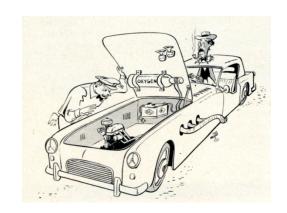
### Introduction to EPPA

### The structure of EPPA6

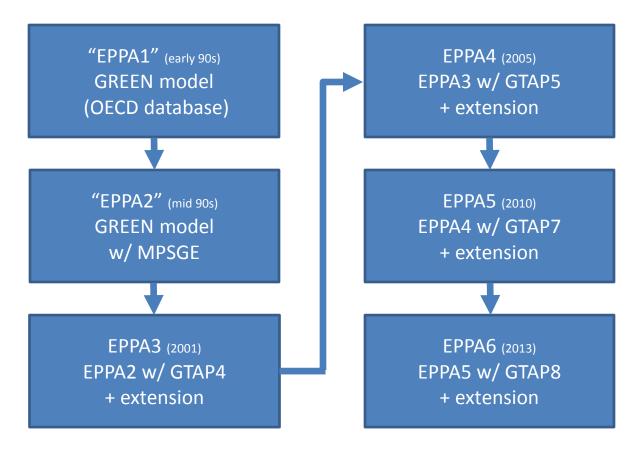
Y.-H. Henry Chen

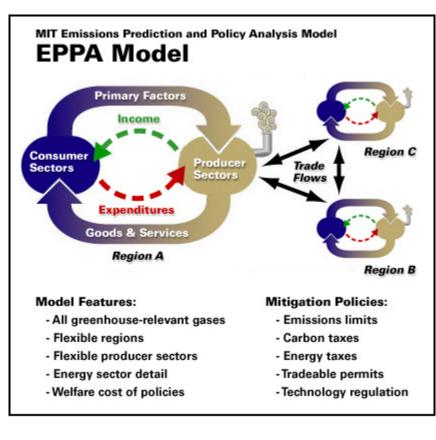
EPPA Workshop Jordan Grand Resort Hotel, Newry, ME October 4, 2014




The development of the MIT Economic Projection and Policy Analysis (EPPA) model is the joint work supported by a consortium of government, industry and foundation sponsors of the MIT Joint Program on the Science and Policy of Global Change. For a complete list of sponsors see http://globalchange.mit.edu/sponsors/current.html.




### Outline


- 1. Introduction
- 2. Settings
- 3. Exercises
  - Creating the reference run
  - Understanding the case files
  - Replicating the reference run
  - Creating the policy run
  - Roles of the US and China
  - A small uncertainty analysis
- 4. Guidelines



- EPPA is the human system module of IGSM
- A recursive dynamic CGE of the world economy
- Multi-region, multi-sector, multi-resource model
- Data: economics, energy use, GHGs emissions, engineering data, etc.

History of EPPA





- Public released version is EPPA4, current versions are EPPA6 and EPPA5.
- Based on EPPA5 or EPPA4, various versions of EPPA were built for different studies:
- EPPA-A w/ aviation
- EPPA-APA w/ endogenous urban pollution abatement
- EPPA-HE w/ health effects
- EPPA-HTRN w/ household transportation details
- EPPA-LUC w/ land use change and near-term biofuels
- EPPA-ROIL w/ refining sector details

Source: Karplus (2011)

- ■EPPA6 and EPPA5 are not available to the public at this moment
- ■Please do not give them to any third party without the permission from JP

- Use the version control system Github for EPPA6 development
- EPPA6-L
  - > **Light version**; basis for other versions
  - > Github branch name: master
- EPPA6-LUC
  - Main version; with land-use change details
  - > Github branch name: luc-new
- EPPA6-ROIL
  - > **Refined oil version**; with refined sectors details
  - Github branch name: dramberg

- GTAP8:
  - > 129 regions; 57 sectors; 5 primary factors
- Energy consumption:
  - > IEA data (Narayanan et al., 2012)
- Emissions:
  - > CO<sub>2</sub> from IEA (2012), Boden et al. (2010), Riahi et al. (2007)
  - Other GHGs and Non-GHGs from EDGAR v.4.2 (European Commission, 2013)
- Backstop cost structure:
  - > Relevant engineering data (Paltsev et al., 2010)
- Elasticity data:
  - Substitution elasticities: Cossa (2004)
  - Income elasticities: Reimer and Hertel (2004); USDA (2013)

| Regions in EPF | Sectors in EPPA:   |        |       |       |       |
|----------------|--------------------|--------|-------|-------|-------|
| EPPA6          |                    |        | EPPA5 | ЕРРА6 | EPPA5 |
| USA            | United States      |        | USA   | CROP  | CROP  |
| CAN            | Canada             |        | CAN   |       |       |
| MEX            | Mexico             |        | MEX   | LIVE  | LIVE  |
| JPN            | Japan              |        | JPN   | FORS  | FORS  |
| ANZ            | Australia & New Ze | ealand | ANZ   | FOOD  | FOOD  |
| EUR            | Europe             |        | EUR   | COAL  | COAL  |
| ROE            | Eastern Europe     |        | ROE   |       |       |
| RUS            | Russia Plus        |        | RUS   | OIL   | OIL   |
| ASI            | East Asia          |        | ASI   | ROIL  | ROIL  |
| KOR            | South Korea        |        |       | GAS   | GAS   |
| IDZ            | Indonesia          |        |       | ELEC  |       |
| CHN            | China              |        | CHN   | ELEC  | ELEC  |
| IND            | India              |        | IND   | EINT  | EINT  |
| BRA            | Brazil             |        | BRA   | OTHR  | OTHR  |
| AFR            | Africa             |        | AFR   | DWE   | _     |
| MES            | Middle East        |        | MES   |       | CED.  |
| LAM            | Latin America      |        | LAM   | SERV  | SERV  |
| REA            | Rest of Asia       |        | REA   | TRAN  | TRAN  |

#### Agriculture crop livestock forest

#### Non-agriculture

food energy intensive other manufacturing transportation service dwelling

#### **Energy Supply**

coal crude oil refined oil gas electricity

1<sup>st</sup> gen biofuels 2<sup>nd</sup> gen biofuels oil shale synthetic gas from coal hydrogen household non-household

#### fossil

solar

coal gas oil-fired nuclear hydro

advanced nuclear
IGCC w/ CCS
NGCC
NGCC w/ CCS
wind
bio-elec
wind-bio
wind-gas

| Total Capital Recovery   Charge Rate (%)   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   1       |                       |                                  |                        |        |               |               |                                      |        |         |               |          |                             |                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|------------------------|--------|---------------|---------------|--------------------------------------|--------|---------|---------------|----------|-----------------------------|--------------------------|
| Cost (\$\text{KV}\)   1775   2196   956   1909   3731   3774   1942   3803   5070   6097   5745   2899   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1012   1      |                       | Pulverized Coal<br>built in 1980 | New Pulverized<br>Coal | NGCC   | NGCC with CCS | IGCC with CCS | Advanced<br>Nuclear<br>(EIA Numbers) | Wind   | Biomass | Solar Thermal | Solar PV | Wind Plus<br>Biomass Backup | Wind Plus<br>NGCC Backup |
| Requirement (SKW)   2059   2548   1033   2138   4477   5284   2098   4411   5476   6584   6205   3131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cost (\$/KW)          | 1775                             | 2196                   | 956    | 1909          | 3731          | 3774                                 | 1942   | 3803    | 5070          | 6097     | 5745                        | 2899                     |
| Charge Rate (%)   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.6%   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10       | Requirement (\$/KW)   | 2059                             | 2548                   | 1033   | 2138          | 4477          | 5284                                 | 2098   | 4411    | 5476          | 6584     | 6205                        | 3131                     |
| Variable O8M (\$/KWh)   0.005   0.005   0.002   0.003   0.004   0.001   0.000   0.007   0.000   0.007   0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 10.6%                            | 10.6%                  | 10.6%  | 10.6%         | 10.6%         | 10.6%                                | 10.6%  | 10.6%   | 10.6%         | 10.6%    | 10.6%                       | 10.6%                    |
| (\$/KWh) 0.005 0.005 0.002 0.003 0.004 0.001 0.000 0.007 0.000 0.007 0.002 0.002 0.002 0.002 0.002 0.003 0.004 0.001 0.000 0.007 0.000 0.007 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.00    |                       | 27.81                            | 27.81                  | 11.82  | 20.11         | 46.58         | 90.93                                | 30.61  | 65.03   | 57.30         | 11.79    | 95.64                       | 42.42                    |
| Capacity Factor (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 0.005                            | 0.005                  | 0.002  | 0.003         | 0.004         | 0.001                                | 0.000  | 0.007   | 0.000         | 0.000    | 0.007                       | 0.002                    |
| Capacity Factor   Wind   S5%   35%   35%   Capacity Factor   Biomass/NGCC   S7%   T446   T4       | Project Life (years)  | 20                               | 20                     | 20     | 20            | 20            | 20                                   | 20     | 20      | 20            | 20       | 20                          | 20                       |
| Wind   Capacity Factor   Graphics   Grap       |                       | 85%                              | 85%                    | 85%    | 80%           | 80%           | 85%                                  | 35%    | 80%     | 35%           | 26%      | 42%                         | 42%                      |
| Biomass/NGCC    Coperating Hours   T446          | Wind)                 |                                  |                        |        |               |               |                                      |        |         |               |          | 35%                         | 35%                      |
| Capital Recovery Required (\$/KWh)   0.0292   0.0362   0.0147   0.0322   0.0675   0.0750   0.0723   0.0665   0.1887   0.3055   0.1782   0.0899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                  |                        |        |               |               |                                      |        |         |               |          | 7%                          | 7%                       |
| Required (\$/KWh)   0.0292   0.0362   0.0147   0.0322   0.0675   0.0750   0.0723   0.0665   0.1887   0.3055   0.1782   0.0899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 7446                             | 7446                   | 7446   | 7008          | 7008          | 7446                                 | 3066   | 7008    | 3066          | 2278     | 3679                        | 3679                     |
| Required (\$/KWh)   0.0037   0.0037   0.0016   0.0029   0.0066   0.0122   0.0100   0.0093   0.0187   0.0052   0.0260   0.0115     Heat Rate (BTU/KWh)   8740   8740   6333   7493   8307   10488   0   7765   0   0   0   7765   6333     Fuel Cost (\$/MMBTU)   3.15   3.15   8.18   8.18   3.15   0.50   0.00   2.61   0.00   0.00   2.61   8.18     Fraction Biomass/NGCC (%)   8.8%   8.2%     Fuel Cost (\$/KWh)   0.03   0.03   0.05   0.06   0.03   0.01   0.00   0.02   0.00   0.00   0.00     Levelized Cost of Electricity (\$/KWh)   0.07   0.07   0.07   0.10   0.11   0.09   0.08   0.10   0.21   0.31   0.21   0.11     Transmission and Distribution (\$/KWh)   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.03   0.03     Cost of Electricity (\$/KWh)   0.09   0.09   0.09   0.12   0.13   0.11   0.10   0.12   0.23   0.33   0.24   0.14     Markup Over New Pulverized Coal   0.92   1.00   0.98   1.34   1.43   1.23   1.11   1.33   2.47   3.59   2.64   1.50     Markup Over Coal   0.92   1.00   0.98   1.34   1.43   1.23   1.11   1.33   2.47   3.59   2.64   1.50     Markup Over Coal   0.92   1.00   0.98   1.34   1.43   1.23   1.11   1.33   2.47   3.59   2.64   1.50     Markup Over Coal   0.92   1.00   0.98   1.34   1.43   1.23   1.11   1.33   2.47   3.59   2.64   1.50     Markup Over Coal   0.92   1.00   0.98   1.34   1.43   1.23   1.11   1.33   2.47   3.59   2.64   1.50     Markup Over Coal   0.92   1.00   0.98   1.34   1.43   1.23   1.11   1.33   2.47   3.59   2.64   1.50     Markup Over Coal   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.9 | Required (\$/KWh)     | 0.0292                           | 0.0362                 | 0.0147 | 0.0322        | 0.0675        | 0.0750                               | 0.0723 | 0.0665  | 0.1887        | 0.3055   | 0.1782                      | 0.0899                   |
| BTU/KWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Required (\$/KWh)     | 0.0037                           | 0.0037                 | 0.0016 | 0.0029        | 0.0066        | 0.0122                               | 0.0100 | 0.0093  | 0.0187        | 0.0052   | 0.0260                      | 0.0115                   |
| (\$/MMBTU) 3.15 3.15 8.18 8.18 3.15 0.50 0.00 2.61 0.00 0.00 2.61 8.18  Fraction Biomass/NGCC (%) 8.8% 8.2%  Fuel Cost (\$/KWh) 0.03 0.03 0.05 0.06 0.03 0.01 0.00 0.02 0.00 0.00 0.00 0.00  Levelized Cost of Electricity (\$/KWh) 0.07 0.07 0.07 0.10 0.11 0.09 0.08 0.10 0.21 0.31 0.21 0.11  Transmission and Distribution (\$/KWh) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (BTU/KWh)             | 8740                             | 8740                   | 6333   | 7493          | 8307          | 10488                                | 0      | 7765    | 0             | 0        | 7765                        | 6333                     |
| Biomass/NGCC (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (\$/MMBTU)            | 3.15                             | 3.15                   | 8.18   | 8.18          | 3.15          | 0.50                                 | 0.00   | 2.61    | 0.00          | 0.00     | 2.61                        | 8.18                     |
| Levelized Cost of Electricity (\$/KWh)         0.07         0.07         0.07         0.10         0.11         0.09         0.08         0.10         0.21         0.31         0.21         0.11           Transmission and Distribution (\$/KWh)         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.03         0.03           Cost of Electricity (\$/KWh)         0.09         0.09         0.09         0.12         0.13         0.11         0.10         0.12         0.23         0.33         0.24         0.14           Markup Over New Pulverized Coal Markup Over Coal         0.92         1.00         0.98         1.34         1.43         1.23         1.11         1.33         2.47         3.59         2.64         1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                  |                        |        |               |               |                                      |        |         |               |          | 8.8%                        | 8.2%                     |
| Electricity (\$/KWh) 0.07 0.07 0.07 0.10 0.11 0.09 0.08 0.10 0.21 0.31 0.21 0.11  Transmission and Distribution (\$/KWh) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 0.03                             | 0.03                   | 0.05   | 0.06          | 0.03          | 0.01                                 | 0.00   | 0.02    | 0.00          | 0.00     | 0.00                        | 0.00                     |
| Distribution (\$/KWh)         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.03         0.03           Cost of Electricity<br>(\$/KWh)         0.09         0.09         0.09         0.12         0.13         0.11         0.10         0.12         0.23         0.33         0.24         0.14           Markup Over New<br>Pulverized Coal<br>Markup Over Coal         0.92         1.00         0.98         1.34         1.43         1.23         1.11         1.33         2.47         3.59         2.64         1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Electricity (\$/KWh)  | 0.07                             | 0.07                   | 0.07   | 0.10          | 0.11          | 0.09                                 | 0.08   | 0.10    | 0.21          | 0.31     | 0.21                        | 0.11                     |
| (\$/KWh) 0.09 0.09 0.09 0.12 0.13 0.11 0.10 0.12 0.23 0.33 0.24 0.14 Markup Over New Pulverized Coal 0.92 1.00 0.98 1.34 1.43 1.23 1.11 1.33 2.47 3.59 2.64 1.50 Markup Over Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Distribution (\$/KWh) | 0.02                             | 0.02                   | 0.02   | 0.02          | 0.02          | 0.02                                 | 0.02   | 0.02    | 0.02          | 0.02     | 0.03                        | 0.03                     |
| Pulverized Coal         0.92         1.00         0.98         1.34         1.43         1.23         1.11         1.33         2.47         3.59         2.64         1.50           Markup Over Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (\$/KWh)              | 0.09                             | 0.09                   | 0.09   | 0.12          | 0.13          | 0.11                                 | 0.10   | 0.12    | 0.23          | 0.33     | 0.24                        | 0.14                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pulverized Coal       | 0.92                             | 1.00                   | 0.98   | 1.34          | 1.43          | 1.23                                 | 1.11   | 1.33    | 2.47          | 3.59     | 2.64                        | 1.50                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 1.00                             | 1.08                   | 1.06   | 1.44          | 1.55          | 1.33                                 | 1.20   | 1.44    | 2.67          | 3.89     | 2.85                        | 1.62                     |

Table 5. Substitution Elasticities in EPPA6-L

| Type of substitution elasticity                                        | Notation | Value     |
|------------------------------------------------------------------------|----------|-----------|
| between domestic and imported goods                                    | sdm      | 1.0 - 3.0 |
| between imported goods                                                 | smm      | 0.5 - 5.0 |
| between energy and non-energy (labor-capital bundle) inputs            | e_kl     | 0.6-1.0   |
| between labor and capital                                              | 1 k      | 1.0       |
| between electricity and fossil energy bundle for the aggregated energy | noe_el   | 0.5       |
| between fossil energy inputs for the fossil energy bundle              | esube    | 1.0       |
| between conventional fossil generations                                | enesta   | 1.5       |
| between natural resource and other inputs                              | esup     | 0.3-0.5   |

Source: Cossa (2004)

Table 6. Income Elasticity for Agricultural and Food Products

|     | CROP | LIVE | FOOD |     | CROP | LIVE | FOOD |
|-----|------|------|------|-----|------|------|------|
| USA | 0.08 | 0.65 | 0.67 | CHN | 0.65 | 1.01 | 0.88 |
| CAN | 0.13 | 0.61 | 0.62 | IND | 0.58 | 1.11 | 0.88 |
| MEX | 0.50 | 0.71 | 0.70 | BRA | 0.58 | 0.78 | 0.75 |
| JPN | 0.18 | 0.60 | 0.61 | AFR | 0.63 | 1.05 | 0.89 |
| ANZ | 0.22 | 0.59 | 0.60 | MES | 0.63 | 0.83 | 0.80 |
| EUR | 0.16 | 0.60 | 0.61 | LAM | 0.63 | 0.82 | 0.79 |
| ROE | 0.63 | 0.82 | 0.79 | REA | 0.54 | 1.16 | 0.87 |
| RUS | 0.56 | 0.76 | 0.74 | KOR | 0.30 | 0.61 | 0.61 |
| ASI | 0.64 | 0.86 | 0.81 | IDZ | 0.67 | 1.00 | 0.88 |

Source: Reimer and Hertel (2004); with adjustments for changes in prices and income levels

#### Agents

- consumer
- > producer
- > government

#### Statics

> zero profit  $[MC - MR \ge 0; Q \ge 0; (MC - MR) \cdot Q = 0]$ 

> market clearing  $[S-D \ge 0; P \ge 0; (S-D) \cdot P = 0]$ 

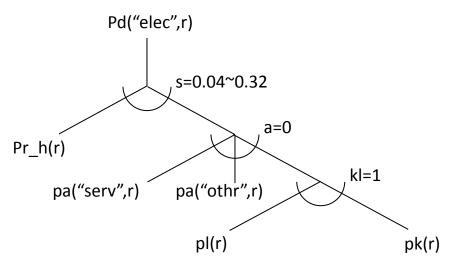
> income balance  $[E - I \ge 0; E \ge 0; (E - I) \cdot E = 0]$ 

#### Dynamics

- > exogenously specified
- > endogenously determined

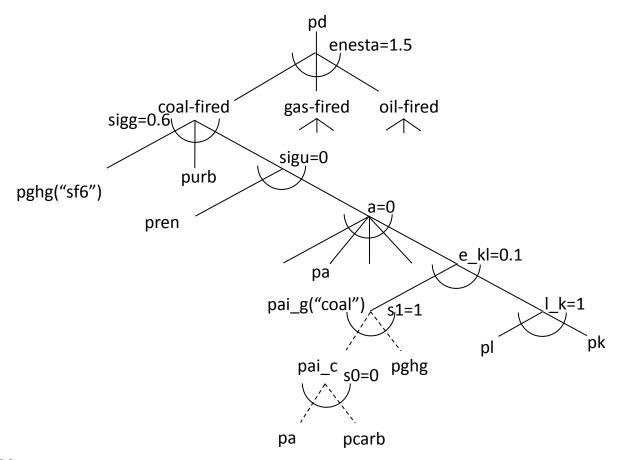
#### Market clearing condition for domestic production

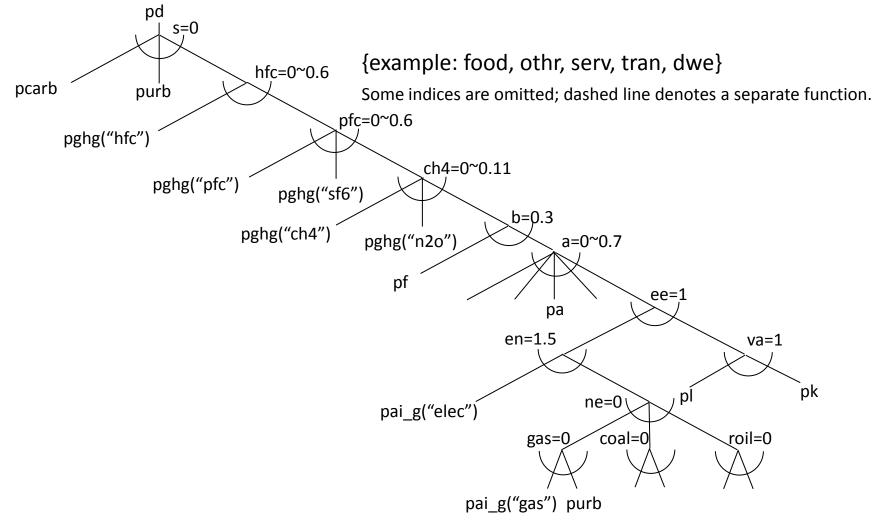
zero profit condition for domestic production

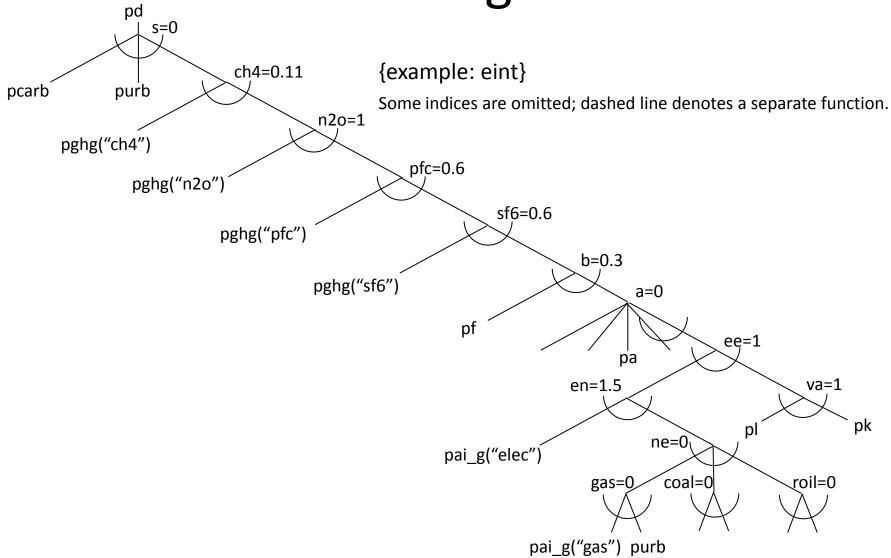

# Settings

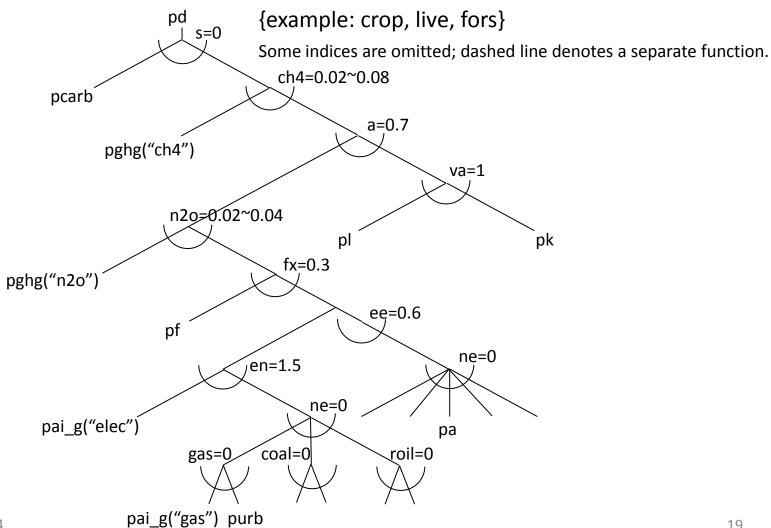
income balance for the representative agent

|      | _        |                                       |          |          |       |       |           |        |             |             |                            |        |        |        |            |          |       |       |         |
|------|----------|---------------------------------------|----------|----------|-------|-------|-----------|--------|-------------|-------------|----------------------------|--------|--------|--------|------------|----------|-------|-------|---------|
|      |          | d                                     | n_e      | h_e      | inv   | yt    | htrn      | eid    | eid_<br>ghg | efd_<br>ghg | tefd_<br>ghg               | edf    | tedf   | а      | m          | Z        | w     | govt  | ra      |
| pd   |          | XPO                                   | N_EO     | H_EO     |       | VST   | 7         |        |             |             |                            |        |        | DO     | WTFLO<br>W |          |       |       |         |
| pinv | ,        |                                       |          |          | INVO  | ,     |           |        |             |             |                            |        |        |        |            |          | INVO  |       |         |
|      |          |                                       |          |          |       | ΣΣνςτ | ,         |        |             |             |                            |        |        |        | ΣVTWR      |          |       |       |         |
| pt   | $\dashv$ |                                       |          |          |       |       | TOTTRN    |        |             |             |                            |        |        |        |            | TOTTRN   |       |       |         |
| ptrr |          |                                       |          |          |       |       |           | EUSEP  | EUSEP       |             |                            |        |        |        |            |          |       |       |         |
| pai  | С        | XDP0+                                 |          |          |       |       |           | EUSEF  |             |             |                            |        |        |        |            |          |       |       |         |
| pai  | g        | XMPO                                  |          |          |       |       |           |        | EUSEP       |             |                            |        |        |        |            |          |       |       |         |
| paf  | g        |                                       |          |          |       |       |           |        |             | HEUSEF      |                            |        |        |        |            | ENCE     |       |       |         |
| paf  | gh       |                                       |          |          |       |       | TRO       |        |             |             | TEUSEF                     |        |        |        |            |          |       |       |         |
| paf  |          |                                       |          |          |       |       |           |        |             | HEUSEF      |                            | HEUSEF |        |        |            |          |       |       |         |
|      |          |                                       |          |          |       |       |           |        |             |             | TEUSEF                     |        | TEUSEF |        |            |          |       |       |         |
| paf  | cn       | XDP0+                                 | N_S0;    | H_S0;    | XDIO+ |       | TOI; TSE; | EUSEP  |             |             |                            | HEUSEF |        |        |            | XDC+     |       | XDG0+ |         |
| pa   | $\dashv$ | XMPO                                  | N OTO    | н ото    | XMIO  | -     | PURTRN    |        |             |             |                            | HEUSEF | TEUSEF | A0     |            | хмс      |       | XMG0  |         |
| pm   |          |                                       |          |          |       |       |           |        |             |             |                            |        |        | хмо    | хмо        |          |       |       |         |
| pu   |          |                                       |          |          |       |       |           |        |             |             |                            |        |        |        |            | CONSO    | CONS0 |       |         |
| pw   |          | , , , , , , , , , , , , , , , , , , , |          |          |       |       |           |        |             |             |                            |        |        |        |            |          | wo    |       | wo      |
| pl   | $\Box$   | LABD                                  | N_LO     | H_LO     |       |       |           |        |             |             |                            |        |        |        |            |          |       |       | LABOR   |
|      |          | KAPD                                  | N_KO     | н_ко     | ,     |       |           |        |             |             |                            |        |        |        |            |          |       |       | CAPITAL |
| pk   |          | FFACTD                                |          |          |       |       |           |        |             |             |                            |        |        |        |            |          |       |       | FFACT   |
| pf   | $\dashv$ | FFACID                                |          |          |       |       | -         |        |             |             |                            |        |        |        |            |          |       |       |         |
| pr   |          |                                       | N_RO     |          |       |       |           |        |             |             |                            |        |        |        |            |          |       |       | N_R     |
| pr_l | h        |                                       |          | H_RO     |       |       |           |        |             |             |                            |        |        |        |            |          |       |       | H_R     |
| pg   |          |                                       |          |          |       |       |           |        |             |             |                            |        |        |        |            |          |       | G0    | -GRG    |
| pca  | rb       | оитсо2                                |          |          |       |       |           | EIND*2 |             |             |                            | HEFD*8 | TEFD*æ |        |            |          |       |       | CARBLIM |
|      |          | TD;TI;TF                              | TD;TI;TF | TD;TI;TF |       |       | TP        |        |             |             |                            |        |        |        | TX; TM     | TP       |       | TG    | GRG     |
|      |          | Octobo                                | r / 201  | 1        |       |       |           |        | <u> </u>    | ocial       | $\overline{\Lambda_{CCO}}$ | untin  | σ Mat  | riv of | - FDD/     | <u> </u> |       | 1/1   |         |


#### {example: elec: hydro power}

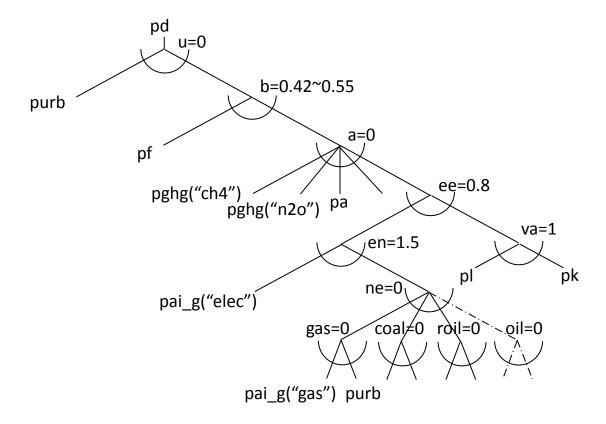

The cost function of nuclear power has the same nesting structure.





```
* hydro electric generation
$prod:h e(r)$h e0(r)
                         s:hsigma(r) a:0 kl(a):1.0
   o:pd("elec",r) q:h e0(r)
                                                        a:ra(r) t:td(r, "elec")
                   q:h 10(r)
                               p:pf0("lab", "elec", r)
                                                        a:ra(r) t:tf("lab", "elec", r)
                                                                                         kl:
   i:pl(r)
                   q:h k0(r)
                               p:pf0("cap","elec",r)
                                                        a:ra(r) t:tf("cap", "elec", r)
                                                                                         kl:
   i:pk(r)
                               p:pf0("cap","elec",r)
  i:pr h(r)
                   q:h r0(r)
                                                        a:ra(r) t:tf("cap", "elec", r)
  i:pa("serv",r) q:h s0(r)
                               p:pi0("serv", "elec", r)
                                                        a:ra(r) t:ti("serv", "elec", r)
                                                                                         a:
                   q:h ot0(r) p:pi0("othr", "elec", r)
                                                        a:ra(r) t:ti("othr", "elec", r)
   i:pa("othr",r)
                                                                                         a:
```

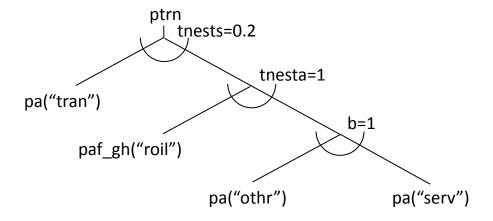
{example: elec: fossil based generation}
Some indices are omitted.

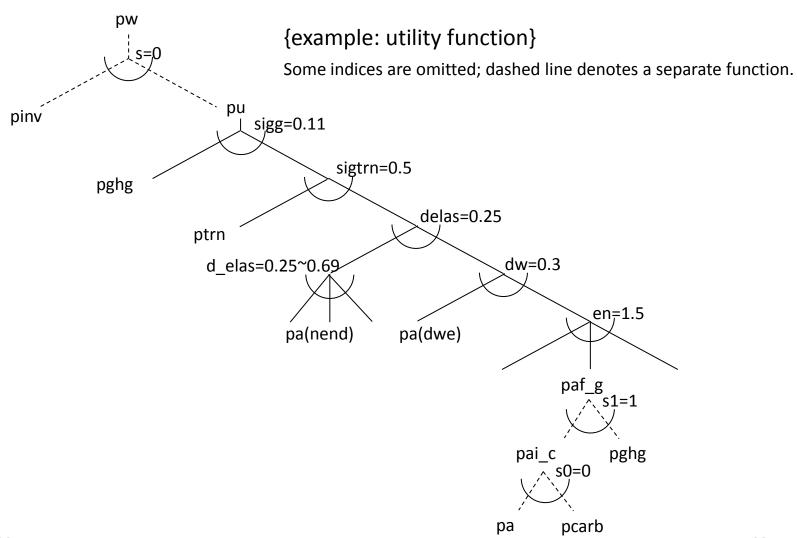






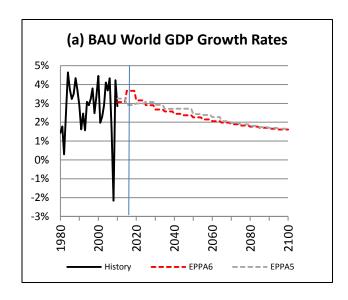




{example: coal, oil, roil, gas}

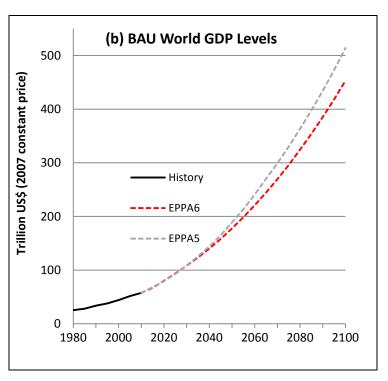

Some indices are omitted; dashed line denotes a separate function.

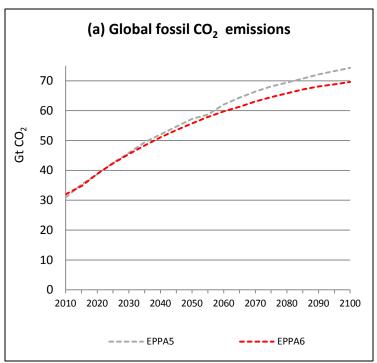


### {example: household transportation}


Some indices are omitted; dashed line denotes a separate function.







- Dynamics: exogenously specified:
  - Business-as-usual (BAU) GDP growth
  - Population growth
  - Factor-augmented productivity growths
  - Hick's neutral productivity (calibrated to match the GDP growth)
  - Income elasticity for crop, livestock and food consumption
  - Autonomous energy efficiency improvement (AEEI)
  - Fossil fuel endowments
  - Fixed factor supply (how fast the cost of a new technology drops)
- Dynamics: endogenously determined:
  - Capital accumulation
  - Fossil fuels depletion

- GDP projection:
  - Up to 2018: World Economic Outlook (IMF, 2013)
  - Beyond 2018: Paltsev et al. (2010), World Bank (2013), United Nations (2012), Gordon (2012), Empresa de Pesquisa Energética (EPE) (2007).

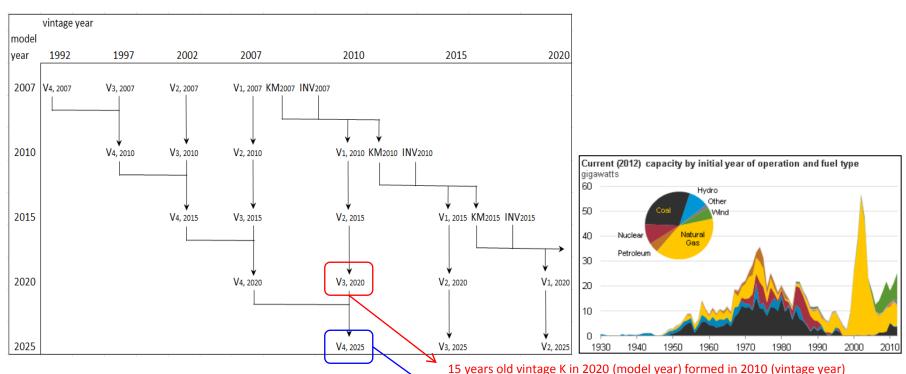


GDP and emissions projections:





- ■On top of the given factor-augmented productivity growths:
  - > The model will calibrate the regional Hick's neutral productivity growth, so for each region, the future BAU GDP matches the projection.
  - > After setting GDP growth paths, the adjustment is done automatically during the BAU run.




- •Homothetic preference:
  - When income doubles, all consumption levels double
  - Income elasticity of each good equals one
- ■Non-homothetic preference:
  - When income increases, food consumption increases but the expenditure share may decrease
  - Income elasticity of food may be less than one
- ■Use the Stone-Geary setting to model the non-homothetic preference:
  - $= U(c_1 c_1^*, c_2 c_2^*, ..., c_N c_N^*)$
  - Income elasticity of good i is  $\eta_i = \left(\frac{c_i c_i^*}{c_i}\right) / \left(\frac{w \sum_{i=1}^N c_i^*}{w}\right)$
  - $\triangleright$  Apply Engel's aggregation, we have  $c_i^* = (1 \eta_i)c_i$
  - $\succ c_i^*$  could be calibrated by a given  $\eta_i$



#### Capital Accumulation:

- Malleable and vintage capital stocks
- > In EPPA6, vintage capital stock can survive beyond 20 years subject to depreciation
- Roles of decades-old vintage capital:
  - Example: coal-fired power plants in the U.S.



28

- Capital stock accumulation in EPPA6:
  - Malleable capital (Non-sector-specific):

$$KM_{t+1} = INV_t + (1 - \theta)(1 - \delta)KM_t$$

Vintage/nonmalleable capital (Sector-specific)

$$V_{1,t} = \theta (1 - \delta)^5 K M_{t-1}$$

$$V_{2,t+1} = V_{1,t}$$

$$V_{3,t+2} = V_{2,t+1}$$

$$V_{4,t+3} = V_{3,t+2} + (1 - \delta)^5 V_{4,t+2}$$

#### ■Fossil fuels depletion in EPPA:

Fossil fuels production will draw resources from existing reserves

$$R_{e,t+1} = R_{e,t} - 5F_{e,t}$$

 $R_{e,t}$ : fossil fuel reserve in period t

 $F_{e,t}$ : total fossil fuel consumption in period t

Remember EPPA runs in a 5-year interval (from 2010 onward)



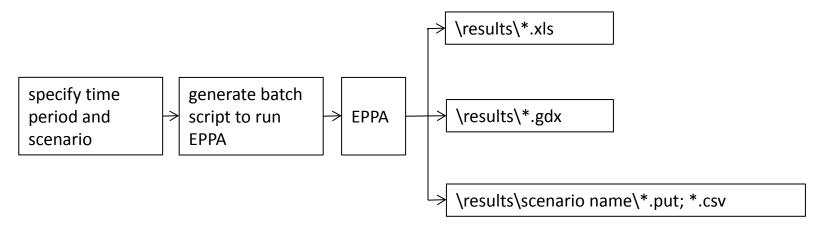
■When a backstop technology is operated, the rent to the limited fixed factor supply reflects the "n<sup>th</sup> plant story."

If backstop output  $bout_{bt,t} = 0$ , fixed factor supply is linked to the output of competing technology:

$$bbres_{bt,r,t} = inish_{bt,r} \cdot outt_{g,r}$$

If backstop output  $bout_{bt,t} > 0$ , fixed factor supply grows as backstop output increases over time:

$$bbres_{bt,r,t+1} = \alpha \cdot \left[bout_{bt,t} - (1-\delta)^5 \cdot bout_{bt,t-1}\right] + \beta \cdot \left[bout_{bt,t}^2 - (1-\delta)^5 \cdot bout_{bt,t-1}^2\right] + bbres_{bt,r,t} \cdot (1-\delta)^5$$


The fixed factor supply may become non-binding, or it may decline due to a reduced backstop output. A reduced backstop output results in the decline of technology specific input (fixed factor).



- ■Earlier EPPAs lump net income of primary factors and value-added tax together
- ■In EPPA6, value-added taxes are considered explicitly
- Easier to study tax reform/double dividend issues

```
<DIR>
25-Sep-2014
              10:26:08a
25-Sep-2014 10:26:08a
                               <DIR>
                                                      ⇒ run.gms; commandfile.bat; case files
24-Sep-2014
              9:50:24p
                               <DTR>
                                         active.
              9:54:14p
24-Sep-2014
                               <DIR>
                                         core
                                                      ⇒ static model, dynamic settings, etc.
18-Sep-2014
              3:58:20p
                               <DIR>
                                         data
                                                      ⇒ economics, energy, GHGs, populations, etc.
25-Sep-2014
              10:25:36a
                               <DTR>
                                         gdxaggr
                                                      ⇒ summary of solve status
25-Sep-2014
              11:29:04a
                               <DIR>
                                         logs
                                                      ⇒ complete solve status
25-Sep-2014
              11:28:56a
                               <DIR>
                                         lst
                                                      ⇒ definition of parameters, sets, etc.
               3:58:22p
18-Sep-2014
                               <DTR>
                                         parameters
                                                      ⇒ files to restart the model after period one
25-Sep-2014
              11:29:16a
                               <DTR>
                                         restart
                                                      ⇒ model output
25-Sep-2014
              10:40:54a
                               <DIR>
                                         results
                                                      ⇒ files to speed up solution next time
24-Sep-2014
              6:15:50p
                               <DIR>
                                         savepoint
                                                      \Rightarrow tools for EPPA
25-Sep-2014
              10:30:16a
                               <DTR>
                                         tools
18-Sep-2014
               3:58:22p
                               <DIR>
                                         uncertainty ⇒ uncertainty analysis
```

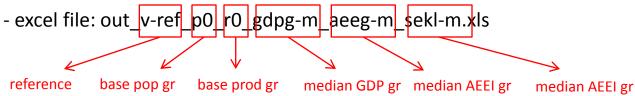
- ■EPPA is run at a 5-year interval from 2010 to 2100
- If the reference case is never run or is changed, it must be run before running the policy case (so the policy case can be run based on a correct benchmark)
- ■The policy case can be run alone afterward when the reference run exists and is unchanged.



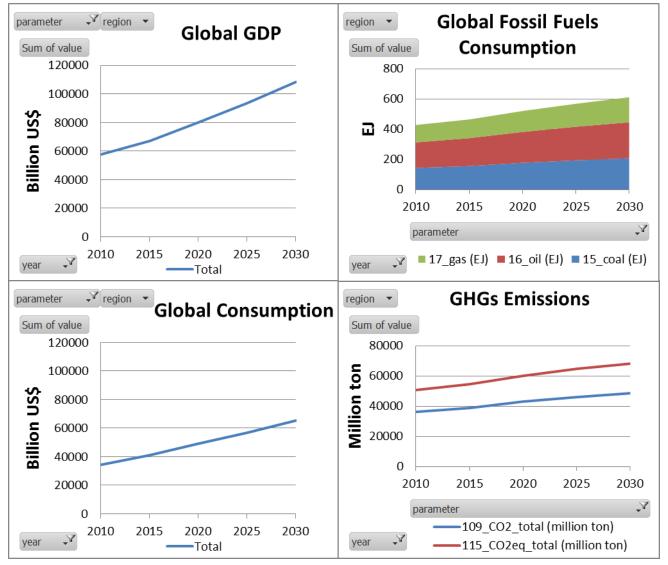
### **Exercises**

- ■The first step of running EPPA is to check the following files:
  - ChangeLog.md => what version we have, changes relative to the previous version
  - DEVELOPERS.md => guidelines for working on EPPA
  - README.md => license, requirements, etc.

| Directory   | of c:\temp\ | eppa6       |               |
|-------------|-------------|-------------|---------------|
| 18-Sep-2014 | 4:01:54p    | <dir></dir> |               |
| 18-Sep-2014 | 4:01:54p    | <dir></dir> |               |
| 18-Sep-2014 | 4:35:02p    | <dir></dir> | active        |
| 19-Sep-2014 | 2:23:40p    | <dir></dir> | core          |
| 18-Sep-2014 | 3:58:20p    | <dir></dir> | data          |
| 18-Sep-2014 | 4:37:28p    | <dir></dir> | logs          |
| 18-Sep-2014 | 4:37:28p    | <dir></dir> | lst           |
| 18-Sep-2014 | 3:58:22p    | <dir></dir> | parameters    |
| 18-Sep-2014 | 4:38:24p    | <dir></dir> | restart       |
| 19-Sep-2014 | 2:23:40p    | <dir></dir> | results       |
| 18-Sep-2014 | 4:01:54p    | <dir></dir> | savepoint     |
| 18-Sep-2014 | 3:58:22p    | <dir></dir> | uncertainty   |
| 18-Sep-2014 | 3:58:18p    | 222         | .gitignore    |
| 18-Sep-2014 | 3:58:18p    | 9,743       | ChangeLog.md  |
| 18-Sep-2014 | 3:58:18p    | 1,894       | DEVELOPERS.md |
| 18-Sep-2014 | 3:58:18p    | 1,708       | README.md     |


### **Exercises**

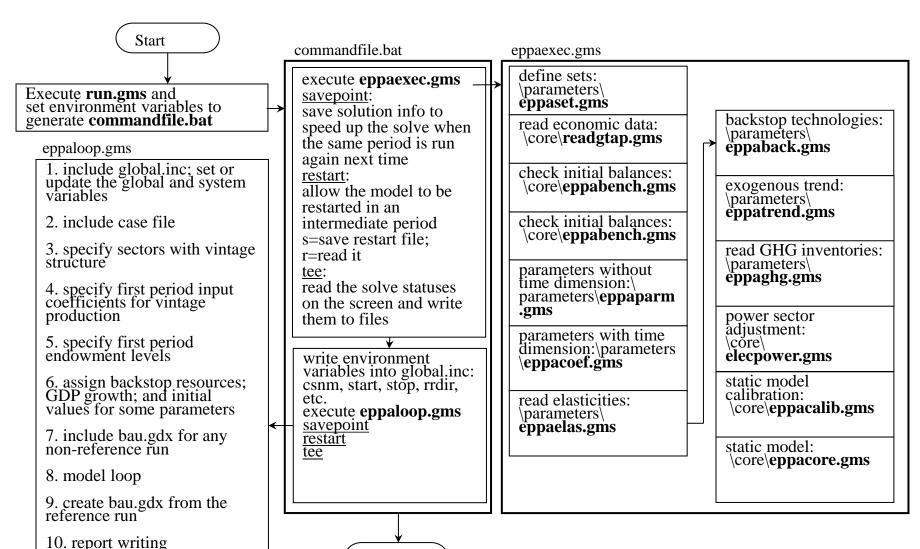
- ■How to run EPPA on PC up to year 2020
- 1) To run the reference (BAU) case v-ref-cas, in \active\, type gams run --csnm=v-ref --start=2007 --stop=2030 (this generates commandfile.bat for running v-ref.cas).
- 2) Type *commandfile*, and this will run v-ref
- 3) To run the policy case policy.cas, in \active\, type gams run --csnm=policy --start=2007 --stop=2030 (this generates commandfile.bat for running policy.cas).
- 4) Type *commandfile*, and this will run policy.




#### ■Exercise 1: Creating the reference run

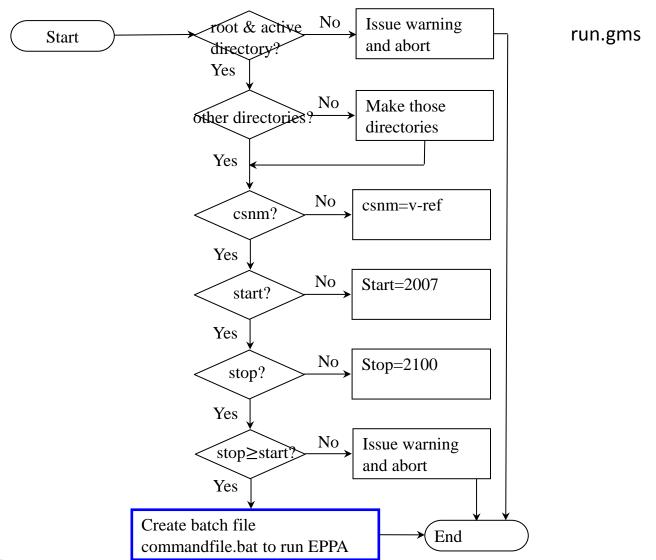
- > run the reference case up to 2030
- find the output files for the reference case
- go to the model directory: \results\
- gdx file: all\_v-ref\_p0\_r0\_gdpg-m\_aeeg-m\_sekl-m.gdx

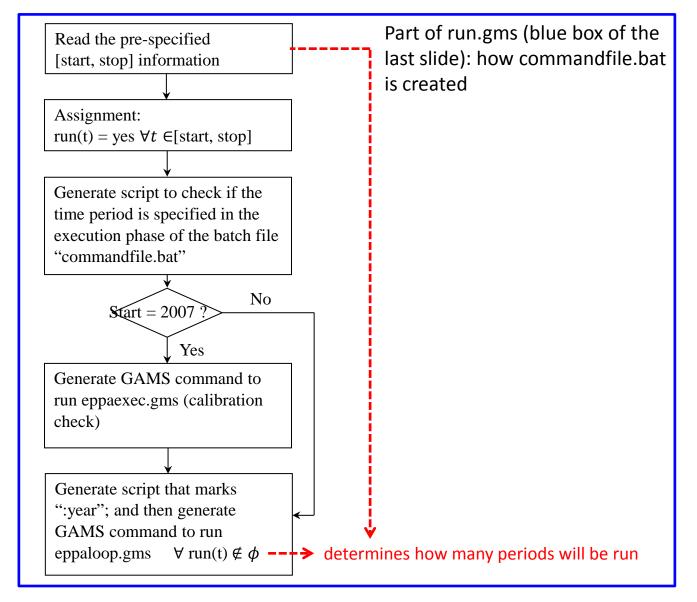



- > Find model projections for
- global GDP
- final consumptions
- emissions
- fossil fuels use

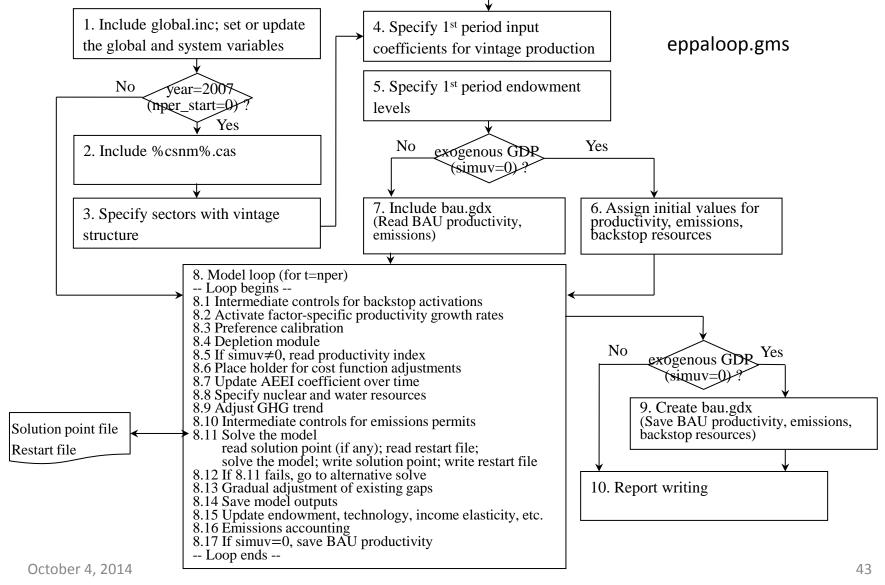





- ■To become an advanced user or a model developer...
  - ChangLog.md; DEVELOPERS.md; README.md
  - Understand the model structure (this is crucial!)







October 4, 2014 40

End





October 4, 2014



- ■Control panel for EPPA6 (\active\\*.cas):
  - simuv: =0 for exogenous GDP, =1 for endogenous GDP
  - vgequ: =0 for TFP only case, =1 for variable growth case
  - > depper(ff): when will depletion module starts
  - > available(\*,r,t): when will technologies or policies become available
  - ert(t,r): emissions reduction ratio (relative to BAU)
  - > cafelimt(t,r): cafe standard efficiency requirement
  - > cflagf(r,t): flag for carbon policy on deforestation and cement emissions
  - co2cf(r,t): flag for non-tradable (national) CO2 permit
  - > sco2cf(r,t): flag for non-tradable (sectoral) CO2 permit
  - > tco2cf(r,t): flag for tradable (international) CO2 permit
  - ghgkf(r,t): flag for non-tradable (national) GHG permit
  - sghgkf(r,t): flag for non-tradable (sectoral) GHG permit
  - ghgkwf(r,t): flag for tradable (international) GHG permit
  - ghgt: activate trading between GHG and CO2 (1=trading; 0=no-trading)
  - urbnf(urb,r,t): flag for non-tradable(national) non-GHG permit



- Exercise 2: Understanding the case files
  - Open v-ref.cas (case file for the reference scenario)
  - Where is the place for setting the availability of backstop technologies?
  - > When a backstop technology becomes available (technically feasible), will it produce some output immediately (economically feasible)?
  - Any additional assumption?



```
set
        available(*,r,t)
                                Periods in which technologies or policies are available;
available("windbio", r, t)
                              = yes$(t.val ge 2010);
                              = yes$(t.val ge 2010);
available("windgas", r, t)
                              = yes$(t.val ge 2010);
available("wind", r, t)
available("bioelec", r, t)
                              = yes$(t.val ge 2015);
available("bio-oil", r, t)
                              = yes$(t.val ge 2015);
                              = yes$(t.val ge 2007);
available("bio-fg",r,t)
available("biotrade", r, t)
                              = yes$(t.val ge 2101);
available("solar", r, t)
                              = yes$(t.val ge 2010);
available("synf-oil",r,t)
                              = yes$(t.val ge 2015);
available("synf-gas",r,t)
                            = yes$(t.val ge 2015);
available("h2",r,t)
                              = yes$(t.val ge 2020);
                             = yes$(t.val ge 2010);
available("windbio", r, t)
available("windgas", r, t)
                              = yes$(t.val ge 2010);
available("ngcc", r, t)
                              = yes$(t.val ge 2015);
available("ngcap", r, t)
                              = yes$(t.val ge 2020);
available("igcap", r, t)
                              = yes$(t.val ge 2020);
available("adv-nucl",r,t)
                            = yes$(t.val ge 2020);
                            = yes$(t.val ge 2110);
available("cafe", "usa", t)
available("limcoalf", "usa", t) = yes$(t.val ge 2010);
available("limcoalf", "eur", t) = yes$(t.val ge 2010);
available("coalmkup", r, t)
                              = yes$(t.val ge 2010);
```



- Exercise 3: Replicating the reference run
  - Open baseline.cas (case file for the reference scenario)
  - Any differences between baseline.cas and v-ref.cas?
  - Run baseline.cas
  - Compare GDP results from baseline.cas and v-ref.cas



```
* ..\active\v-ref.cas
$TITLE EPPA6 --- Baseline scenario

* Use simuv to run exogenous BAU GDP: exogenous GDP = 0; endogenous GDP = 1
$setglobal simuv 0
simu = %simuv%;

* ..\active\baseline.cas
$TITLE EPPA6 --- Baseline scenario

* Use simuv to run exogenous BAU GDP: exogenous GDP = 0; endogenous GDP = 1
$setglobal simuv 1
simu = %simuv%;
```



- Remember that *v-ref.cas* is using a given GDP profile to calibrate TFP, while baseline.cas is treating the calibrated TFP as given and endogenously calculating GDP.
- ■With a higher level of numerical precision by taking more decimal points, you may find there are tiny differences between numbers from the two cases, but that is simply due to numerical reasons such as rounding errors, etc.

|      | billion US\$ | Global GDP: v-ref.cas | Global GDP: baseline.cas |
|------|--------------|-----------------------|--------------------------|
|      |              |                       |                          |
| 2010 |              | 57634.91              | 57634.91                 |
|      |              |                       |                          |
| 2015 |              | 67036.90              | 67036.90                 |
|      |              |                       |                          |
| 2020 |              | 80262.71              | 80262.70                 |
|      |              |                       |                          |
| 2025 |              | 93768.04              | 93768.04                 |
|      |              |                       |                          |
| 2030 |              | 108192.74             | 108192.74                |



#### ■Exercise 4: Creating the policy run

- Open policy.cas (case file for the policy scenario)
- Treating the calibrated TFP as given and endogenously calculating GDP
- What kind of policy is imposed?
- When will be the policy in place?
- Run policy.cas up to 2030
- What is the impacts on GDP, emissions, and energy use?



2050

0.381

0.381

0.381

0.381

0.381

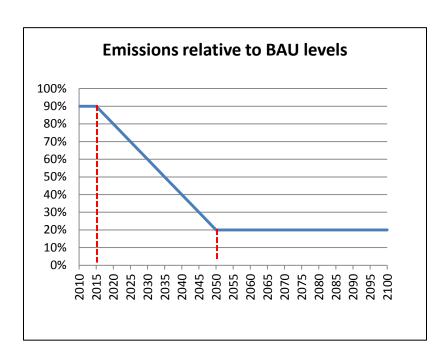
#### **Exercises**

```
* flag for CO2 policy on cement/eint emissions and (if applicable) deforestation emissions
cflagf(r,t)$(t.val ge 2015)
                               = yes;
* flag for non-tradable (national) CO2 permit: co2cf(r,t) controls the on and off for co2c(r) in eppaloop
co2cf(r,t)$(t.val ge 2015)
                               = ves;
* Emissions reduction relative to 2010 levels (target: 50% of 2000 levels for combustion CO2)
* Rigorously, for each GHGs and urban gases, their target tables need to be re-assigned
table ert(t,r) emissions ratio table
       usa
               can
                      mex
                              jpn
                                     anz
                                             eur
                                                    roe
                                                            rus
                                                                   asi
                                                                           chn
                                                                                  ind
2010
       1.000
              1.000
                      1.000
                             1.000
                                     1.000
                                             1.000
                                                    1.000
                                                            1.000
                                                                   1.000
                                                                           1.000
                                                                                  1.000
2015
       0.900
              0.900
                      0.900
                             0.900
                                     0.900
                                             0.900
                                                    0.900
                                                            0.900
                                                                   0.900
                                                                           0.900
                                                                                  0.900
                             0.826
                                             0.826
                                                            0.826
                                                                           0.826
2020
       0.826
              0.826
                      0.826
                                     0.826
                                                    0.826
                                                                   0.826
                                                                                  0.826
2025
       0.752
              0.752
                     0.752
                             0.752
                                     0.752
                                             0.752
                                                    0.752
                                                            0.752
                                                                   0.752
                                                                           0.752
                                                                                  0.752
2030
       0.678
              0.678
                     0.678
                             0.678
                                    0.678
                                            0.678
                                                    0.678
                                                           0.678
                                                                   0.678
                                                                          0.678
                                                                                  0.678
2035
                                                                           0.604
       0.604
              0.604
                     0.604
                             0.604
                                    0.604
                                            0.604
                                                    0.604
                                                            0.604
                                                                   0.604
                                                                                  0.604
2040
      0.530
              0.530
                     0.530
                             0.530
                                    0.530
                                             0.530
                                                    0.530
                                                            0.530
                                                                   0.530
                                                                           0.530
                                                                                  0.530
2045
      0.456
              0.456
                     0.456
                             0.456
                                    0.456
                                             0.456
                                                    0.456
                                                            0.456
                                                                   0.456
                                                                           0.456
                                                                                  0.456
```

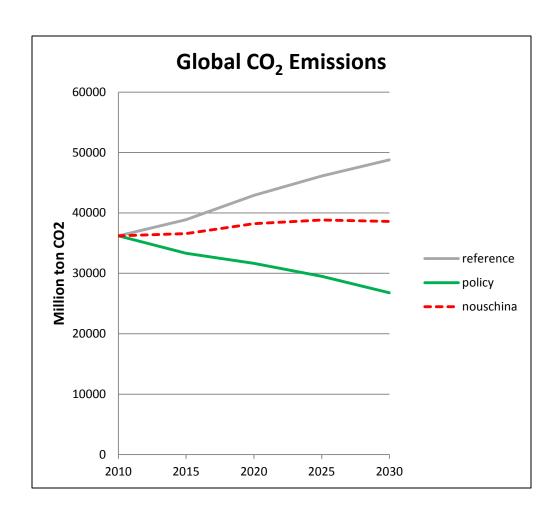
October 4, 2014 51

0.381

0.381


0.381

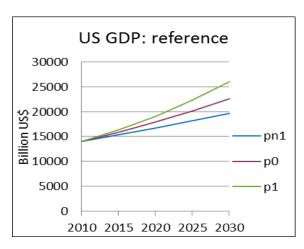
0.381

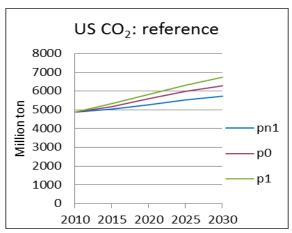

0.381

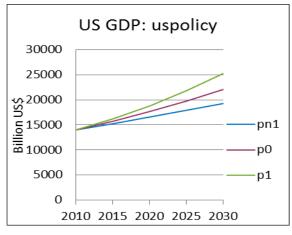
0.381

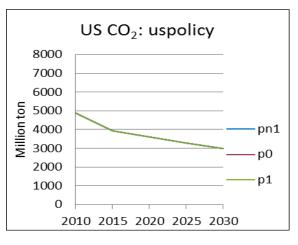
- ■Inside policy.cas, we have:
  - > co2cf(r,t)\$(t.val ge 2015) = yes;
  - cflagf(r,t)\$(t.val ge 2015) = yes;
  - > table ert(t,r): Emissions relative to BAU levels

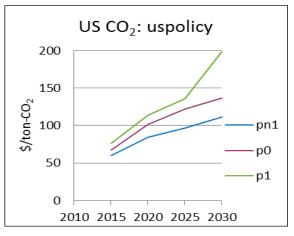



- Exercise 5: Roles of the US and China
  - Save policy.cas as a new case file named "nouschina.cas" to work on
  - > Implement the same carbon policy on all regions except for China and US (Hint: flags for controlling the carbon policy implementation in these two regions need to be changed)
  - Run the case newpolicy.cas up to 2030
  - Compared the CO2 emissions levels with those from baseline.cas and policy.cas





- Exercise 6: A small uncertainty analysis
  - > Taking the US for instance and considering the time horizon up to 2030, if, starting from 2015, the annual US population growth is 1% higher (e.g. 1.4% -> 2.4%) or 1% lower (1.4% -> 0.4%) until 2030, compared to the original population growth profile, what would be the implications on the business-as-usual (reference) GDP growth and CO<sub>2</sub> emissions?
  - If the given CO<sub>2</sub> cap in the case file is only implemented in the U.S., what will be the CO<sub>2</sub> prices overtime under the above three population growth assumptions?
  - See hints in the next two slides before proceeding!


- Hint: I have put  $\pm 1\%$  population growth parameterizations in each case file, i.e., a single case file can produce different population growth profiles.
- type *gams run --csnm=baseline --start=2007 --stop=2030 --popg=p1* to produce the "commandfile" for the reference case with "+1%" population growth profile
- type commandfile for running the model, and check the EXCEL and GDX outputs
- type *gams run --csnm=baseline --start=2007 --stop=2030 --popg=pn1* to produce the "commandfile" for the reference case with "-1%" population growth profile
- type commandfile for running the model, and check the EXCEL and GDX outputs
- Remember the reference case with benchmark population growth is produced in Exercise 3 (by default popg=p0)
- Save policy.cas as a new case file named "uspolicy.cas" to work on, revise the case file to implement a US-only carbon policy.
- One more thing we need to do before running the model: you need to revise the setting of labor(r)\$(ord(t) gt 1) in subsection 8.15 of eppaloop.gms.


- Now, follow the same procedure in the previous slides, let us produce the respective commandfile for popg=pn1, popg=p0, and popg=p1
- You can extract data from 6 EXCEL files or 6 GDX files. But that could be cumbersome!
- I will show you a routine for merging the 6 GDX files into a single one in \tools\gdxaggr\











- ■A CGE model has N equations with N endogenous variables
  - With one more constraint, there must be an additional "freed" variable
  - $\triangleright$  If CO<sub>2</sub> emission is exogenous (emission cap is given), then CO<sub>2</sub> price must be endogenous
  - $\rightarrow$  If CO<sub>2</sub> price is exogenous (carbon price is given), then CO<sub>2</sub> emission must be endogenous
  - > In our previous examples, we implement emissions caps, which means CO<sub>2</sub> prices are endogenously determined
  - We may also set up CO<sub>2</sub> prices exogenously, and in that case, the emissions levels will be endogenous

#### Guidelines

- ■Why do we need these guidelines
  - Let others understand our code, settings, data source, etc.
  - Avoid "GIGO": know how to explain model results
  - Crucial for future model development and maintenance
- ■What are the guidelines for working on EPPA
  - > Back up the last version
  - Follow the existing model structure
    - ✓ Where are parameters declared?
    - ✓ Where are sets declared?
    - ✓ How are variables created?
    - ✓ ALWAYS bring all key controls to the case file!
  - Keep the code clean and readable
  - Put comments explaining changes
  - Documentation (required: ChangeLog.md; JP technical Report)

#### Guidelines

The same structure (the top one is even more sophisticated – it has valued added taxes) but...

```
* set elec = {elec}
$prod:d(g,r)$xp0(r,g)$elec(g) s:sigg("sf6",g,r) u:sigu(g) b(u):0.6 a(b):0 ee(a):selas(r,g,"e kl") va(ee):selas(r,g,"l k")
        o:pd(g,r)$(not x(g))
                                                                         q:xp0(r,q)
                                                                                                                         a:ra(r) t:td(r.g)
        o:phom(g,r)$x(g)
                                                                         q:xp0(r,g)
                                                                                                                         a:ra(r) t:td(r,g)
       i:pa(ne,r)
                                                                         q:(xdp0(r,ne,g)+xmp0(r,ne,g)) p:pi0(ne,g,r) a:ra(r) t:ti(ne,g,r)
       i:pl(r)
                                                                         g:labd(r,g)
                                                                                                       p:pf0("lab",q,r) a:ra(r) t:tf("lab",q,r)
                                                                                                       p:pf0("cap",g,r) a:ra(r) t:tf("cap",g,r)
        i:pk(r)
                                                                         q:kapd(r,g)
                                                                         q: (ene (g, r) *aeei (r, g))
        i:pen(g,r)
                                                                                                                                                   ee:
        i:pf(q,r)
                                                                         g:ffactd(r,g)
                                                                                                                                                   b:
        i:pghg(ghg,r)$((not ss(g,r))$ghglim(ghg,r)$(not wghgk))
                                                                         q:oghq(ghq,q,r) p:(1/qu(ghq))
        i:pghgw(ghg)$(ghglim(ghg,r)$wghgk)
                                                                         q:oghg(ghg,g,r) p:(1/gu(ghg))
        i:sqhq(qhq,q,r)$(qhqlimq(qhq,q,r)$oqhq(qhq,q,r))
                                                                        q:oghg(ghg,g,r) p:(1/gu(ghg))
        i:purb(urb,r) $urblim(urb,r)
                                                                         g:ourb(urb,g,r) p:(1/qu(urb))
                                                                                                                                                   u:
        i:pren(r)$srenc(r)
                                                                         q: (phi(r) *xp0(r,q))
```

```
* ELEC
$PROD:D(G,R)$XPO(R,G)$elec(g) s:sigg("sf6",g,r) u:sigu(g) b(u):0.6 a(b):0 ee(a):SELAS(R,G,"E KL")
                                              va(ee):SELAS(R,G,"L K")
       O:PD(G,R)$(NOT X(G)) Q:XPO(R,G)
                                          A:RA(R) T:TD(R,G)
       O:PHOM(G,R)$X(G)
                                       A:RA(R) T:TD(R,G)
                          O:XP0(R,G)
       I:PGHG(GHG,R)$(GHGK(R)$qhqlim(qhq,r)$(not ss(q,r))) Q:OGHG(GHG,q,r) P:0.001
       I:PGHG gwp(GHG,R)$(ghg gwp$ghg gp(ghg,r)$(not ss(g,r))) Q:OGHG(GHG,q,r) P:0.001
       I:PGHGw(GHG)$(ghgkw(r)$wghgk)
                                           Q:OGHG(GHG,q,r) P:0.001
       I:PGHGw gwp(GHG)$(ghg gwc(r)$ghg gwp$ghg gw(ghg))
                                                           Q:OGHG(GHG,q,r)
                                                                                     P:0.001
       I:SGHG (GHG, G, R) $ (SGHGK (R) $ss(q,r)) Q:OGHG (GHG, q,r) P:0.001
       I:PURB(URB,R) $urbn(urb,r) Q:OURB(URB,q,r) P:O u:
       I:PA(NE,R)
                   Q: (XDPO(R, NE, G) + XMPO(R, NE, G)) P: PIO(NE, G, R)
                                                       A:RA(R) T:TI(NE,G,R) a:
       I:PL(R)
                           O:LABD(R.G)
                                           va:
       I:PK(R)
                           Q:KAPD(R,G)
                                           va:
       I:PEN(G,R)
                           Q: (ENE (G, R) *ELEKADJ (G, R))
                                                              ee:
       I:PF(G.R)
                           Q:FFACTD(R,G) b:
       I:PREN(R) $SRENC(R) Q: (PHI(R) *XPO(R,G))
```

1

#### Guidelines

- •How can we add a new backstop technology into EPPA
  - Study the engineering data
    - ✓ Cost markup relative to the current technology?
    - ✓ Input-output structure?
    - ✓ How fast might the technology grow once economic (fixed factor setting)?
    - ✓ Cost function structure?
    - ✓ Substitution/transformation elasticities?
    - ✓ Is the vintage backstop necessary?
  - > Add the technology into the model
    - ✓ Check the model structure figures!
    - ✓ Declare the new technology? (eppaset.gms; eppacore.gms)
    - ✓ Implement the cost function by MPSGE? (eppacore.gms)
    - ✓ Declare the input/output coefficients? (eppaparm.gms)
    - ✓ Specify the substitution elasticity? (eppaback.gms)
    - ✓ Specify the fixed factor? (eppaloop.gms, eppacore.gms)
    - ✓ Save the technology's output/input for each period? (eppaloop.gms)
    - ✓ Any related emissions? (eppaemis.gms)
    - ✓ Report writing? (report.gms)
  - Make sure the model solves up to 2100

# Bibliography

• Chen, Y.-H. H. (2014). The MIT EPPA6 Model: Economic Growth, Energy Use, and Food Consumption. 2014 GTAP Conference Paper; forthcoming Joint Program Report.

https://www.gtap.agecon.purdue.edu/access\_member/resources/res\_display.asp?RecordID=4443

• Paltsev et al. (2005). Joint Program Report 125

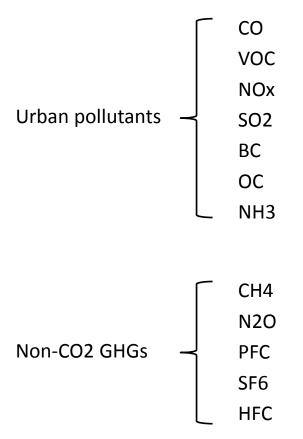
http://globalchange.mit.edu/research/publications/697

• Chen, Y.-H. H. (2012). Introduction to EPPA (Part II)

Wiki page/Research/EPPA Group

• Chen, Y.-H. H. (2010). An Introduction to the MIT Emissions Prediction and Policy Analysis (EPPA) Model

Wiki page/Research/EPPA Group


Karplus, V. (2011). EPPA Model Basics

Wiki page/Research/EPPA Group

# THANK YOU!



# Appendix



# **Appendix**

■SO2 (Gg); 2007

| FD      | GAS  | COAL     | ROIL    | EINT     | FOOD   | FORS    | CROP  |     |
|---------|------|----------|---------|----------|--------|---------|-------|-----|
| 665.46  | 0.40 | 3064.73  | 437.88  | 1291.58  | 9.68   | 3193.26 | 11.55 | AFR |
| 85.38   | 0.01 | 717.94   | 115.78  | 1966.66  | 13.72  | 134.90  | 5.15  | ANZ |
| 228.06  | 0.02 | 1902.28  | 1449.68 | 1129.43  | 11.88  | 14.76   | 42.86 | ASI |
| 98.89   | 0.01 | 337.64   | 272.90  | 903.57   | 40.32  | 21.81   | 53.94 | BRA |
| 301.54  | 0.02 | 807.69   | 367.38  | 863.57   | 73.23  | 6.36    | 1.59  | CAN |
| 1941.69 | 0.03 | 21204.20 | 2249.12 | 10649.53 | 53.57  | 2.54    | 3.67  | CHN |
| 993.72  | 0.05 | 5095.40  | 2583.11 | 1982.45  | 208.35 | 1.49    | 6.83  | EUR |
| 125.15  | 0.03 | 1036.05  | 460.44  | 908.60   | 23.74  | 111.77  | 56.72 | IDZ |
| 853.58  | 0.01 | 4885.87  | 135.82  | 2033.41  | 9.29   | 3.28    | 68.61 | IND |
| 724.60  | 0.00 | 707.35   | 544.65  | 848.58   | 55.25  | 0.37    | 0.16  | JPN |
| 129.66  | 0.00 | 433.30   | 470.94  | 439.17   | 15.09  | 0.00    | 0.08  | KOR |
| 204.67  | 0.06 | 1918.04  | 586.83  | 2533.60  | 17.70  | 63.11   | 30.61 | LAM |
| 322.36  | 0.33 | 4373.51  | 738.41  | 1539.21  | 1.34   | 0.07    | 2.26  | MES |
| 189.42  | 0.03 | 1139.70  | 120.22  | 190.88   | 6.60   | 3.11    | 5.24  | MEX |
| 303.50  | 0.02 | 1220.96  | 238.85  | 911.45   | 1.81   | 159.38  | 77.24 | REA |
| 347.76  | 0.10 | 3597.96  | 256.39  | 2666.63  | 7.53   | 11.36   | 12.25 | ROE |
| 717.73  | 0.54 | 2132.51  | 259.36  | 2826.78  | 26.07  | 0.19    | 6.36  | RUS |
| 157.00  | 0.02 | 7856.95  | 908.12  | 1354.64  | 235.25 | 1.46    | 6.57  | USA |
|         |      |          |         |          |        |         |       |     |

# **Appendix**

```
 = \frac{1}{\sqrt{\frac{1}{2}} \operatorname{so2\_a(r,g)}} = \frac{\operatorname{so2\_a(r,g)} \cdot \frac{\operatorname{efd(e,r)}}{\left[\sum_{i} \operatorname{eind(e,i,r)} + \operatorname{efd(e,r)}\right]} }{\operatorname{curb00("so2",e,"fd",r)} = \operatorname{so2\_a(r,g)} \cdot \frac{\operatorname{eind(e,g,r)}}{\left[\sum_{i} \operatorname{eind(e,g,r)} + \operatorname{efd(e,r)}\right]} } 
             so2_a(r, "fd") => ourb("so2", "fd", r) => hhurb("so2", t, r) => household emissions with exogenous trends
```