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Abstract: Methane (CH4) is the second most critical greenhouse gas after carbon dioxide, contributing 
to 16-25% of the observed atmospheric warming. Wetlands are the primary natural source of methane 
emissions globally. However, wetland methane emission estimates from biogeochemistry models contain 
considerable uncertainty. One of the main sources of this uncertainty arises from the numerous uncertain 
model parameters within various physical, biological, and chemical processes that influence methane 
production, oxidation, and transport. Sensitivity Analysis (SA) can help identify critical parameters for 
methane emission and achieve reduced biases and uncertainties in future projections. This study performs 
SA for 19 selected parameters responsible for critical biogeochemical processes in the methane module 
of the Energy Exascale Earth System Model (E3SM) land model (ELM). The impact of these parameters 
on various CH4 fluxes is examined at 14 FLUXNET- CH4 sites with diverse vegetation types. Given the 
extensive number of model simulations needed for global variance-based SA, we employ a machine learning 
(ML) algorithm to emulate the complex behavior of ELM methane biogeochemistry. ML enables the 
computational time to be shortened significantly from 6 CPU hours to 0.72 milliseconds, achieving reduced 
computational costs. We found that parameters linked to CH4 production and diffusion generally present 
the highest sensitivities despite apparent seasonal variation. Comparing simulated emissions from perturbed 
parameter sets against FLUXNET-CH4 observations revealed that better performances can be achieved at 
each site compared to the default parameter values. This presents a scope for further improving simulated 
emissions using parameter calibration with advanced optimization techniques like Bayesian optimization.
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1. Introduction
Methane (CH4) is a potent greenhouse gas, responsible for 
approximately 20% of the warming potential as a result of 
anthropogenic activities since the start of the Industrial 
Revolution (Etminan et al., 2016). Although CH4 is the 
second most influential greenhouse gas forcing global 
warming and climate change, following CO2, its potency 
is further highlighted by the fact that the warming poten-
tial of CH4 is estimated to be 28 times higher than that of 
CO2 over a 100-year period, and 84 times higher over a 
20-year period (Bridgham et al., 2013; IPCC, 2013). At-
mospheric CH4 concentrations have more than doubled 
since pre-industrial times, and this upward trend con-
tinues to persist (Dlugokencky et al., 2009; Jackson et al., 
2020; Nisbet et al., 2019). The estimated annual growth 
rate of atmospheric CH4 concentration for 2021 was a 
record high since 1984 (Lan et al., 2023) and more than 
three times the average annual growth rate from 2007 to 
2015 (Poulter et al., 2017). Such an increase significantly 
contributes to the radiative forcing of the atmosphere and 
further amplifies global warming. Moreover, CH4 has a 
large natural emission component from permafrost in the 
northern latitudes. Permafrost, once melting triggered by 
initial warming, leads to more emissions, followed by more 
warming and more emissions with a self-reinforcing cycle. 
Despite methane’s relatively short atmospheric lifetime of 
12.4 years (Balcombe et al., 2018), its warming potential 
makes it an essential cog in the wheel for measures to 
reduce climate change (Shindell et al., 2012).
While the impact of CH4 on global warming is evident, it 
is essential to understand its sources to effectively manage 
and mitigate its release. CH4 emissions originate from a 
broad spectrum of natural and anthropogenic sources, with 
marked variations observed in their relative contributions 
across various regions and timescales. Wetlands contribute 
to more than 30% of total emissions and are the most sig-
nificant contributor to emissions among natural sources. 
The substantial contributors among anthropogenic sources 
are agriculture, fossil fuel extraction, and livestock farming 
(Bridgham et al., 2006; Ciais et al., 2013; Jackson et al., 
2020; Kirschke et al., 2013; Saunois et al., 2016). Wetlands 
are diverse ecosystems consisting of swamps, marshes, and 
rice paddies, enabling CH4 production through unique 
microbial metabolic processes within their anaerobic en-
vironments (Bodelier & Laanbroek, 2004; Turetsky et al., 
2014). CH4 emission from wetlands is challenging to mea-
sure and predict accurately due to their intricate nature 
and spatiotemporal variability (Rosentreter et al., 2021). 
In addition, the role of wetlands in the total CH4 budget 
and their impact on inter-annual variability and changes 
in the CH4 growth rate still needs to be fully understood 
(Poulter et al., 2017). This issue arises from various factors 
ranging from soil properties, temperature, vegetation types, 

and water table dynamics that control CH4 production, 
consumption, and transfer in wetlands (Bousquet et al., 
2006; Melton et al., 2013). Global warming could aggravate 
the CH4 emissions from wetlands as they are susceptible 
to climatic conditions and land-use changes (Gurevitch & 
Mengersen, 2019). To address climate change effectively, 
it is critical that we enhance our ability to model and pre-
dict wetland CH4 emissions. This requires comprehensive, 
process-based models that encompass all relevant factors 
and processes.
Biogeochemistry models inherently introduce uncertain-
ties in modeling CH4 emissions due to several factors. 
Model uncertainty that arises from each biogeochemis-
try model has its own simplifications (a combination of 
model structure, complexity, physics, usage, and tuning 
of model parameters) to represent real-world processes. 
Such simplifications can vary considerably among mod-
els and result in a wide range of fidelity. A large number 
of these model parameters relating to multiple physical, 
biological, and chemical processes associated with CH4 
dynamics induce parameter uncertainty. These parameters 
generally take fixed values, but they are not unambiguously 
known and usually must be prescribed based on the best 
available knowledge. Parameter uncertainty is commonly 
assessed by sensitivity analysis (SA) based on sampling 
within the theoretical, plausible ranges of parameters, 
which is the primary focus of this study (Müller et al., 
2015; Ricciuto et al., 2021; Riley et al., 2011). Other sources 
of uncertainty include spatial variability of wetlands, scar-
city of observations for calibration, initial and boundary 
conditions, and meteorological forcing to drive the model 
(Papa et al., 2013; Xu et al., 2012).
Sensitivity analysis quantifies the influence of different 
input parameters on the model’s output, helping identi-
fy the parameters that contribute significantly to mod-
el parametric uncertainty. Performing global sensitivity 
analysis of biogeochemistry model parameters is critical 
to addressing the inherent parameter uncertainty. Several 
studies implemented sensitivity analysis in understanding 
parameter uncertainties in complex earth system models. 
Ricciuto et al. (2018) applied SA to the Energy Exascale 
Earth System Model (E3SM) land model (ELM) parameters 
with respect to carbon cycle output. Fisher et al. (2019) 
examined parameter controls on vegetation responses in 
the Community Land Model (CLM) using SA, Yuan et al. 
(2021) and examined the effects of warming and elevated 
CO2 on peatland CH4 emissions using a similar approach. 
Ricciuto et al. (2021) used sensitivity analysis and showed 
that production and substrate parameters are vital for reg-
ulating temporal patterns of surface CH4 fluxes. Song et al. 
(2020) performed SA for a microbial functional group‐based 
CH4 model and observed that CH4 emissions are sensitive 
to the parameters that regulate dissolved organic carbon 
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and acetate production. However, a major challenge in sen-
sitivity analysis is the efficient exploration of the parameter 
space. This involves a vast number of model simulations, 
making it computationally intensive. A full variance-based 
analysis typically needs thousands of model runs, like the 
Monte Carlo method, which is particularly demanding 
for complex biogeochemistry models. To address this, 
machine learning (ML)-based emulators, which mimic 
complex earth system models, have been introduced. These 
emulators present an efficient alternative, approximat-
ing model behavior accurately with fewer simulations. 
Müller et al. (2015) constructed an ML-based emulator 
for CH4 parameter estimation in CLM4.5bgc. Gao et al. 
(2021) used emulators to quantify the sensitivity of soil 
moisture to uncertain CLM model parameters. Dagon et al. 
(2020) also implemented emulators in CLM biophysical 
parameter estimation.
Although SA and ML have been successfully employed 
in various areas of earth system modeling, their potential 
in improving CH4 emissions modeling still needs to be 
explored. Our study addresses several primary research 
questions, such as: 1) which critical parameters dominate 
the sensitivity of model simulated CH4 emission? 2) what are 
temporal (seasonal versus annual) and spatial (site-to-site 
or vegetation type to vegetation type) characteristics of 
such parametric sensitivity? and 3) is there any poten-
tial to improve model-simulated methane emissions? We 
integrated various advanced techniques to tackle these 
scientific questions. SA is employed to examine the influ-
ence of different input parameters on various components 
of CH4 emissions, while ML is used to emulate the ELM 
biogeochemistry model with feasible computational cost 
desired by global SA. The paper is structured as follows: 
Section 2 presents the sensitivity analysis method and 
machine learning algorithm. Section 3 describes the model, 
FLUXNET-CH4 sites, and the numerical experiment de-
sign. Section 4 presents the results and discussion. Section 
5 concludes the paper and summarizes the key findings.

2. Methods

2.1 Sobol Sensitivity Analysis 
The Sobol sensitivity analysis method (Sobol, 2001), a 
variance-based approach to identify the sensitive model 
parameters, is used in this study. This method was success-
fully implemented in several studies (Baki et al., 2022a; 
Gao et al., 2021; Reddy et al., 2023; D. Ricciuto et al., 2018; 
C. Wang et al., 2020) to conduct sensitivity analysis for 
various Earth system model parameters. The Sobol method 
decomposes the total variance in the model output into the 
variances corresponding to either a single input param-
eter or a set of input parameters. There are two essential 
features of this method. First, it is a global method, as the 
sensitivity is evaluated across the whole input parameter 

space. Second, this method can quantify the primary or 
first-order effects of sensitivity for each parameter and 
the interaction effects between parameters. These features 
ensure a comprehensive understanding of the sensitivity 
analysis of the parameters is obtained.
The total output variance, V , is decomposed as

  (1)

where n  is the total number of parameters, V _(i ) is the variance 
of i ^(

th
) parameter, V _(i j ) is the variance from the interactions 

of i ^(

th
) and j ^(

th
) parameters, and V _(1 ,2,3, . . .n ) is the variance from 

the interaction of all the n  parameters. As shown below, 
the Sobol indices are obtained by dividing the respective 
variances by the total variance.

  (2)

where S _(i ) is the Sobol index for the first-order (main) ef-
fect from the i ^(

th
) parameter. Total order Sobol index of i ^(

th
) 

parameter, which is the sum of its main and all interaction 
effects, S _(Ti ) is given as:

  (3)

Despite the detailed insights provided, this method requires 
multiple model runs to cover the entire parameter space for 
estimating the sensitivity indices accurately (Saltelli et al., 
2008). The Monte Carlo approach is commonly employed 
to generate such a large number of parameter samples. 
Due to high computational demands, developing a ma-
chine learning-based emulator is essential and beneficial. 
Emulators use a significantly reduced number of model 
simulations to approximate the model behavior with little 
loss in accuracy. These emulators, once validated, can then 
be used to estimate the sensitivity indices.

2.2 Gaussian Process Regression
To address the computational demands of the Sobol method, 
Gaussian process regression (GPR), a machine learning 
algorithm, is employed to develop an emulator that ap-
proximates the model behavior. GPR is widely used as an 
emulator due to its robustness and flexibility (Rasmussen & 
Williams, 2006; Wang, 2020). This algorithm is particularly 
suitable when the relationship between inputs and output is 
complex and non-linear. Several studies (Baki et al., 2022b; 
Chinta & Balaji, 2020; Gong et al., 2015; C. Wang et al., 
2014) established the superiority of GPR as an emulator 
for earth system models compared to other ML algorithms. 
GPR is defined by the mean function, m(x) , and covariance 
function, k(x,  x ') , where x  and x'  are points in the input 
space. The expected value of the function at point x  is given 
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by the mean function, whereas the covariance function gives 
the correlation between the function values at two different 
points. For a Gaussian process f(x)∼GP(m(x),k(x,x')) , 
the joint distribution of any finite number (n) of function 
values f=[f(x _(1 ) ) , f(x _(2  )) , . . . , f(x _(n ) ) ] ^(

T
) follows a multivariate 

Gaussian distribution:

  (4)

where X  is the observations or training data, 
μ=[m(x _(1 ) ) ,m(x _(2  )) , . . . ,m(x _(n ) ) ] ^(

T
) is the mean vector, 

and K  is the covariance kernel matrix with K _(i j )=k(x _(i ),x _(j )).
The main advantage of GPR is the presence of a covariance 
function, which helps in encoding our assumptions about 
the function that is being learned. The mean function is 
usually chosen as a constant, with the value being either 
zero or the mean of the training data, which is also typically 
zero as the data is often normalized to a zero mean. GPR 
has several options to choose from for a covariance kernel 
function. Some commonly chosen ones are linear, constant, 
squared exponential, Matern kernel, and a combination of 
multiple kernels. One of the most widely used covariance 
kernel functions is the combination of constant kernel and 
radial basis function (RBF) kernel. This kernel function 
can be mathematically represented as:

  (5)

where x  and x'  represent two points in the input space, 
the two hyperparameters for this kernel are σ f

2 (signal 
variance) and l  (length-scale). The signal variance controls 
the average distance of function values from their mean, 
while the length scale determines the smoothness of the 
function. This kernel function provides the GPR with the 
flexibility to capture complex patterns in the data. The 
hyperparameters of the kernel function can be learned 
from the training data using such techniques as maximum 
likelihood estimation. Once validated, the trained GPR 
emulator can not only predict the corresponding output 
for a new point in the input space but also quantify the 
degree of uncertainty in this prediction. This is a decisive 
advantage of GPR over other ML algorithms. The details 
of the experiment design for applying GPR in our study 
are presented in the next section.

3. Experimental Framework

3.1 Model Description and Parameter 
Selection

The Energy Exascale Earth System Model (E3SM) land 
model version 2 (ELMv2) (Golaz et al., 2022) is used in 
this study. This model is branched from Community Land 
Model (CLM) version 4.5 (CLM4.5) (Oleson et al., 2013). 

The model underwent several updates since branching 
from CLM4.5 with a new biogeochemical representation of 
global carbon, nitrogen, and phosphorus cycles (Zhu et al., 
2019). Some of the other updates include the introduction 
of the multiple agents’ nutrient competition, dynamic al-
location, a new photosynthesis physiology scheme, and 
new N2 fixation and phosphatase modules. Several studies 
(Golaz et al., 2019, 2022; Ricciuto et al., 2018) explained 
these updates from CLM4.5 in great detail. The CH4 bio-
geochemistry model (Riley et al., 2011) simulates several 
processes, such as CH4 production, ebullition, aerenchyma 
transport, aqueous and gaseous diffusion, CH4 oxidation, 
and mass balance for unsaturated and saturated soils with 
the following governing diffusion equation:

  (6)

where R  represents gas in aqueous and gaseous phases, C 
represents the concentration of CH4 with respect to water 
volume (mol m-3), F D represents aqueous and gaseous 
diffusion (mol m-2 s-1), P  represents CH4 production (mol 
m-3 s-1), E  represents ebullition (mol m-3 s-1), A  represents 
aerenchyma transport (mol m-3 s-1), O  represents oxidation 
(mol m-3 s-1), z  represents vertical dimension (m), and t 
represents time (s). Although the biogeochemistry mod-
el does not explicitly represent wetland plant functional 
types relevant to CH4 production, the grid cell-averaged 
heterotrophic respiration rates are proxies for microbial 
substrate availability. These respiration rates are calculat-
ed using intrinsic turnover time for soil organic carbon, 
considering the impacts from environmental factors (e.g., 
temperature). CH4 production rate is estimated after further 
accounting for O2 limitation and being corrected for its soil 
temperature dependence, pH, the availability of electron 
acceptors associated with redox potential, and seasonal 
inundation fraction. Ebullition occurs when the CH4 partial 
pressure, as a function of temperature and depth below the 
water table, exceeds 15% of the local pressure. Bubbles are 
added to the saturated columns’ surface flux and placed 
immediately above the water table interface in unsaturated 
columns. Aerenchyma transport is modeled as gaseous 
diffusion driven by a concentration gradient between the 
specific soil layer and the atmosphere and, if specified, 
by vertical advection with the transpiration stream. CH4 
oxidation is represented with double Michaelis-Menten 
kinetics (Arah & Stephen, 1998), dependent on the gaseous 
CH4 and O2 concentrations. Gaseous diffusivity in soils 
depends on temperature-dependent molecular diffusivity, 
soil structure, porosity, and organic matter content. Aque-
ous diffusivity in the saturated part of the soil depends on 
temperature-dependent molecular diffusivity and porosity. 
Gaseous diffusion is assumed to dominate above the water 
table interface and aqueous diffusion below it.
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These processes in the CH4 biogeochemistry model are 
represented as functions of climate, vegetation, soil condi-
tions, and empirical parameters. In the context of modeling 
wetland CH4 emission, uncertainty mainly comes from 
flux intensity and wetland extent. The global emission is 
the product of flux intensity and wetland extent. In this 
study, we only focus on the first part, assuming the wetland 
extent is 100% at site level, and use measured CH4 emission 
intensity to parameterize the model. The default values of 
these parameters are typically assigned based on the best 
available knowledge from a limited experimental or theo-
retical investigation. The parameters that influence methane 
emission, their default values and ranges are derived from 
Riley et al. (2011) and Koven et al. (2013). Table 1 presents 
the 19 ELM parameters used in this study, which pertain to 
various processes such as production, substrate availability, 
ebullition, diffusion, aerenchyma transport, and oxidation. 
For any parameter with an unknown uncertainty range, 
+/- 50% of the default value is used.

3.2 FLUXNET-CH4 data for wetland CH4 
emission

FLUXNET-CH4 is a pioneering global network of sites that 
provides continuous, high-frequency, and quality-checked 
eddy covariance CH4 flux measurements (Delwiche et al., 
2021; Knox et al., 2019).  This data helps get a deeper un-

derstanding of the variability of CH4 emissions worldwide 
and also help validate CH4 emissions from biogeochemis-
try models. The network currently encompasses 81 sites 
across various vegetation types. From the initial 81 sites, 
we excluded crop sites due to the complexities introduced 
by irrigation management, such as quantifying the volume 
of water required for irrigation. Additionally, sites with 
less than two years of continuous observational data were 
omitted. Considering the computational expense of simu-
lating all locations, we selectively chose our study sites to 
represent a diverse mix of vegetation types across various 
climate classifications.

Table 2 presents the list of 14 sites selected for this study, 
along with their locations and vegetation types. The vegeta-
tion types include needleaf evergreen temperate tree (NETT, 
4 sites), broadleaf deciduous temperate tree (BDTT, 1 site), 
broadleaf deciduous boreal shrub (BDBS, 1 site), arctic c3 
grass (AC3G, 1 site), cool c3 grass (CC3G, 6 sites), and 
warm c4 grass (WC3G, 1 site). The numerical PFT value 
represents the setting associated with the respective PFT 
in the ELM biogeochemistry model. The vegetation types 
are not distributed evenly across sites. Some vegetation 
types like NETT and CC3G are spread across multiple 
sites, while remaining vegetation types are attributed to 
only one site each.

Table 1. List of 19 eLM parameters used and their default values, ranges, and brief description.

Mechanism Parameter Default Range Units Description

Production

Q10 2 [1.5 4] - CH4 production Q10

β 0.2 [0.1 0.3] - Effect of anoxia on decomposition rate

f _(CH )

4
0.2 [0.1 0.3] - Ratio between CH4 and CO2 production 

below the water table

Substrate  
availability

z _(τ )

0 .5 [0.1 0.8] m e-folding depth for decomposition

τ _(cwd )

3 .33 [2 20] year−1 Corrected fragmentation rate constant CWD

τ _(l1 0.054 [0.027 0.081] year Turnover time of litter 1

τ _(l2−l3 0.204 [0.102 0.306] year Turnover time of litter 2 and litter 3

τ _(s1 0.137 [0.0685 0.2055] year Turnover time of soil organic matter (SOM) 1

τ _(s2 5 [0.0685 0.2055] year Turnover time of soil organic matter (SOM) 2

τ _(s3 222.22 [111.11 333.33] year Turnover time of soil organic matter (SOM) 3

Ebullition C _(e ,max )

0 .15 [0.075 0.225] mol m−3 CH4 concentration to start ebullition

Diffusion f _(D0
1 [1 10] m2 s−1 Diffusion coefficient multiplier

Aerenchyma

p 0.3 [0.15 0.45] - Grass aerenchyma porosity

R 2.9⨉10-3 [1.45⨉10 -3 4.35⨉10 -3] m Aerenchyma radius

r _(L )

3 [1.5 4.5] - Root length to depth ratio

F _(a )

1 [0.5 1.5] - Aerenchyma conductance multiplier

Oxidation
K _(CH )

4
5⨉10 -3 [5⨉10 -4 5⨉10 -2] mol m−3 CH4 half-saturation oxidation coefficient 

(wetlands)
K _(O )

2
2⨉10 -2 [2⨉10 -3 2⨉10 -1] mol m−3 O2 half-saturation oxidation coefficient

R _(o ,max )

1.25⨉10-5 [1.25⨉10 -6 1.25⨉10 -4] mol m−3 s−1 Maximum oxidation rate (wetlands)
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3.3 Numerical Experiment Design

Site-level single-point ELM simulations are performed for 
the 14 FLUXNET-CH4 sites. The methodology implemented 
in this study is presented in Fig. 1. A total of 190 simulations 
(10 times 19 selected parameters) (Loeppky et al., 2009) 
are performed for each site with different combinations 
of parameter values for each simulation. The 190 sets of 
different parameter values are generated using Latin Hy-
percube sampling (LHS) (McKay et al., 1979) across given 
parameter ranges (Table 1). LHS is a statistical method for 
efficiently generating numerous sets of parameter values 
from a multidimensional distribution. It is a type of strati-

fied sampling that is superior to simple random sampling, 
especially for cases with a large number of dimensions. Each 
simulation follows the same 3-step modeling protocol. In 
the first step, an accelerated spin-up is performed for 300 
years with CO2 concentration set to the value of the year 
1901. Climatic Research Unit and Japanese reanalysis (CRU 
JRA) v2.2 data (Harris , 2021) at a six-hourly frequency 
and 0.5°×0.5° resolution is used for meteorological forcing. 
For each site, forcing data from the nearest grid point is 
used. The forcing data and N2 depositions are cycled over 
the years 1901-1920. The second step involves a regular 
spin-up for 200 years with the same CO2, N2 deposition 
configuration and forcing data as in accelerated spin-up 

Table 2. Geographical and vegetation details of the simulated FLUXNet-ch4 sites.

Site ID Site Name Latitude Longitude PFT PFT Name

RU-Fy2 Fyodorovskoye dry spruce 56.45 32.90 1 Needleaf evergreen temperate tree

DE-SfN Schechenfilz Nord 47.81 11.33 1

CH-Dav Davos 46.82 9.86 1

US-Ho1 Howland Forest (main tower) 45.20 -68.74 1

US-PFa Park Falls/WLEF 45.95 -90.27 7 Broadleaf deciduous temperate tree

RU-Cok Chokurdakh 70.83 147.49 11 Broadleaf deciduous boreal shrub

SE-Deg Degero 64.18 19.56 12 Arctic c3 grass

DE-Zrk Zarnekow 53.88 12.89 13 Cool c3 grass

CH-Cha Chamau 47.21 8.41 13

DE-Hte Huetelmoor 54.21 12.18 13

US-OWC Old Woman Creek 41.38 -82.51 13

US-WPT Winous Point North Marsh 41.46 -83.00 13

CN-Hgu Hongyuan 32.85 102.59 13

US-MRM Marsh Resource Meadowlands 
Mitigation Bank 40.82 -74.04 14 Warm c4 grass

Fig. 1: Flowchart of the methodology implemented showing the main steps and sequence of operations.
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but without accelerating soil turnover. The third step is 
a 120-year transient run from 1901-2020. Time-varying 
historical CO2 concentrations and CRU JRA forcing data 
and nitrogen depositions of the years 1901-2020 are used 
in this step. Each three-step simulation, spanning from the 
accelerated spin-up to the transient run, took 6 CPU hours 
to complete. Five model output variables are considered 
for sensitivity analysis: CH4 emission, CH4 production, 
diffusive surface CH4 flux, ebullition surface CH4 flux, and 
aerenchyma surface CH4 flux. The values of these fluxes 
are averaged for 2001-2020.

3.4 Developing ML-based emulators 
using GPR

ML-based emulators were designed to take 19 parameter 
values as input and produce five CH4 flux values as outputs. 
For each of the five CH4 fluxes, an individual emulator was 
developed at every site, resulting in a total of five emulators 
per site. Given the dependence of this study on emulator 
accuracy, we evaluated their performance using indepen-
dent test data. Building emulator involves some assump-
tions and approximations. Unless the emulator correctly 
represents the simulator (model), Inferences made using 
that emulator will be invalid unless the emulator is able 
to correctly represent the simulator (model). To assess the 
adequacy of the emulator at untried points, additional 50 
sets of LHS parameter values and model runs are gener-
ated at each site to validate the emulator. The coefficient 
of determination, R 2, between the model-simulated and 
emulator-estimated CH4 fluxes, served as our key evaluation 
metric. The closer to 1 the values are, the more accurate the 
emulator is. A single GPR prediction was achieved in just 
0.72 milliseconds, in contrast to the 6 CPU hours required 
for the actual simulation, Once the emulator is validated, we 
then use 20-year averages of emulator-estimated monthly 
emissions to quantify two Sobol sensitivity indices (main 
and total effects) for five CH4 fluxes in relation to each 
parameter (Sobol’, 2003).

3.5 Comparing simulated emissions with 
FLUXNET-CH4 emissions

It is important to understand how the simulated emissions 
from perturbed parameter sets compare with observed 
emissions. The model simulated monthly-averaged CH4 
emissions from the 190 parameter sets are compared against 
FLUXNET-CH4 observations at each site, and root mean 
square error (RMSE) is evaluated.

  (7)

where s im ^(

t
) and obs ^(

t
) are the simulated and observed 

values of monthly CH4 emission from the simulated site at 
time t , respectively. T  is the number of months. A normal-

ized root mean square error (nRMSE) was determined for 
the entire set of 190 initial sets of parameter values, with 
normalization performed based on the RMSE from the 
default run. The nRMSE for a given set, i , is computed as:

  (8)

In this equation, R M S E _ (i ) represents the RMSE for the 
specific set of parameter values, while RMSE _(def ) denotes 
the RMSE derived from the simulation with default pa-
rameter values. A parameter set with an nRMSE value less 
than 1 indicates improved performance (lower RMSE) in 
comparison to the default. 

4. Results and Discussion

4.1 Sensitivity Analysis - Main Effects and 
Interaction Effects

Emulators were developed for five CH4 fluxes at each 
site using the initial 190 simulations and then evaluat-
ed by comparing the emulator-predicted fluxes with the 
ELM-simulated counterparts from 50 independent test 
simulations at each site. The results for the CH-Cha site 
as an example (PFT-13: Cool c3 grass) are presented in 
Fig. 2. The emulators performed well for all the fluxes 
with R 2 values for test data ranging from 0.84 to 0.95. The 
emulators also performed reasonably well for fluxes at 
other sites with R 2 values above 0.80 (not shown).  Overall, 
the emulator captures well the model behavior across the 
entire parameter uncertainty space for sites with different 
vegetation types and various fluxes and is considered to be 
accurate and robust. Therefore, the GPR-based emulators 
can be reliably applied to derive the Sobol SA indices and 
further quantify the main and interaction effects of the 
fluxes relative to each parameter.
Fig. 3 presents the heatmap of the main effect Sobol indices 
for various CH4 fluxes concerning each model parameter. 
The main effect index of a parameter signifies the influ-
ence of that parameter alone on the flux, disregarding any 
interaction effects with other parameters. Heatmaps are 
exemplified for two sites, CH-Cha (PFT-13: Cool c3 grass) 
and SE-Deg (PFT-12: Arctic c3 grass). Each cell of the 
heatmap represents the value of the main effect index for its 
corresponding parameter (x-axis) and flux (y-axis), with the 
color intensity indicating the strength of the sensitivity. The 
heatmaps for both sites were remarkably similar, reflecting 
parallel sensitivity trends across the parameters at these two 
sites. The CH4 production parameters  Q 10 and f _(CH )

4
 (ratio 

between CH4 and CO2 production below the water table) 
demonstrated pronounced sensitivity for all fluxes. The 
diffusion parameter f _(D0

 (diffusion coefficient multiplier) was 
a predominantly sensitive parameter for diffusion, where-
as the oxidation parameters R _(o ,max ) (maximum oxidation 
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Fig. 2. accuracy of the Gpr model for test data (50 independent simulations) for different ch4 fluxes at the ch-cha site (pFt-13: cool 
c3 grass). the horizontal axis denotes the model output, and the vertical axis represents the Gpr fit.

Fig. 3. heat map of main effect sensitivity indices for different ch4 fluxes (eM: emission, proD: production, DIFF: Diffusion, eBUL: 
ebullition, aere: aerenchyma) with respect to 19 parameters (shown in table 1) for two sites a) ch-cha and b) Se-Deg.
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rate - wetlands) and K _(CH )

4
 (CH4 half-saturation oxidation 

coefficient - wetlands) emerged as sensitive parameters 
for aerenchyma transport across these two sites. Apart 
from these five parameters, the remaining parameters had 
negligible influence on all fluxes for these two sites. Results 
corresponding to other sites are presented in Section 4.2.
Fig. 4 illustrates the total effect Sobol indices, encapsulating 
main and interaction effects, for various CH4 fluxes relative 
to each parameter at the two sites mentioned above. This 
decomposition of the total effects of each parameter into 

main (blue) and interaction (red) effects is a vital attribute 
of the Sobol SA method that helps better understand the 
parameter sensitivity. The main effect values are the same 
as those represented in the heatmaps (Fig. 3). Main effects 
were more prominent than interaction effects for all pa-
rameters, highlighting the dominant influence individual 
parameters exert on different CH4 fluxes. No parameter 
had a higher value of interaction effect than the main effect 
across all fluxes at these two sites. Other sites share the 
similar characteristics of total effects (not shown).

Fig. 4. the main effects and interaction effects (differences between the total and main effects) of 19 parameters for different ch4 
fluxes for two sites ch-cha (pFt-13: cool c3 grass) and Se-Deg (pFt-12: arctic c3 grass).
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4.2 Sensitivity for Multiple Sites Across 

Vegetation Types

Fig. 5 illustrates the distribution of main effect sensitivity 

indices for each parameter across 14 FLUXNET-CH4 sites 
corresponding to different CH4 fluxes. These boxplots com-
prehensively represent the variation in sensitivity indices 
for multiple sites across vegetation types. Immediately 

Fig. 5. Boxplots showing the distribution of main effect sensitivity indices for each parameter across 14 FLUXNet-ch4 sites. the 
boxplot shows the median (orange line), interquartile range, minimum, and maximum after excluding outliers. an outlier, represented 
by a circle, is a data value outside 1.5 times the interquartile range above the upper quartile and below the lower quartile.
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evident is that production parameter Q 10 has the highest 
sensitivity (consistently high median values) among the pa-
rameters across all the fluxes, suggesting its significant role 
in various CH4 fluxes across diverse geographical locations 
and vegetation types. Another production parameter f _(CH )

4
 

was also found to be a fairly sensitive parameter for all the 
fluxes. Contrary to the earlier heatmaps for two sites (Fig. 
3) where f _(D0

 did not influence emission, it was a sensitive 
parameter with the main effect value even higher than 
Q 10 for some sites. Diffusion flux was sensitive to diffu-
sion parameter, f _(D0

. Apart from these three parameters, 
other parameters like R _(o ,max ), K _(CH )

4 
 were sensitive param-

eters for aerenchyma. Additionally, z _(τ ) (e-folding depth 
for decomposition) was a sensitive parameter for some 
fluxes. Also, some parameters were sensitive at one or two 
sites, represented as outliers in the figure. It is important 
to note that roughly 13 parameters consistently showed 
minimal influence on various fluxes across all sites. These 
characteristics underlines the heterogeneity of CH4 flux 
dynamics and associated parametric sensitivities across 
the sites (vegetation types). Examining the parametric 
sensitivities at more sites with the same vegetation type 
may help generalize their patterns.

4.3 Contribution of Parameters to Variance in 
CH4 Fluxes

Fig. 6 showcases a series of stacked bar plots representing 
the contribution of different parameters to the variance 
in CH4 fluxes across the 14 FLUXNET-CH4 sites, further 
categorized by their vegetation types. Each stacked bar 
corresponds to a specific site. The height of each parameter 
represents the percentage of the total effect index of that 
parameter with respect to the sum of the total effect indices 
of all parameters at that site, namely, the percentage of the 
total variance in CH4 fluxes attributable to that parameter, 
including its interactions with other parameters. Only 
those parameters that contribute a minimum of 5% to 
the variance at any site have been included in the analysis. 
The relative size of a segment of a parameter indicates its 
proportional contribution to variance at that site.
The results aligned well with those shown in Fig. 5, with the 
production parameters Q10 and f _(CH )

4
, along with the diffusion 

parameter f _(D0
 being the most influential parameters for 

different CH4 fluxes across multiple sites. It was interesting 
to note that some sites had a combination of Q 10 and f _(CH )

4 
 

as sensitive parameters for emission, whereas other sites 
had f _(D0

 and K _(O )

2
 as sensitive parameters. The production 

parameters Q 10 and f _(CH )

4
 emerged as sensitive parameters 

for production at all sites. Apart from these two parameters, 
substrate availability parameters z _(τ ), τ _(l2−l3 (turnover time of 
litter 2 and litter 3), and τ _(s2 ) (turnover time of soil organic 
matter 2) emerged as sensitive parameters for production 
at some sites. Substrate availability plays an important 
role in methane production at some sites as it determines 

the quantity and rate at which methanogenic microbes 
produce methane in anaerobic conditions. The diffusion 
parameter f _(D0

 and the production parameters Q 10 and f _(CH )

4
 

emerged as sensitive parameters for diffusion at most of 
the sites. R _(o ,max ) and z _(τ ) emerged as sensitive parameters 
for diffusion at some sites. Ebullition was sensitive to the 
production parameters Q 10 and f _(CH )

4
 at most sites. Ebullition 

parameter C _(e ,max ) (CH4 concentration to start ebullition) 
and aerenchyma parameters R  (aerenchyma radius) and F _(a ) 
(aerenchyma conductance multiplier) emerged as sensitive 
parameters for ebullition at some sites. The production 
parameters Q 10 and f _(CH )

4
, oxidation parameters R _(o,max ), K _(CH )

4
 

and aerenchyma parameter R  were sensitive parameters 
for aerenchyma at most of the sites.
Across all sites, typically the top 5 or 6 parameters accounted 
for over 90% of the variance in CH4 fluxes. However, in 
certain instances, even fewer parameters were responsible 
for a substantial portion of the variance. Notably, 13-14 
parameters consistently showed a negligible effect on the 
CH4 fluxes across these sites. For the four sites characterized 
by PFT-1 vegetation (Needleleaf evergreen temperate tree), 
the sensitive parameters remained largely consistent. This 
consistency prevailed irrespective of the individual climate 
classifications of these sites. This observation implies that, 
for Needleleaf evergreen temperate tree sites, the climate 
classification has minimal impact on parameter sensitivity. 
In contrast, the six sites with PFT-13 vegetation (Cool C3 
grass) displayed more variability. While the first three of 
these sites shared a common sensitivity pattern, the next 
three differed in their sensitivities. This variation can be 
linked to their respective climate classifications as the first 
three sites are under a temperate climate, and the latter 
three are categorized as continental climate. This points to 
a stronger influence of climate classification on parameter 
sensitivity for Cool C3 grass sites.
In light of these findings, it is evident that while vegetation 
type plays a role in determining parameter sensitivity, 
climate classification can modulate this effect, especially 
for certain vegetation types. To arrive at a more definitive 
understanding, particularly for vegetation types with a 
single site, further analysis is necessary with a broader set 
of sites that share the same vegetation type.

4.4 Seasonal Characteristics of Parametric 
Sensitivity in CH4 Emission Flux

Given the established seasonal variability in methane 
emissions from wetlands (Knox et al., 2021; Sakabe et al., 
2021; Zhang et al., 2020), we sought to understand how 
the parametric sensitivity of methane emission fluctuates 
across months. For each of the five methane fluxes at every 
site, we constructed an emulator for each month using 
20-year mean for that month. For instance, emissions for 
January were averaged from January 2001 through January 
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2020. Using these emulators, we evaluated monthly Sobol 
sensitivity indices. Fig. 7 shows the monthly variation in 
the main effect sensitivity indices of parameters for meth-
ane emission at 2 FLUXNET-CH4 sites. Parameters with 
a minimum value of 0.05 for the main effect index for at 
least one month at the specific site were included in the 
analysis. The goal was to pinpoint sensitive parameters for 
each month concerning methane emission.
A distinct pattern was observed in the monthly sensitive 
parameters for the two sites, CH-Cha and SE-Deg. For 
CH-Cha (PFT-13: Cool c3 grass), the production param-

eters Q 10 and f _(CH )

4
 were predominantly sensitive from De-

cember to March, whereas for SE-Deg (PFT-12: Arctic c3 
grass), their sensitivity extended from November to June. 
In contrast, during the remaining months, the sensitivity 
was primarily associated with f _(D0

 and K _(O )

2
. The observed 

monthly fluctuations in parameter sensitivity can be linked 
to seasonal temperature variations, given that parameters 
Q 10 and f _(D0

 are directly temperature-dependent (Riley et al., 
2011). Other factors influencing the seasonal variation in 
methane emissions include gross primary productivity, 
ecosystem respiration, net ecosystem exchange, latent heat 

Fig. 6. total effect sensitivity indices of parameters in the percentage of the variance in various ch4 fluxes, grouped by vegetation 
types of 14 FLUXNet-ch4 sites. only those parameters with at least 5% contribution at any site are included.
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turbulent flux, soil temperature, water table depth, incoming 
shortwave radiation, and wind direction (Knox et al., 2021). 
This periodic parameter sensitivity behavior is distinctive 
from that from the 20-year annual mean in which neither 
f _(D0

 nor K _(O )

2 
were dominant sensitive parameters (Fig. 3). 

Long-term averages can sometimes mask specific temporal 
features by smoothing out variations from changing pa-
rameter values over shorter durations. Examining monthly 
averages reveals nuanced parametric sensitivity patterns 
that might be missed in long-term aggregates.

4.5 Parameter Ranking based on CH4 
Emission Flux Sensitivity

Fig. 8 presents the hierarchical ranking of parametric 
sensitivities to CH4 emission across all sites. This ranking 
is derived based on the total effect sensitivity indices of 
parameters relative to emission obtained from the 20-year 
average. The total effects of parameters were averaged across 
all sites to offer a comprehensive perspective on their overall 
influence across diverse vegetation types. This averaging 
allows for capturing the general trends in parameter sen-

Fig. 8. parameters ranked according to their sensitivity of annually averaged ch4 emission across 14 FLUXNet-ch4 sites. the 
percentage values over each bar represent the normalized score for that parameter.

Fig. 7. Monthly fluctuation in main effect sensitivity indices of parameters of ch4 emission for 2 FLUXNet-ch4 sites. only those 
parameters with a minimum value of 0.05 for the main effect index for at least one month at the specific site are included.

MIt JoINt proGraM oN the ScIeNce aND poLIcY oF GLoBaL chaNGe  report 370

13



sitivity and can help in identifying parameters of universal 
importance. Furthermore, the normalization of these av-
eraged values ensures that the results are presented on a 
consistent scale of 0-100 to facilitate comparisons. 

Five parameters Q 10, f _(D0
, f _(CH )

4
, z _(τ ), and K _(O )

2
 collectively ac-

counted to approximately 95% of the normalized score. 
All the remaining parameters show little to negligible ef-
fect on CH4 emission. Q 10 represents the temperature-de-
pendent methane production. A higher Q 10 suggests an 
increase in temperature, increases methane production 
and emissions. Increased methane production due to a 
higher Q 10 can indirectly influence diffusion by creating 
larger concentration gradients to influence diffusion. The 
parameter f _(CH )

4
 signifies the ratio between CH4 and CO2 

production below the water table. A higher ratio signifies a 
greater dominance of methane in production and emission 
relative to CO2. The diffusion coefficient multiplier, f _(D0

, is 
equally important. This parameter directly alters the rate 
of methane movement through gas or liquid. A higher 
value of f _(D0

 suggests more rapid methane diffusion. As 
the methane transport increases, it leads to higher emis-
sions. The e-folding depth, z _(τ ), determines the depth at 
which microbial decomposition diminishes exponentially. 
A greater e-folding depth suggests methane production 
can happen deeper, possibly causing a delay in its release 
or changing emission patterns due to its travel through 
various soil and water layers. The parameter K _(O )

2
 indicates 

the oxygen concentration at which methane oxidation is 
halved. Higher K _(O )

2
 values suggest that more methane is 

oxidized into CO2, leading to reduced methane emissions.

The marginal influence of the remaining parameters on 
CH4 emission suggests that while they may have site-spe-
cific importance, their overall contribution is subdued 
when averaged across all sites. This differentiation between 
universally influential parameters and those with localized 
effects can guide model developers to focus on the specific 
sensitive parameters for further improving CH4 emission 
modeling based on different research objectives.

4.6 Comparison of Simulated Emissions with 
FLUXNET-CH4 data

Sensitivity analysis was strictly a modeling exercise designed 
to understand how different parameters influence a model’s 
output. Understanding how the simulated emissions from 
perturbed parameter sets compare with observed emissions 
is essential. This comparison works as an elementary as-
sessment that allows us to understand whether there exists 
a potential to improve the simulated emissions with respect 
to observations by adjusting the parameter values within 
their ranges. We compared the model’s simulated meth-
ane emissions from 190 parameter sets to FLUXNET-CH4 
observed emissions at each site. This comparison helps 
determine how the simulations from the 190 sets align 
with observations and how their performance stacks up 
against simulations using the default model parameters. 
Fig. 9 illustrates the variability in normalized root mean 
square error (nRMSE) values across 14 different FLUX-
NET-CH4 sites, each grouped by their respective vegetation 
types. The box plots provide a comprehensive overview 
of the model performance of 190 parameter sets at each 
site. The RMSE from default parameters is represented by 
the red dashed line with an nRMSE value equal to 1. A 

Fig. 9. Box plots depicting the normalized root mean square error (nrMSe) values across 14 FLUXNet-ch4 sites, grouped by their 
vegetation types. the boxplot shows the median (orange line), interquartile range, minimum, and maximum after excluding outliers 
and individual circles marking outlier data points. the value in brackets below each site label denotes the minimum nrMSe value 
from a set of 190 simulations for that particular site. the red dashed line signifies an nrMSe value of 1, corresponding to the rMSe 
from the default parameter simulation for the respective site.
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parameter set with an nRMSE value less than 1 indicates 
an improved performance compared to the default. This 
is because the RMSE of that specific parameter set is lower 
than the RMSE obtained from the simulation with default 
parameter values.
A closer examination of the plot revealed significant vari-
ability in model performance across the sites. The median 
nRMSE value for some sites was higher than 1, whereas 
for other sites, it was lower than 1. For instance, sites like 
CH-Dav, US-PFa, and US-OWC were among the sites 
with higher median nRMSE values, and sites like DE-SfN, 
SE-Deg, and CH-Cha were among the sites with lower 
median nRMSE values. A higher median nRMSE value 
suggests potential challenges in accurately predicting meth-
ane dynamics for that site. On the other hand, sites like 
RU-Fy2, SE-Deg, and DE-Zrk had a tighter interquartile 
range, with their nRMSE values clustering closer, indicating 
a more consistent model performance for these locations 
even with perturbing parameter values. Furthermore, the 
presence of outliers in several sites highlights certain sim-
ulations with nRMSE values that significantly deviated 
from the majority. Outliers indicate that specific parameter 
combinations could either exceptionally enhance or hinder 
the model’s performance at those sites.
Notably, the minimum nRMSE values, provided in brackets 
for each site, underscore that there are alternative parameter 
simulations that can outperform the default for every site. 
This offers a promising avenue, particularly for model opti-
mization tailored for each site. The values of the identified 
sensitive parameters can be adjusted within their respec-
tive ranges (Table 1) to minimize the difference between 
the model simulated and the observed CH4emissions at 
each FLUXNET-CH4 site. This adjustment can be achieved 
systematically by employing an advanced optimization 
technique like Bayesian calibration (Gattiker et al., 2015; 
Kennedy & O’Hagan, 2001).

4.7 Limitations
This study offers significant insights into the sensitivity 
analysis of methane emissions. However, several inher-
ent limitations need consideration. The presented results 
may be dependent on the choice of meteorological forcing 
data. The spatial scale discrepancy between the model 
simulations (0.5°) and observations (point-based) may 
also lead to some biases in the results. The emulator, de-
spite its computational benefits, may not comprehensively 
represent the intricate and non-linear dynamics inherent 
in the ELM biogeochemistry model and this introduce 
slight discrepancies between the emulator’s predictions 
and the actual ELM-simulated outputs. Additionally, using 
the Monte Carlo approach for generating large samples in 
the Sobol analysis introduces inaccuracies due to finite 
sample size (H. Wang et al., 2020). While the monthly 

fluctuations in parameter sensitivity were examined, the 
diurnal fluctuations were not explored. Notably, methane 
emissions exhibit significant diurnal variability (Knox et al., 
2021), which could present another layer of complexity to 
the analysis. Future analyses could consider incorporat-
ing a broader range of sites spanning diverse vegetation 
types. This would ensure a more exhaustive assessment of 
parameter sensitivity across different ecosystems. Errors 
from external factors outside the methane biogeochemistry 
model, like heterotrophic respiration and net primary pro-
ductivity, impact simulated methane emissions (Riley et al., 
2011), which in turn affects the sensitivity analysis results. 
Despite these limitations, the findings from this study 
offer significant insights into the parametric sensitivity 
of various CH4 emissions.

5. Conclusions
This study carried out a sensitivity analysis of 19 E3SM 
model parameters with respect to methane emission from 
natural wetlands at 14 FLUXNET-CH4 sites with diverse 
vegetation types. Machine learning-based emulators were 
employed to emulate the E3SM model in consideration 
of computational demands. The GPR-based emulators 
were shown to represent the model simulations reason-
ably well across all the sites. These emulators were used 
to calculate the Sobol sensitivity indices for various CH4 
fluxes. Five parameters Q 10 (CH4 production), f _(D 0

 (dif-
fusion coefficient multiplier), f _ (C H )

4
 (ratio between CH4 

and CO2 production below the water table), z _(τ ) (e-folding 
depth for decomposition), and K _(O )

2
 (O2 half-saturation 

oxidation coefficient) were identified as sensitive param-
eters across various fluxes and sites. These five sensitive 
parameters accounted for approximately 95% of the total 
variance for emission. Remarkably, around 14 parameters 
had negligible impact on emissions across all sites. Sea-
sonal characteristics of parameter sensitivity to methane 
emissions showed specific features that long-term annual 
averages might overlook. Comparison of the model sim-
ulations against FLUXNET-CH4 observations revealed a 
potential for improving simulated emissions via parameter 
calibration. Our future studies would focus on expanding 
this sensitivity analysis to more FLUXNET-CH4 sites in 
order to better understand the dependence of parametric 
sensitivities on vegetation types and climatic conditions. 
The identified sensitive parameters can be systematically 
adjusted to reduce the simulation error with respect to 
observed methane emissions using Bayesian calibration 
and ML-based emulators. In addition, the availability of 
high-quality observations from a diverse range of wetlands 
will greatly benefit this exercise.
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