPACTS

Table 1 Summary of cumulative undiscounted and discounted (3 %) economic impacts through 2100 for reference and policy scenarios based on IGSM-CAM climate projections and 3.0 °C climate sensitivity (billions of 2005\$) Undiscounted

Infrastructure sector		Impacts		Avoided costs		Notes		
		Reference	Policy 3.7	Policy 4.5	Policy 3.7	Policy 4.5		
Coastal	Undiscounted	\$451	\$383	\$394	\$ 68	\$57	Most avoided costs	
	Discounted (3 %)	\$116	\$110	\$111	\$6	\$5	incurred after 2050, excludes storm surge	
Roads	Undiscounted	\$376	\$134	\$163	\$241	\$213	Includes effects to paved	
	Discounted (3 %)	\$80	\$36	\$45	\$44	\$34	and unpaved roads	
Bridges	Undiscounted	\$356	\$237	\$279	\$120	\$77	Most avoided costs	
	Discounted (3 %)	\$160	\$126	\$137	\$33	\$23	incurred before 2050	
Urban	Undiscounted	\$79	\$44	\$51	\$34	\$28	Based on generic	
Drainage	Drainage Discounted \$2 (3 %)		\$12	\$14	\$8	\$7	modeling in 19 US cities	
TOTAL (undiscounted)			\$463	\$375				
TOTAL (discounted 3 %)			\$92	\$69				

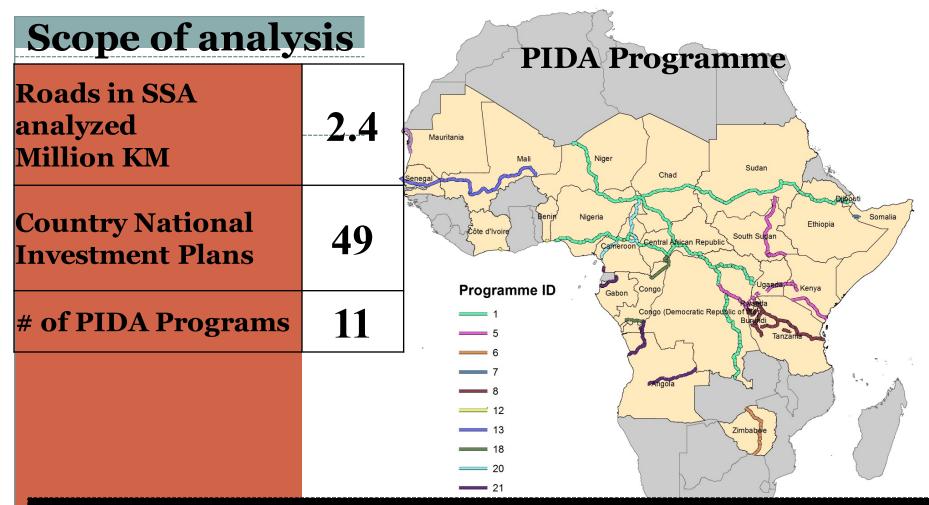
Mitigation policies show potential to reduce impacts in the infrastructure sector – a more aggressive mitigation policy RCP 3.7 reduces impacts by 25 to 35 %, and a less aggressive policy RCP 4.5 reduces impacts by 19 to 30 %.

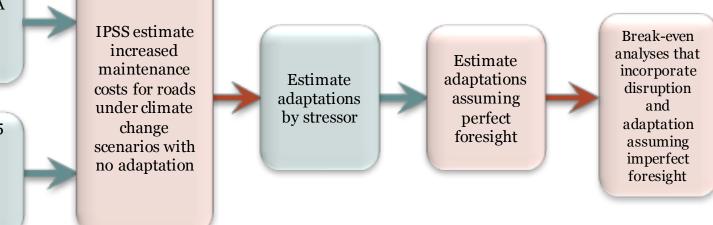
¹ The contiguous lower 48 states

INDUSTRIAL ECONOMICS, INCORPORATED

Enhancing the Climate Resilience of African Infrastructure

ROAD NETWORK





- **1.** Estimate the **impacts** of climate change on the performance of PIDA and national (country) road investments over a range of climate scenarios
- 2. Develop and test a **framework** for the planning and design of **adaptation** road investments over a range of climate scenarios
- **3.** Enhance the "**investment readiness**" of African countries to use climate finance to increase climate resilience of road infrastructure

Methodology

Assemble data on PIDA and National Road Projects

Assemble CMIP3 and 5 climate change scenarios for temperature, precipitation, and flooding

- Historical climate sequences: Princeton University gridded data, 0.5 degree resolution, 1948 to 2008 period
- Future climate projections (daily output, 0.5 degree resolution 2001 to 2050):
 - BCSD downscaling method
 - × IPCC AR4: 22 GCMs, A2, B1, A1B (56 futures)
 - × IPCC AR5: 11 GCMs, 4.5 & 8.5 RCP scenarios (39 futures)

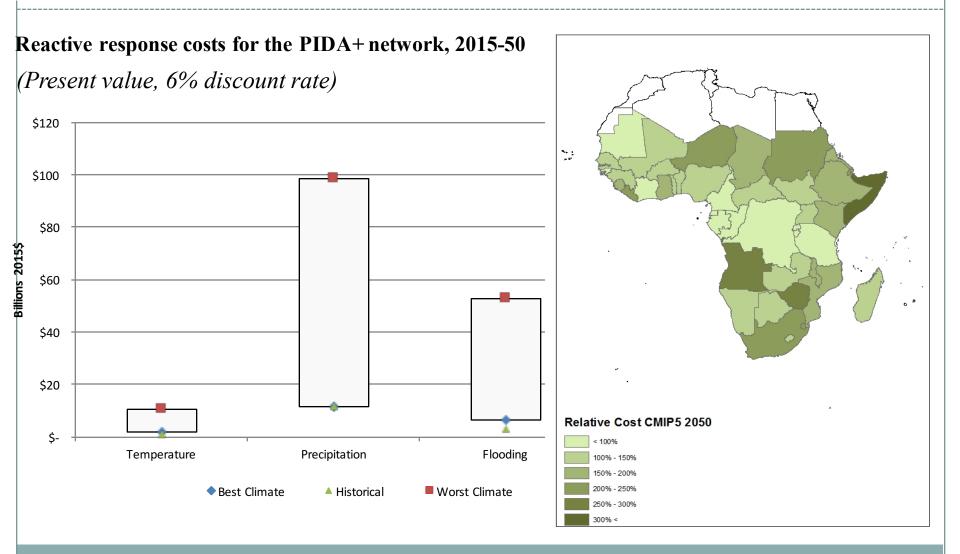
Engineering Impact Analysis

• Temperature

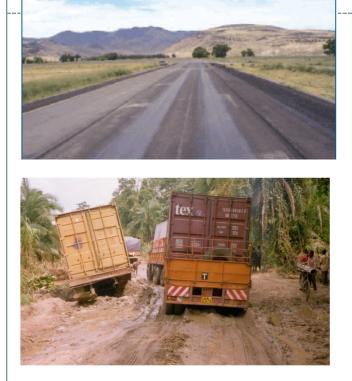
• Paved Roads – Temperature exceeding pavement thresholds

Precipitation

 Paved Roads – Maximum Monthly Precipitation exceeds threshold


Flooding

• Damage incurred by floods with return periods exceeding design threshold


• Looking at Maintenance Impacts on a Yearly Basis

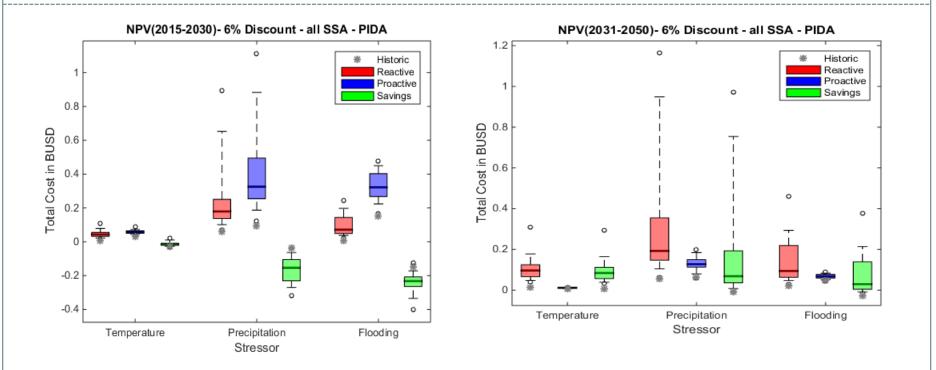
- Assume Maintenance is completed in that year
- No other adaptations are put in place for vulnerability assessment

Percentage Increase in Road Maintenance Cost from CC Relative to Historic

Adaptation Options

• Temperature

- Dense seals to reduce binder aging
- Bitumen binders with higher softening points

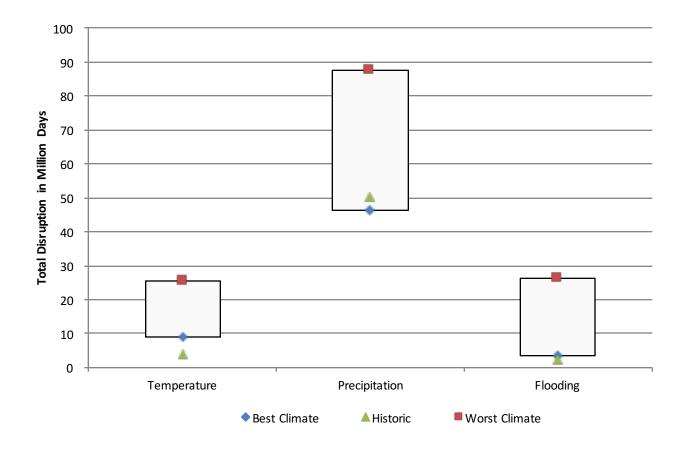

Precipitation

- Wider paved shoulders
- Increased base thickness or quality
- Flooding
 - Increased culvert size

Adaptation Costs

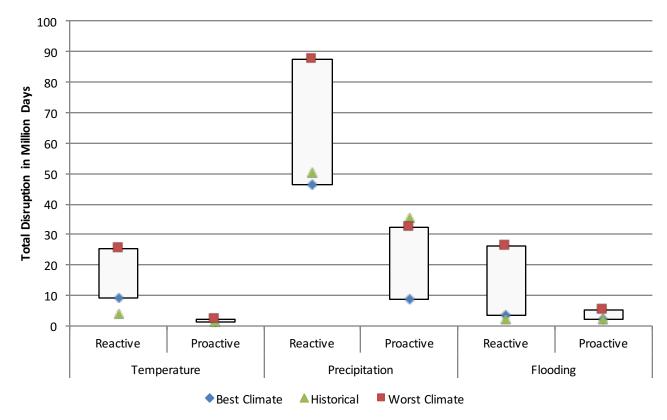
Stressor	Adaptation	Adaptation Relative Cost Factor (Primary Roads)	Adaptation Relative Cost Factor (Secondary Roads)
Temperature	Construct Dense Seals	1.02	1.02
Temperature	Modify Base Binders (higher softening point)	1.02	1.02
Precipitation	Increase Base Strength	1.23	1.11
Precipitation	Add Wider Paved Shoulders	1.16	1.34
Flooding	Enhance Culverts and Drainage	1.17	1.08
Flooding (bridges)	Divert water from bridge base (minor) Strengthen bridge piers and abutments (major)	Varies by bridge si	ze and flood severity

The financial case for adaptation varies by time period

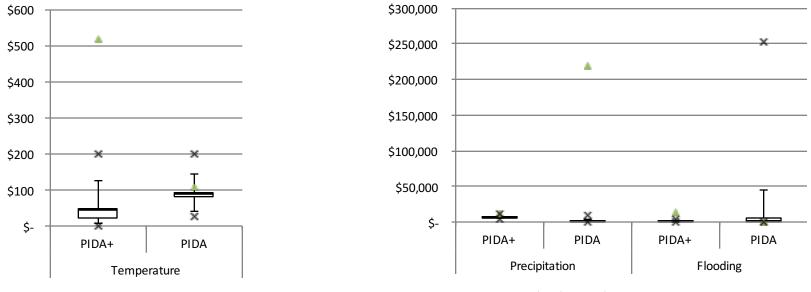


Share of road network for which adaptation generates net life-time savings

Plan type	Road type	2015-2030			2031-2050		
		Flooding	Precipitation	Temperature	Flooding	Precipitation	Temperature
PIDA	Paved	40%	0%	0%	44%	43%	65%
PIDA+	Paved	0%	0%	0%	0%	1%	20%
	Unpaved	2%	2%		2%	2%	


Climate change will also cause disruptions to road networks

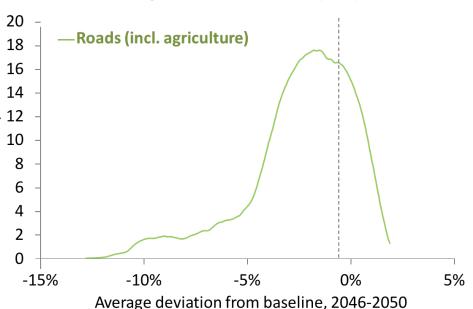
Cumulative Disruption for the PIDA+ network With Reactive Response to Climate Change, 2015-50 (million days)


Adaptation has large impact reducing disruption...

Cumulative Disruption for the PIDA+ network, 2015-50 (million days)

Considering disruption benefits AND financial costs, case for adaptation often strengthens

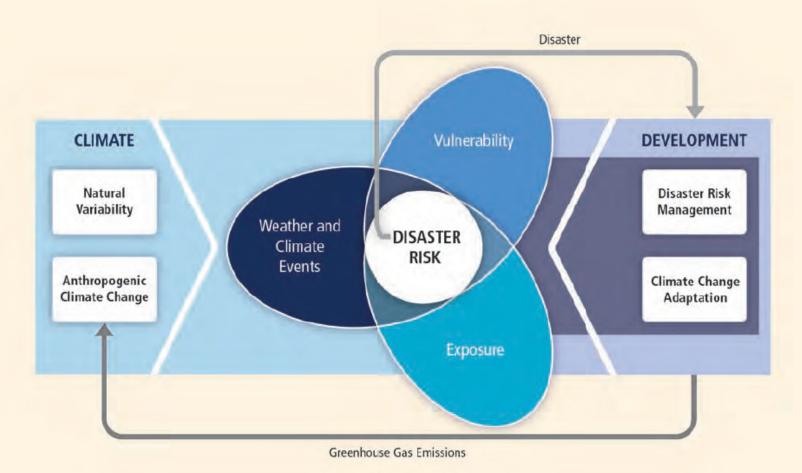
Distribution of Breakeven Values across Climate Scenarios, Sub-Saharan Africa for PIDA and PIDA+ Roads, for Three Climate Stressors


A Historic × Min × Max

Additional reasons to adapt: economy-wide effects of road traffic disruptions

- Mozambique
- CGE w/ MIT JP 400 HFDs
- **Expected Annual Impacts**
- \$~2.5 bil/year 2010-2050
- ~ -5% of 2010 GDP

Source: Arndt and Thurlow, 2015.


- **UNU-WIDER** Working Paper.
- South Africa

Change in total value-added (GDP)

- CGE w/ MIT JP 400 HFDs
 - Expected Costs are 0.8% of GDP (range of 0.1 to 2.6%) by 2050
 - Current GDP \$366 Billion
 - Total loss w/ 5% discount rate \$16 B (range: \$1.5 to 55 B)
 - Source: Cullis et al., 2015. UNU-WIDER Working Paper

What does this mean for Development and Investment

Key Insights

- Ignoring climate change is most likely not an option
 - A reactive response can lead to a doubling of maintenance costs
 - Higher costs for certain countries/ climate futures

• There is a significant case for adaptation

- Generally justified for temperature
 - × Costs are relatively low
 - **×** Benefits quite likely since temperature will continue to rise
- Less clear on precipitation and flooding
- The case is likely to be even stronger if benefits other than reduced maintenance costs are included (e.g., disruption)
- Results are sensitive to discount rates use of a 6% rate consistent with new WB guidance will diminish attractiveness of proactive alternative (which has higher upfront capital costs)

Thank You

QUESTIONS?