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Recap: Climate change impact

Land & Ocean Temperature Percentiles Jan-Dec 2015
NOAA's National Centers for Environmental Information
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All the Factors (and other Fs)

Radiative forcing
Effective radiative forcing
Forcings

Feedback



Radiative Forcing (RF)

RF = Change of net downward
energy to Earth

If the system is in balance, the
radiative forcing would be zero.

Effective radiative forcing
Realistic RF with feedbacks

EARTH'S ENERGY BUDGET
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Forcings: Factors impacting radiative forcing

Anthropogenic

Natural

Radiative forcing of climate between 1750 and 2011
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Feedbacks

Feedback agents response to
the forcing and may intensify
the radiative forcing

- Water vapor

- lce-albedo

- Clouds

- Biogeochemical

Longwave

radiation
D

Snow/ice Clouds

albedo Lapse rate

Water

vaporl

Emission of non-CO,

greenhouse gases
+/ and aerosols

Peat and permafrost
decomposition

+HOURS DAYS
&= Longwave rad. mes
o Lapse rate s
@m Water vapor m
e Clouds mees
= Snow/sea ice albedom

YEARS

CENTURIES =

Air-land CO, exchange
and biogeochemical
processes

Biogeophysical
processes

Air-sea CO,
exchange

essmmmmm Air-land CO, exchange m———
s Biogeophysics s
s Non-CO, GHG and aerosols s
@ Air-sea CO, exchange e
s Peat/Permafrost ses
o Land ice m—
e Ocean circ. =




Water Vapor { To4 I'rq-z_‘_'r?_ T+2 Ts+4 Temperature change

It is a stronger “greenhouse gas”
than CO2

o B el
o

However, the vapor amount is not
directly controlled by human, so it’s a
feedback agent and not a forcing

Water vapour

Can multiply the warming by 2-3
times greater

IPCC, 2014 10



5 Paleogeography from
global mean surface temperature (°C)  powell et al. (2001)
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THE POWER OF POLLUTION

heeosols = Biny particles from pollubon, volcanoes, du

Clouds

Cloud Effects On Earth's Radiation
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Biogeochemical feedback
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Climate Sensitivity

Climate sensitivity measures
temperature response to doubling of
atmospheric CO2

Temperature change (°C)
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Main drivers of climate change
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Tons of physics in each
ocean (and atmosphere)
box!
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Today’s climate models have many
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To make future predictions, must also
predict what humans will do!

Human System

Economic Projection and Policy Analysis (EPPA)

National and/or Regional Economic Development, &
Emissions, & Land Use
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o 4 Coupled Ocean,
Atmosphere, and Land
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Ocean Land
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. Exchanges represented in standard runs of the system
. Exchanges utilized in targeted studies

MIT IGSM

. Implementation of feedbacks is under development



Sub-grid scale processes must be parameterized

30—-100 km

20
Climate dynamics group, Caltech
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Must tune model due to many parameters — High model spread

Global mean temperature near-term projections relative to 1986-2005
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Extreme weather events in a warmer world
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Temperature

(a) Increase in mean
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IPCC
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Warmer ocean — Fewer but more intense tropical cyclones
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“Dry gets drier, wet gets wetter”

CHANGE IN PRECIPITATION BY END OF 21st CENTURY
inches of liquid water per year

as projected by NOAA/GFDL CM2.1
Credit: NOAA Geophysical Fluid Dynamics Laboratory
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“Dry gets
drier, wet gets
wetter”

LATITUDE

LONGITUDINALLY AVERAGED
1950-2000 PRECIPITATION

as modeled by NOAA/GFDL CM2.1
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Global surface temperature change (° C)

Tomorrow!
6:30 PM: Climate policy

5:30 PM: Actually making
climate predictions

12 e o o b b

historical 12
100 RCP2.6 39 =
g - = RCP4.5 25

RCP6.0

42
32

‘o

1850 1900 1950 2000 2050 2100 2150 2200 2250 2300

Year

and local initiatives

31



Questions?




