

Going from Static to Dynamic CGE Models

Justin Caron Jcaron@mit.edu

October 3, 2014

EPPA Workshop Sunday River, Newry, ME

Outline

- 1. Going from a static to a dynamic CGE model the basics
- 2. A simple 2x2 recursive-dynamic model
- 3. Exercise: Introduction of a stylized climate policy
- 4. Other elements of dynamics included in EPPA
- 5. Tomorrow: introduction of an advanced technology backstop

Why dynamics ?

We want to capture the **dynamic structure of the** economy:

- Population, labor productivity, the capital stock and resource depletion change over time
- Activity in one period affects the availability of capital and resources in future periods
- Different regions or sectors may grow at different rates
- Penetration of new technologies takes time
- The impact of policies evolves over time

Dynamic modeling

Role of expectations in economic decision-making:

Recursive Dynamic CGE

- Myopic agents
- Model is solved period after period sequentially

Forward-looking Dynamic CGE

- Each agent maximizes its inter-temporal utility or the present value of profits based on both current and expected future prices
- All periods are solved *simultaneously*

We focus here on recursive-dynamic decision-making, i.e. we will consider a sequence of static models.

The following features of the EPPA capture the **dynamic characteristics** of the economy and energy system:

- 1 Population growth
- 2 Labor productivity growth
- 3 Energy efficiency improvements
- 4 Investments and capital accumulation
- 5 Fossil fuel resource depletion
- 6 Availability of advanced "backstop" energy supply technologies

In the model: 1-3 are "exogenous"; 4-6 are "endogenous"

We need to add to the model:

- 1 an activity that "**supplies**" an investment good
- 2 "demand" for investment

Investment supply:

Consider a closed economy model where savings (S) equal investment (I).

Assume a constant marginal propensity to save (*s*), i.e. a constant fraction of income (*M*) is allocated to savings:

$$I = S = s \frac{M}{P_I}$$

Investment and capital accumulation (2)

The capital stock (*KS*) accumulates according to:

$$KS_{t+1} = I_t + (1 - \delta) KS_t$$

Where δ is the depreciation rate of capital.

In the model, we do not track capital stocks but capital earnings (K), where:

$$K_t = \rho KS_t$$

 ρ is the rate of return on capital.

Capital earnings thus increase according to:

$$K_{t+1} = \rho I_t + (1 - \delta) K_t$$

A simple 2 by 2 recursive-dynamic model

We now consider a simple illustrative recursive dynamic CGE model.

- Most EPPA versions are recursive dynamic
- **Today:** introduce a simple climate policy
- Tomorrow: introduce a backstop technology
- Model is in 2x2RD.gms

2x2RD.gms - Recursive dynamics – model structure

```
$TITLE Two-by-Two recursive dynamic CGE
$MODEL:M21
                                                  Define the static MPSGE model
$SECTORS:
       X ! Activity level of sector X
...
M21.ITERLIM = 0;
                                                 Check benchmark calibration
$INCLUDE M21.GEN
SOLVE M21 USING MCP;
                                                 Define number of time periods
SETS t /2010*2030/;
LOOP(t,
                                                  For each time period,
M21.iterlim = 1000;
                                                  1. Solve model
$INCLUDE M21.GEN
SOLVE M21 USING MCP;
* report of time-specific parameters
                                                  2. Report time-dependent
OUT(t, "sec X") = OX.L+eps;
                                                     results
* update labor and capital endowments
K = K^* (1-delta) + ror^* 20^* INV.L;
                                                  3. Update capital and labor
L = L^{*}(1 + grate);
                                                      endowments
```

GLOBAL CHANGE

2x2RD.gms – The static model

The static model:

- All sectors are constant-return-to-scale (CRS)
- 2 sectors: X and Y
- 2 factors: L (labor) and K (capital), which move freely between sectors
 - X is relatively capital-intensive
 - Y is relatively labor-intensive
 - The production of X emits CO2, the production of Y does not

\$PROD:X s:0	b:1		\$PROD:Y s:1	
O:PX	Q:100		O:PY	Q:100
I:PL	Q:25	b:	I:PL	Q:75
I:PK	Q:75	b:	I:PK	Q:25
I:PC\$policy	Q:25			

2x2RD.gms - Investment

We add an "Investment" sector in the static model by declaring a new production activity and a new commodity:

\$SECTORS: INV	! Activity level of sector INV
\$COMMODITI PINV	ES: ! Price index of commodity INV
\$PROD:INV O:PINV I:PX	Q:20 Q:20
\$PROD:W s: O:PW I:PX I:PY I:PINV	$\begin{array}{ccc} 0 & s1(s):1 \\ & Q:200 \\ & Q:80 \\ & Q:100 \\ & Q:20 \end{array} \end{array} \begin{array}{c} s1: \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $

Static model

• The Social Accounting Matrix (SAM) in the base year

2x2RD.gms - Dynamics

Dynamics: the drivers of economic growth

- Population and labor productivity growth, which combined are assumed to have a growth rate of 1% (grate)
- Capital accumulation, subject to a depreciation rate of 1% (*delta*)

```
* labor and capital income at benchmark
L = 100;
K = 100;
* depreciation rate and rate of return on capital
delta = 0.01;
ror = 0.1;
* labor productivity and population growth rate
grate = 0.01;
-- IN LOOP AFTER SOLVE:
* update labor and capital endowments
L = L*(1 + grate);
K = K*(1 - delta)+ror*20*INV.L;
```


Steady-state model

The identities behind the SAM hold for the next period

Output

Reporting variables in MPSGE code:

\$REPORT:		
V:OW	O:PW	PROD:W
V:OX	O:PX	PROD:X
V:OZ	O:PX	PROD:Z
V:OY	O:PY	PROD:Y
V:OINV	O:PINV	PROD:INV

Track evolution of variables over time:

OUT(t,"sec_X")	=	OX.L+eps;
OUT(t,"sec_Z")	=	OZ.L+eps;
OUT(t,"sec_Y")	=	OY.L+eps;
CLIMbyt(t)	=	CLIM+eps;
PCbyt(t)	=	PC.L+eps;
PLbyt(t)	=	PL.L+eps;
PKbyt(t)	=	PK.L+eps;
Wbyt(t)	=	OW.L+eps;
kbyt(t)	=	К;

These parameters are dumped to **output.gdx**

Some results: steady state

 At steady-state, absent policy, factor endowments, production and investment all grow at 1% per year

GLOBAL CHANGE

Introducing a simple climate policy

- CO2 emissions are priced in a cap-and-trade-like policy
- Policy enters from 2016 onward and reduces emissions by 3% annually relative to Business-as-Usual (BAU)

```
policy = yes$(t.val ge 2016);
```

reduce emissions by 3 % per year starting in 2016 (relative to BAU growth)

CLIM\$policy = CLIM*0.97; CLIM acts as a cap on total emissions

Impact of policy

- Gradually increasing carbon permit price
- Welfare (consumption) decreases

Pcbyt parameter

Wbyt parameter

Impact of policy

- Output of X relative to Y decreases
- Relative price of capital falls

Out parameter

Sectoral output

Factor prices

PLbyt and PKbyt parameters

- 1. Implement the carbon policy starting in 2016 and replicate the results just shown.
- 2. Double the labor productivity growth rate, with and without policy. What happens?
- Gradually reduce the CO2 intensity of the X sector (AEEI autonomous energy efficiency improvement) by 3% per year starting in 2023 - What happens to the CO2 permit price ? To output ?

2. Double the labor productivity growth rate, with and without policy. What happens? qrate = 0.02;No policy case:

2. Double the labor productivity growth rate, with and without policy.
What happens?
grate = 0.02;
With policy

Carbon price (PC)

3. Gradually reduce the CO2 intensity of the X sector (AEEI – autonomous energy efficiency improvement) by 1% per year starting in 2023 – what happens to the CO2 permit price ? To output?

3. Gradually reduce the CO2 intensity of the X sector (AEEI – autonomous energy efficiency improvement) by 1% per year starting in 2023 – what happens to the CO2 permit price ? To output?

GLOBAL CHANGE

More elements of dynamics present in EPPA

- 1 . Vintaging of the capital stock
 - Only a proportion of the capital stock is mobile across sectors and some capital is "frozen" into existing production techniques.
- 2. Resource depletion
 - The EPPA model incorporates empirical estimates of fossil fuel reserves by region
 - Increased fossil fuel production reduces the amount of resources available in future periods
- 3. Consumption patterns evolve as income grows (non-homothetic preferences)
- 4. Backstop technologies: will be covered tomorrow!

