A Tool for Air Pollution Scenarios (TAPS v1.0) to Facilitate Global, Long-term, and Flexible Study of Climate and Air Quality Policies

William Atkinson, Sebastian D. Eastham, Y.-H. Henry Chen, Jennifer Morris, Sergey Paltsev, C. Adam Schlosser and Noelle E. Selin
Abstract: Air pollution is a major sustainability challenge – and future anthropogenic precursor and greenhouse gas emissions will greatly affect human well-being. While mitigating climate change can reduce air pollution both directly and indirectly, distinct policy levers can affect these two interconnected sustainability issues across a wide range of scenarios. We help to assess such issues by presenting a public Tool for Air Pollution Scenarios (TAPS) that can flexibly construct and assess a variety of climate and air quality emissions pathways through its coupling with socioeconomic modeling of climate change mitigation. In this study, we develop and implement TAPS with three components: recent global and fuel-specific anthropogenic emissions inventories, scenarios of emitting activities to 2100 from the MIT Economic Projection and Policy Analysis model (EPPA), and emissions intensity trends based on the latest Greenhouse Gas – Air Pollution Interactions and Synergies (GAINS) scenario data. An initial application shows that in scenarios with less climate and pollution policy ambition, near-term air quality improvements from existing policies are eclipsed by long-term emissions increases – particularly from industrial processes that combine sharp production growth with fewer pollution control levers in developing regions. Additional climate actions would substantially reduce energy-related air pollutant emissions (such as sulfur and nitrogen oxides), while further pollution controls are especially impactful for ammonia and organic carbon. Future TAPS applications could efficiently explore diverse regional and global policies that affect these emissions, using pollutant emissions results to drive global atmospheric chemical transport models to study the scenarios’ health impacts.
1. Introduction

Air pollution is an urgent global health threat, with similar sources to the greenhouse gas (GHG) emissions that drive anthropogenic climate change. Fine particulate matter (PM_{2.5}) from fossil fuels may have led to as many as ten million mortalities in 2012 (Vohra et al., 2021) – while pollutants like ground-level ozone can exacerbate crop loss and worsen socioeconomic disparities (Saari et al., 2017). Projecting these impacts requires future scenarios for those air pollutants’ precursor emissions – but more flexible and accessible tools are needed to elucidate the interdependent but distinct effects of economic, climate, and pollution policy on air quality and human health.

Many research efforts focus on the health “co-benefits” of reduced GHG emissions for reduced air pollution (Gallagher and Holloway, 2020; Karlsson et al., 2020). Studies have found that the near-term health benefits from GHG reductions can be on par with or even greater than their near-term climate benefits (Markandya et al., 2018; Shin-dell et al., 2021). Health benefits vary strongly by region and sector (Vandyck et al., 2020), highlighting the importance of granular analyses and actions that prioritize reductions in high-emitting areas (Polonik et al., 2021). Yet some climate policies may actually increase air pollutant sources, such as biomass-heavy energy pathways that enable the continued use of fossil fuels (Sampedro et al., 2020). As such, climate action must be complemented by pollution-specific policies to maximize air quality benefits (Reis et al., 2022; Tong et al., 2021) – prompting calls for combined policy assessments to address both issues together (Selin, 2021; Vandyck et al., 2021).

For studies that do vary both climate and air quality policies, most use one of a few existing scenario sets. Current options include the shared socioeconomic pathways (SSPs), a set of global scenarios to 2100 that treat climate and air pollution separately but tie the latter to specific societal narratives (O’Neill et al., 2017). Each SSP defines a specific pollution control ambition, with emissions intensity trends that depend on current national income (Rao et al., 2017). These trends are developed from two scenarios in the widely used Greenhouse Gas – Air Pollution Interactions and Synergies (GAINS) database: current legislation (CLE) versus maximum feasible reductions (MFR) from current technology (Amann et al., 2011; Klimont et al., 2017). The results are incorporated into outputs of the sixth Coupled Model Intercomparison Project (CMIP6) and presented online (IIASA, 2018; Rogelj et al., 2018).

Other approaches have a narrower scope of economic assumptions, timescales, or pollutant species. While several studies vary climate and air quality scenarios across pollutants, they often project emissions intensities based on income rather than specific policies (Radu et al., 2016; Scovronick et al., 2019). Others have begun to internal-ize climate-health-economic linkages into optimal policy pathways (Reis et al., 2022), while still using SSP pollution assumptions as baselines. Studies in the Energy Modeling Forum (EMF)-30 use the GAINS scenarios more directly, focusing on black and organic carbon (Smith et al., 2020) or non-agricultural pollutants through 2050 (Vandyck et al., 2018). Since then, GAINS has been updated with more nuanced regions, sectors, and emissions trends (GAINS Developer Team, 2021) – such as recent SO_{2} decreases in China (Zheng et al., 2018) and the potential for waste burning emissions to decline to zero by 2050 under an MFR scenario (Gomez Sanabria et al., 2021).

Some recent studies have used this GAINS update to explore more near-term results or policy extremes. Rafaj et al. (2021) use several integrated assessment models (IAMs) to assess health impacts around current climate policies, proposed policies, or likely attainment of the Paris Agreement’s temperature targets (through 2050) – applying GAINS CLE and MFR to the 1.5°C case while maintaining CLE otherwise. Amann et al. (2020) develop a “Clean Air” scenario that includes additional climate, energy, agriculture, and food policies – finding that those additional policies (beyond GAINS’ traditional air pollution controls) would lead to nearly double the benefits of reduced PM_{2.5} exposure. Hamilton et al. (2021) use a related scenario of “health in all climate policies”, including air pollution reductions, diet change, and active travel benchmarks in nine select countries. Both these latter papers focus on aggregate effects (comparing base cases to scenarios of those policy levers combined together), and are limited geographically (Hamilton et al., 2021) or temporally to 2040.

We aim to present a more flexible model-based capacity for long-term global scenarios of air pollutant precursor emissions. The resulting Tool for Air Pollution Scenarios (TAPS) can efficiently assess a wide range of climate and air quality policy pathways – from broad to specific at the regional, sectoral, and fuel-based level. In addition, its emissions outputs can readily drive global atmospheric chemical transport models (CTMs) to assess health outcomes – avoiding dependence on previous CTM runs and base years. We demonstrate the tool with illustrative scenarios after coupling with the Economic Projection and Policy Analysis model (EPPA). EPPA is a global multi-region multi-sector recursive–dynamic computable global equilibrium (CGE) model that has studied a variety of climate and economic policy impacts (Chen et al., 2015, 2017; Paltsev et al., 2005). While prior efforts have sought to endogenize EPPAs air pollutant emissions trends based on the cost of pollution control options (Sarofim, 2007; Valpergue De Masin, 2003; Waugh, 2012), their use has been limited to select studies (Nam et al., 2013). In contrast, the TAPS framework can be exercised autonomously for flexible scenario development (Fig. 1).
First, we utilize emissions inventories that are well-positioned for atmospheric modeling work on health impacts—following the SSPs’ sources but with updated estimates. Next, we scale those emissions by fuel-specific activities in EPPA, using climate policy scenarios from the global CGE model with full-century time horizons that are longer than most comparable works. Finally, we use updated emissions intensity scenarios from GAINS to assess policies specific to air pollution—while designing pathways that allow for future innovation beyond today’s technology options. The following section will describe these steps in turn, before comparing results to SSP benchmarks and discussing next steps for tool refinement and health applications.

2. Methodology

Our estimates of air pollutant emissions involve three main inputs: a base-year emissions inventory (Sect. 2.1), a projected trend in energy use and other polluting activities (Sect. 2.2), and a projected trend in emissions intensity (Sect. 2.3). The following equation (based on Fig. 1) summarizes these components (Eq. 1):

\[ E_{f,i,j,r,t} = E_{f,i,j,r,0} \times A_{f,i,j,r,t} \times f(y_{f,i,j,r,t}) \]  

(1)

In this way, the emissions \( E_{f,i,j,r,t} \) of inventory fuel \( f \), inventory sector \( i \), pollutant species \( j \), EPPA region \( r \), and time \( t \) are calculated as the product of base-year emissions \( E_{f,i,j,r,0} \), fuel-specific activity \( A_{f,i,j,r,t} \), and the function \( f(y_{f,i,j,r,t}) \) in scenario-specific emissions intensity over time. The below sections discuss each of these components in more detail, as well as the specific scenarios shown in this analysis (Sect. 2.4).

Public versions of the tool, outputs and underlying data are described in the code and data availability section (including processes for figure reproduction). To facilitate coupling with global atmospheric CTMs for health impact analysis, we also include gridded outputs for emissions scaling—following the inventory’s spatial distribution as done for the SSPs (Feng et al., 2020). Inputs and Python code can be downloaded and modified to explore the effects of different climate or air quality policies at the region, sector or fuel-based level. While it is simplest to construct scenarios that maintain the structure of current data sources (adjusting from Sect. 2.4), future TAPS applications could theoretically be extended to other inventories or policy model outputs if the database integration steps were completed (adjusting from Sect. 2.1-2.3).

2.1 Base-year Emissions Inventory

This paper uses base-year emissions from the Community Emissions Data System’s Global Burden of Disease Major Air Pollution Sources project (CEDS(GBD-MAPS)), an updated version of the anthropogenic air pollutant emissions inventory used in the SSPs as well as atmospheric modeling of health impacts (GEOS-Chem, 2021). CEDS is a global inventory that includes sulfur dioxide (SO₂), carbon monoxide (CO), ammonia (NH₃), black carbon (BC), organic carbon (OC), nitrogen oxides (NOₓ), and 23 separate non-methane volatile organic compounds (NMVOC). It offers monthly data globally on a 0.5°×0.5° grid for 1750-2014 (Hoesly et al., 2018), with updates for 1970-2017 (McDuffie et al., 2020) that divide each of 11 sectors into 4 fuel categories (Table A1). Compared to 2021’s CEDS versions with fewer sectors and no fuel separation, we use the version in McDuffie et al. (2020) because it combines fuel-specific granularity with emissions totals that largely match the latest trends in https://github.com/JGCRI/CEDS (such as lower BC and OC totals). We use 2014 emissions to match the economic base-year of the GTAP10 database (Aguiar et al., 2019) used in EPPA7 (as described in Sect. 2.2).

Figure 1. Summary of the Tool for Air Pollution Scenarios (TAPS) framework and implementation here, based on climate policy scenarios in EPPA7 and pollution control scenarios from the Greenhouse Gas – Air Pollution Interactions and Synergies (GAINS) database. Emissions trends are specific to each fuel \( f \), pollutant species \( i \), sector \( j \), region \( r \) and time point \( t \) in the inventories and EPPA7 scenarios used.
We also include emissions of agricultural waste burning, the only type of open burning represented in EPPA’s activities (Chepeliev, 2020). We follow the SSPs (van Marle et al., 2017) by using emissions from the Global Fire Emissions Database (GFED) version 4.1s at a 0.25°×0.25° grid (van der Werf et al., 2017). Although GFED gives emissions estimates in terms of dry matter rather than specific pollutants, we use emission factors from Akagi et al. (2011) to convert these estimates to pollutant-specific emissions, as recommended by GFED and done for the SSPs (see van Marle et al. (2017), Table SI3). We use 2014 values to match the base-year inventory of EPPA7, having checked for general consistency with emissions quantities from neighboring years. We do not include emissions from wildfires, non-anthropogenic sources, or other burning sources in GFED (given their lack of representation in EPPA and GAINS). In addition, we do not currently include aviation emissions, given their exclusion from both CEDS_GMB and GAINS.

2.2 Projecting Emitting Activities

2.2.1 Choice of Economic Data Source

This paper uses full-century activity outputs from several of EPPA’s global climate policy scenarios. The latest version of the EPPA model (EPPA7) has 18 regions of the world and 14 economic sectors, as represented in Fig. 2 (Paltsev et al., 2021). To scale the base-year emissions inventories by future trends in EPPA, we perform sectoral mapping from each of the 12 inventory sectors (11 from CEDS plus agricultural waste burning from GFED) to one or more of the EPPA7 sectors (Table 1). The process is based on comparisons of CEDS activities with sectoral coverage in GTAP10 (Chepeliev, 2020) and its transferal to EPPA sectors using standard Intergovernmental Panel

![Figure 2. EPPA7 regions and sectors, as described in Paltsev (2021).](image-url)
on Climate Change (IPCC) definitions as a common reference point. Since EPPA lacks sectors that match “Waste”, “Solvents”, or the “Residential” emissions that are largely from solid biofuels in CEDS, we use population to scale these sectors. Despite its approximations, this sectoral mapping is useful to keep emissions projections in terms of CEDS and GFED sectors, facilitating SSP comparisons and future atmospheric modeling applications.

### 2.2.2 Choice of Activity Parameters

Next, we select fuel-specific parameters to scale each emitting activity based on the approach used in the similar U.S. Regional Energy Policy (USREP) model (Yuan et al., 2019). In USREP, emissions from fuel consumption are mostly scaled by future sectoral energy consumption, while non-combustion sources are scaled by that sector’s economic output (Dimanchev et al., 2019; Thompson et al., 2014). Here, we apply a similar method to EPPA as described in Table 2, using the four fuel categories (three for combustion, one for “process”) in CEDS\textsubscript{GBD-MAPS}. Each source’s scaling is based on the proportion of its base-year emissions (Table A1) as follows:

\[
A_{f,i,r,t} = \frac{E_{f,i,r,0}}{E_{i,r,0}} \cdot \sum_{E_i} A_{f,E_i},
\]

The EPPA activities \(A_{f,E_i}\) are aggregated via summation across the EPPA sectors \(E_i\) that are mapped to each inventory sector (see Table 2). For fuel combustion, coal fuels are scaled by EPPA coal energy use trends (in joules), “liquid-fuel-plus-natural-gas” activities are scaled by aggregate oil and gas use trends, and solid biofuel sources are scaled by total sectoral energy use trends. For process-related emissions, some sources like manure management are clearly outside of the energy realm, while others (such as natural gas flaring) may reflect energy activities as well (McDuffie et al., 2020). Accordingly, we scale agricultural waste burning by crop land use trends, and energy or industry “process” sources by their sectors’ total energy trends. For agriculture, we use a “per tonne” basis for consistency with GAINS’ emissions intensity units – multiplying

<table>
<thead>
<tr>
<th>IPCC code</th>
<th>Activity</th>
<th>CEDS sector</th>
<th>EPPA sectoral scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Agriculture process emissions</td>
<td>Agriculture</td>
<td>CROP, FORS, LIVE</td>
</tr>
<tr>
<td>4F</td>
<td>Agricultural waste burning</td>
<td>N/A; from GFED</td>
<td>CROP</td>
</tr>
<tr>
<td>1A1</td>
<td>Electricity/fuel production</td>
<td>Energy</td>
<td>COAL, ELEC, GAS, ROIL</td>
</tr>
<tr>
<td>1B</td>
<td>Fugitive fuel emissions</td>
<td>Energy</td>
<td>COAL, ELEC, GAS, ROIL</td>
</tr>
<tr>
<td>7A</td>
<td>Fossil fuel fires</td>
<td>Energy</td>
<td>COAL, ELEC, GAS, ROIL</td>
</tr>
<tr>
<td>1A2</td>
<td>Industrial combustion</td>
<td>Industry</td>
<td>EINT, FOOD, OTHR</td>
</tr>
<tr>
<td>1A5</td>
<td>Other industrial (combustion)</td>
<td>Industry</td>
<td>EINT, FOOD, OTHR</td>
</tr>
<tr>
<td>2A-2C, H, L</td>
<td>Industrial process emissions</td>
<td>Industry</td>
<td>EINT, FOOD, OTHR</td>
</tr>
<tr>
<td>6A</td>
<td>Other industrial (process)</td>
<td>Industry</td>
<td>EINT, FOOD, OTHR</td>
</tr>
<tr>
<td>1A4a</td>
<td>Commercial/institutional</td>
<td>Commercial</td>
<td>SERV</td>
</tr>
<tr>
<td>1A4b</td>
<td>Residential</td>
<td>Residential</td>
<td>Population</td>
</tr>
<tr>
<td>1A4c</td>
<td>Other combustion</td>
<td>Other</td>
<td>CROP, FORS, LIVE</td>
</tr>
<tr>
<td>1A3d(i)</td>
<td>International shipping, oil tankers</td>
<td>Shipping</td>
<td>TRAN</td>
</tr>
<tr>
<td>2D</td>
<td>Solvents</td>
<td>Solvents</td>
<td>Population</td>
</tr>
<tr>
<td>1A3,1C</td>
<td>Aviation</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>1A3b</td>
<td>Road transportation</td>
<td>Transport</td>
<td>TRAN</td>
</tr>
<tr>
<td>1A3c</td>
<td>Rail transportation</td>
<td>Non-road transport</td>
<td>TRAN</td>
</tr>
<tr>
<td>1A3d(iii)-e(ii)</td>
<td>Domestic navigation, other transport</td>
<td>Non-road transport</td>
<td>TRAN</td>
</tr>
<tr>
<td>5</td>
<td>Waste/wastewater emissions</td>
<td>Waste</td>
<td>Population</td>
</tr>
</tbody>
</table>

Inventory versions include CEDS\textsubscript{GBD-MAPS} (McDuffie et al., 2020) for most anthropogenic emissions, as well as GFED4.1s (van der Werf et al., 2017) for biomass burning. Since only agricultural waste burning is included in EPPA through GTAP/EDGAR, other sources of burning emissions are not scaled by EPPA outputs. Aviation was not scaled in this work due to its exclusion from both CEDS\textsubscript{GBD-MAPS} and GAINS. “Other combustion” includes sources from agriculture, forestry, and fishing. Sectoral scaling from EPPA largely reflects the distribution of activities in GTAP10 / EDGAR5.0 sectors (Chepeliev, 2020), which are then mapped to representative EPPA7 sectors.
EPPA’s sectoral land use trends (in hectares) by linearly extended production-per-area total crop trends (in tonnes per hectare) from the Food and Agriculture Organization (FAO, 2018). The overall scaling procedure is done for each scenario, pollutant, CEDS or GFED sector, and EPPA region, having linked each CEDS or GFED sector to EPPA sectoral drivers (Table 1) and mapped the CEDS and GFED grids to EPPA regions.

### 2.3 Projecting Emissions Intensities

Finally, we scale each activity’s emissions intensity with region- and sector-specific trends from the GAINS 4.01 scenarios (GAINS Developer Team, 2021; Klimont et al., 2017). Global data and projections from 2000-2050 are available for non-agricultural sectors and air pollutant species through the Energy Modeling Forum (EMF) study scenario data sets (Smith et al., 2020) that have been since updated to GAINS 4.01. However, the EMF study does not include NH₃, agriculture, or agricultural waste burning. GAINS estimates for these sectors have been provided separately and only for G20 regions. We map both data sets to the CEDS sector-fuel combinations and EPPA regions analyzed here, as described in Table 2 and Tables B1-B4.

First, we calculate emissions intensity trends for each GAINS sector by dividing the emissions time series by activity time series. Historical data are available for 2000, 2005, 2010, and 2015 – with projections for the CLE (2020, 2030, 2050) and MFR scenarios (2030, 2050). For missing activity data points, we conduct annual linear interpolation (and/or extension) for sectors with at least two values, or leave emissions intensities constant for sectors with one or no values. For trend extensions that reach zero before 2050, we assume values of zero thereafter. For the GAINS waste sectors – where only emissions (not activities) were

### Table 2. Sectoral mapping and choice of scaling method for each inventory sector.

<table>
<thead>
<tr>
<th>CEDS/GFED sector</th>
<th>EPPA sector(s)</th>
<th>CEDS fuel</th>
<th>EPPA activity</th>
<th>GAINS EMF sector classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>CROP, FORS, LIVE</td>
<td>Process</td>
<td>Land production</td>
<td>See Table B2-B3</td>
</tr>
<tr>
<td>Agricultural waste</td>
<td>CROP</td>
<td>Process</td>
<td>Land use</td>
<td>See Table B2-B3</td>
</tr>
<tr>
<td>Energy</td>
<td>COAL, ELEC, GAS, ROIL</td>
<td>Biofuel</td>
<td>Total energy</td>
<td>Power_Gen_Bio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Coal energy</td>
<td>Power_Gen_Coal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oil &amp; gas energy</td>
<td>Power_Gen_(HLF, LLF, NatGas)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Process</td>
<td>Losses, Transformations</td>
</tr>
<tr>
<td>Industry</td>
<td>EINT, FOOD, OTHR</td>
<td>Biofuel</td>
<td>Total energy</td>
<td>End_Use_Industry_Bio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Coal energy</td>
<td>End_Use_Industry_Coal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oil &amp; gas energy</td>
<td>End_use_Industry_(HLF, LLF, NatGas)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Process</td>
<td>AACID, CEMENT, CHEM, CHEMBULK, CUSM, NACID, PAPER, STEEL</td>
</tr>
<tr>
<td>Commercial</td>
<td>SERV</td>
<td>Biofuel</td>
<td>Total energy</td>
<td>End_Use_Services_Bio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Coal energy</td>
<td>End_Use_Services_Coal</td>
</tr>
<tr>
<td>Residential</td>
<td>Population</td>
<td>Biofuel</td>
<td>Population</td>
<td>End_Use_Residential_Bio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Coal population</td>
<td>“_Coal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oil &amp; gas population</td>
<td>“_(HLF, LLF, NatGas)</td>
</tr>
<tr>
<td>Other (combustion)</td>
<td>CROP, FORS, LIVE</td>
<td>Oil &amp; gas</td>
<td>Oil &amp; gas energy</td>
<td>End_Use_Transport_(AGR, OFF)_ (LLF, HLF)</td>
</tr>
<tr>
<td>Shipping</td>
<td>TRAN</td>
<td>Oil &amp; gas</td>
<td>Oil &amp; gas energy</td>
<td>“<em>OFF</em>(LLF, HLF)</td>
</tr>
<tr>
<td>Solvents</td>
<td>Population</td>
<td>Process</td>
<td>Population</td>
<td>CHEM, CHEMBULK</td>
</tr>
<tr>
<td>Transport</td>
<td>TRAN</td>
<td>Oil &amp; gas</td>
<td>Oil &amp; gas energy</td>
<td>End_Use_Transport_(NatGas, HDT_HLF, HDT_LLF, LDT_HLF, LDT_LLF, MC_LLF)</td>
</tr>
<tr>
<td>Non-road transport</td>
<td>TRAN</td>
<td>Coal</td>
<td>Coal energy</td>
<td>End_Use_Transport_Coal</td>
</tr>
<tr>
<td>Waste</td>
<td>Population</td>
<td>Process</td>
<td>Population</td>
<td>Waste</td>
</tr>
</tbody>
</table>

CEDS fuel definitions are given in Table S1 of McDuffie et al. (2020) – with bioenergy separated between solid (“Biofuel”) and liquid fuels (“Oil & gas”). CEDS-GAINS fuel type discrepancies were recalibrated based on the percent of CEDS fuel emissions covered by GAINS. Residential, Solvents, and Waste sectors were scaled by EPPA population projections, given the lack of sufficient corollary sectors in EPPA. Land production combines land use from EPPA (in area units) with production per area trends from corollary FAO (2018) scenarios. GAINS sector abbreviations are described here.
given – we assume constant emissions intensities for CLE, versus region-specific trends to zero by 2050 for MFR (based on MFR/CLE emissions ratios) in accordance with a recent GAINS paper (Gomez Sanabria et al., 2021). NH$_3$ waste trends are matched to NO$_x$ due to large data gaps.

For other NH$_3$ sectors, we employ a conservative approach towards estimating intensity reductions outside of the GAINS G20 regions. For MFR, we assume that the non-G20 regions follow the MFR intensity trend of their corollary G20 regions (Table B4) – but with constant intensities in CLE (only following the corollary if its intensity is constant or increasing). For agriculture sectors (where intensity could rise or fall due to shifting land use or dietary patterns), we also incorporate more granular sector trends from the Food and Agriculture Organization's 2050 scenarios of “Business as Usual” (CLE-like) and “Toward Sustainability” (MFR-like), which directly inform the GAINS database as well (FAO, 2018). The resulting intensity trend $I$ combines the GAINS trend ($GI$) with FAO’s trend for sector $i$ relative to total production ($F_{r,t}$):

$$I_{f,i,r,t} = GI_{f,i,r,t} \times \frac{F_{i,r,t}}{F_{r,t}}$$

This adjustment allows for the potential of a region’s overall agricultural intensity to change based on shifts in the relative share of the emitting sectors within agriculture (such as livestock categories, milk production, or fertilizer tonnage). Associated FAO sectoral and regional mappings are provided in Tables B3-B4.

Table 3. EPPA7 scenarios analyzed, with selected SSP comparisons.

<table>
<thead>
<tr>
<th>EPPA Scenario</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paris Forever</td>
<td>Paris Nationally Determined Contribution (NDC) targets (as of March 2021) are met by all countries by 2030 and retained thereafter (Paltsev et al., 2021).</td>
</tr>
<tr>
<td>Paris 2°C</td>
<td>Same to 2030, with a post-2030 emissions cap, implemented with a global emissions price, to ensure that the 2100 global surface mean temperature does not exceed 2°C above pre-industrial levels with a 50% probability (Paltsev et al., 2021).</td>
</tr>
<tr>
<td>Paris 1.5°C</td>
<td>Same to 2030, with a post-2030 emissions cap, implemented with a global emissions price, to ensure that the 2100 global surface mean temperature does not exceed 1.5°C above pre-industrial levels with a 50% probability (Morris, Sokolov, et al., 2021).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EPPA Scenario</th>
<th>RF (W/m$^2$)</th>
<th>SSP IAMs compared</th>
<th>RF (W/m$^2$)</th>
<th>ΔTemp (°C)</th>
<th>CMIP6 analog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paris Forever</td>
<td>5.95</td>
<td>RF6.0, Baseline* (19)</td>
<td>5.48-6.43</td>
<td>3.23-3.76</td>
<td>SSP4_60</td>
</tr>
<tr>
<td>Paris 2°C</td>
<td>3.82</td>
<td>RF3.4 (25)</td>
<td>3.33-3.57</td>
<td>2.13-2.28</td>
<td>SSP4_34</td>
</tr>
<tr>
<td>Paris 1.5°C</td>
<td>2.87</td>
<td>RF2.6 (19)</td>
<td>2.53-2.72</td>
<td>1.72-1.82</td>
<td>SSP1_26</td>
</tr>
</tbody>
</table>

Radiative forcing (RF) and temperature change are global mean values for 2100, relative to pre-industrial levels of 1861-1880 in EPPA (Morris, Sokolov, et al., 2021) and 1850-1900 for the SSPs (IIASA, 2018). CMIP6 analog shows the SSP and RF combination that is most similar to each EPPA scenario. *IAM scenarios were not included if the radiative forcing (RF) difference from EPPA was greater than 0.5 W/m$^2$. 

Next, we prepare the GAINS sectors’ emissions intensity trends for integration with EPPA activity trends. First, we scale the trends to a relative value of 1 in EPPA’s base-year of 2014, using linear interpolation for the five-year GAINS values. To determine emissions intensity trends by CEDS sector-fuel combination (e.g., Industrial emissions from the “total-coal” fuel), we aggregate the more granular GAINS trends based on the proportion of the sector-fuel’s emissions from that GAINS sector – adjusting to the proportion of emissions covered by GAINS in cases where not all the CEDS sector-fuel combinations had a GAINS equivalent. We repeat the process to aggregate from GAINS to EPPA regions.

2.4 Implemented Scenarios

To illustrate an application of TAPS, we first select three scenarios from EPPA7 to represent variations in climate policy ambition (Table 3), based on Paltsev et al. (2021). The “Paris Forever” scenario assumes the completion of nationally determined contributions (NDCs) from the Paris Agreement (as of March 2021 with more recent adjustments for Covid-19), but no future climate policies beyond those near-term targets. The other two scenarios extend this NDC baseline to the Paris Agreement’s long-term temperature goals, using a global emissions cap and price starting in 2030 to provide a 50% chance of limiting warming to 2°C or 1.5°C above pre-industrial levels. (Temperature estimates come from ensemble linkages of the MIT Earth System Model (Sokolov et al., 2018), or MESM, to EPPA’s economic results). The 1.5°C scenario features an almost 50% reduction in global greenhouse gas emissions from
2025 to 2030, a highly ambitious projection. As such, these scenarios span a range from current pledges to a much more stringent set of future climate policies.

This range is reflected in the corresponding FAO (2018) scenarios used for agricultural production scaling: “Business As Usual” for “Paris Forever” and “Towards Sustainability” for the 2°C and 1.5°C scenarios. In Table 3, we also compare results from each EPPA scenario to CMIP6 scenarios and additional IAM runs from SSPs that have similar radiative forcing and other assumptions (Feng et al., 2020). While the “SSP5-3.4-Overshoot” scenario does fall in the EPPA forcing ranges, it assumes business-as-usual emissions in the near-term and plentiful negative emissions technologies in the long-term, in contrast to the EPPA scenarios’ near-term NDCs and lack of negative emissions.

Turning to pollution control pathways, we use this initial implementation to show the range of outcomes between GAINS CLE and MFR scenarios. After aggregating the GAINS emissions intensity trends to inventory sectors and EPPA regions (Sect. 2.3), we perform exponential fits for all non-constant intensity pathways to enable simpler scenario tuning and harmonization with EPPA’s trends out to 2100. This approach also allows for the potential of future innovation beyond today’s MFR levels, in contrast to the SSPs’ treatment of the current MFR as a “floor” for intensities. (Other pathways might be chosen for different research questions; we describe examples in the discussion and Table 4). Exponentials are designed to pass through base-year values of 1 for consistency (using a base-year uncertainty weighting of 0.01 via Python’s scipy curve fitting’s sigma parameter). Given the MFR scenario’s definition as the maximum feasible pollution reduction, anomalous cases with higher intensities than the corresponding CLE pathway are fixed to CLE levels.

The resulting trends in emissions intensity are reported in the model outputs (before and after exponential fits), with ~5500 trajectories from the 2 GAINS scenarios, 7 pollutants, 18 EPPA regions, and ~20 CEDS sector-fuel combinations. The fit data includes reported r² values that range from strong (particularly for areas with full data sets such as Western Europe) to weaker in cases with incomplete or abrupt changes in emissions intensities. The trends are highly sector- and region-specific, ranging from sharp decreases (such as 10-100x drops in some transportation cases) to occasional increases (sometimes due to projected fuel switching within the GAINS activities that had been aggregated to the 56 EMF sectors). Increased intensities include CO emissions from steel in Brazil, Africa, and Eastern Europe, as well as SO₂ coal emissions from residential (Eastern Europe) and end use industry (Western Europe) activities. Finally, we combine the intensity trends with the linked base-year inventories and revised activity scaling (as in Eq. 1). Results are presented below and in the model output files, including tables of all individual emissions trends as well as summary sheets of inventory value, activity scaling, and intensity scaling at notable timepoints (2030, 2050, 2100) for quicker comparisons.

3. Results

3.1 Example Scenario and SSP Comparison

We illustrate an application of the TAPS tool by providing the results for total air pollutant emission trends (Fig. 3), sectoral breakdowns (Fig. 4) and regional breakdowns (Fig. 5). We also compare this implementation to corollary SSP IAM and CMIP6 scenarios (summarized in Table 5). For Fig. 3, we show the full range of SSP-IAM combinations that have a similar radiative forcing to each of the three EPPA-MESM climate scenarios in Table 3. Though the SSPs and EPPA-MESM have slightly different temperature change estimates for a given forcing level, this process represents the closest comparison available between the two data sets. We facilitate this comparison by removing the SSP sectors that are not part of our scaling (aviation and open burning beyond agricultural waste), based on their emissions proportion in the best-fitting CMIP6 scenario.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Improvements</td>
<td>Assume constant emission factors from base year.</td>
</tr>
<tr>
<td>CLE Forever</td>
<td>Follow CLE emission factors until 2050, and hold them constant afterwards.</td>
</tr>
<tr>
<td>CLE Trend Continues</td>
<td>Fit an exponential function to CLE 2000-2050, and extend that trend to 2100.</td>
</tr>
<tr>
<td>Granular Policy Choices</td>
<td>Adjust CLE trends with regional, sectoral, or fuel-specific policy scenarios.</td>
</tr>
<tr>
<td>SSP-like Improvements</td>
<td>SSP-specific improvements between CLE and MFR, depending on national income level and reduction stringency of SSP (1 and 5 &gt; 2 &gt; 3 and 4).</td>
</tr>
<tr>
<td>MFR Trend Continues</td>
<td>Fit an exponential function to the historical GAINS data (2000-2015) + MFR scenario (2030-2050), and extend that trend to 2100.</td>
</tr>
</tbody>
</table>

Table 4: Example emissions intensity trends, based on GAINS scenarios of current legislation (CLE) and maximum feasible reduction (MFR).
Figure 3. Global air pollutant emissions trends within the range of GAINS-based scenarios of current legislation (CLE) and maximum feasible reduction (MFR) in Table 4, as compared to the range of SSP IAM corollaries in Table 3. IAM estimates are subtracted by sectors not scaled by TAPS (aviation and open burning beyond agricultural waste), based on their emissions proportion in the best-fitting CMIP6 scenario (since sectoral IAM emissions are not available). NO$_2$ and NMVOC quantities reflect the molecular weights of NO$_2$ and C, respectively.

Figure 4. Sectoral emissions of air pollutants in 2050 under the GAINS-based scenarios of current legislation (CLE) and maximum technically feasible reduction (MFR) – as compared to the 2014 emissions inventories and corresponding CMIP6 scenarios of SSP1-2.6, SSP4-3.4, and SSP4-6.0 (respectively) for EPPA’s 1.5°C, 2°C and Paris Forever scenarios (see Table 3). The 11 CEDS sectors (McDuffie et al., 2020) are condensed to the eight in the earlier version that the SSPs employ (Hoesly et al., 2018), including the aggregation of residential, commercial, and other combustion sectors (“Res|Com|Other”), plus agricultural waste burning (“Ag Waste”) from GFED.
This estimate may lead to slight visual differences in SSP data (e.g., NMVOC “Paris Forever” emissions totals in Fig. 3 versus Fig. 4), but acts as a reasonable first-order comparison with the TAPS scaling.

When comparing initial emissions, IAM inventories differ both in base year (2005 vs. EPPA7’s 2014) and emissions values (Fig. 3) – given their variety of sources from the Emissions Database for Global Atmospheric Research (EDGAR) to GAINS to the RCP or even older IPCC inventories (Rao et al., 2017). Even after the inventories have been harmonized in the CMIP6 scenarios (Gidden et al., 2019), their use of an earlier CEDS version (Hoesly et al., 2018) leads to differences such as a base-year OC value that is 30% higher than the updated CEDS value (McDuffie et al., 2020). NMVOC inventories of emissions inside the scope of CEDS are also much lower in the IAMs, especially from the IMAGE and REMIND-MagPie models (IIASA, 2018).

In the TAPS example policy scenarios, trajectories do not decrease as often as in the SSPs – showing that emissions could be much higher if emissions intensity improvements are limited to current legislation. While recent studies support these cases of increased emissions (Rafaj et al., 2021), they focus on trends to mid-century. Here, many of

### Table 5: Summary of pathways presented.

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Base-Year Emissions</th>
<th>Activity Scaling</th>
<th>Intensity Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAPS CLE</td>
<td>2014; GEOS-Chem 13.0.0 defaults (CEDS, GFED) for anthropogenic emissions</td>
<td>EPPA7 fuel-based energy (coal, oil/gas fuels), total energy (solid biofuel, most “process” fuels), land use (agriculture)</td>
<td>Fuel and sector-specific exponential trends from GAINS 4.01 2000-2050 CLE</td>
</tr>
<tr>
<td>TAPS MFR</td>
<td>2014; GEOS-Chem 13.0.0 defaults (CEDS, GFED) for anthropogenic emissions</td>
<td>EPPA7 fuel-based energy (coal, oil/gas fuels), total energy (solid biofuel, most “process” fuels), land use (agriculture)</td>
<td>Fuel and sector-specific exponential trends from GAINS 4.01 2000-2050 MFR</td>
</tr>
<tr>
<td>CMIP6 Subset</td>
<td>2015; past CEDS (Hoesly et al., 2018) and GFED (van Marle et al., 2017)</td>
<td>IAM-specific (Rao et al., 2017)</td>
<td>SSP-based trends via GAINS 3 (Rao et al., 2017)</td>
</tr>
</tbody>
</table>

SSP analogs from the full range of IAMs are shown in Fig. 3, while sectoral data (Fig. 4) are only available from the CMIP6 subset. For more detailed information on IAM model inputs, see Section 2.2 of the Supporting Information in Rao et al. (2017).
the increases are strongest in the late century – implying that any continued improvements in the GAINS-based intensity trends are offset by further increases in activity. This contrast is strongest in industrial “process” emissions sources, where EPPAs sharp increases in activity overpower the slight decreases in emissions intensity. While the full century’s trends are shown for context (Fig. 3), the sectoral and regional plots focus on 2050 as the last year with official GAINS scenario data. We next summarize projections for each pollutant category in turn, before discussing SSP comparisons and further directions.

3.2 Example Scenario Results by Pollutant

In the case of increasing SO$_2$ under EPPAs “Paris Forever” and GAINS’ CLE scenarios, continued coal use without desulfurization and/or carbon capture is the primary factor – especially in regions with fewer current pollution controls such as Africa, South Asia, and Eastern Europe. By 2100, the near-doubling of industrial and residential sector emissions outpaces the decreases in energy and transport sectors. Industrial increases are driven by increased activities (four to nine-fold by 2100 in those regions) with few intensity improvements, while residential increases are due to growth in China as well as a sharp increase in GAINS-based emissions intensity from Eastern Europe coal use. The GAINS MFR intensities are much lower given additional pollution controls, halving the industrial emissions compared to CLE and leading to a five-fold drop in energy sector emissions by 2100. Still, the increased coal activities of “Paris Forever” (especially in developing areas’ non-energy sectors) prevent emissions from decreasing globally, as in Rafaj et al. (2021) but unlike the SSPs. More ambitious climate policy scenarios include rapid declines in coal energy use – leading to declining SO$_2$ emissions even if the intensities of the few remaining emissions sources (mostly industrial and residential) are nonzero.

CO and NMVOC emissions show similar trends. In the case of CO under CLE and “Paris Forever”, industrial processes increase in activity (up to nine-fold in Indonesia by 2100) as well as intensity for certain regions (3.5x in Africa and 5x in Eastern Europe). Pollution controls in MFR reduce these increases, while causing major declines in most other sectors (including industrial, unlike with SO$_2$). NMVOC emissions follow these general patterns, with greater influence from energy process sources that have fewer control options in GAINS and more temporal variation from EPPA trends. CLE emissions intensities are relatively flat for energy, industrial, and solvent process sources (with some increases in Brazil and much of Asia), leading to greater emissions under the “Paris Forever” scenario. Further climate policy leads to further declines in energy, transport, and industrial coal, while further pollution policy (in MFR) is more impactful for solvents, residential, and industrial process sources.

Long-term NO$_x$ emissions also increase under less ambitious policies, given the limits of projected intensity improvements in GAINS CLE. In this pathway, increased activities in EPPA lead to increased agriculture and a doubling of industry emissions by 2100 (including a ten-fold increase in India’s oil and gas fuel), offsetting initial declines from GAINS intensities and overall reductions in other sectors like energy and transport. The GAINS MFR case gives further intensity reductions, flattening India’s industrial trend and transitioning energy and transport to near-zero. With further climate policy in the 2°C and 1.5°C scenarios, oil and gas use in EPPA is projected to reach near-zero by late-century as well, leading to lower emissions than most of the IAMs (which may assume less steep energy declines due to their greater reliance on negative emissions).

BC and OC are driven more by residential emissions, which have limited intensity improvements in CLE but much stronger pollution controls in MFR. BC emissions are generally higher than their SSP counterparts, as increased activities overpower intensity improvements for residential, commercial, industrial, energy, and waste sectors. Moving to MFR leads to decreases in all sectors except for energy and commercial, while moving to a 2°C climate scenario reduces energy and industry but not the others. Pollution control actions have an even greater effect for OC. From CLE to MFR under “Paris Forever”, OC residential emissions drop six-fold and industry emissions are two-thirds lower (after tripling by 2100 in CLE due to major increases in South Asia’s solid biofuels). In this case, adding pollution control ambition leads to more emissions reductions than increasing the climate policy ambition.

NH$_3$ also shows the pronounced effect of pollution control outside of climate policy. In CLE cases, increased agricultural production globally combines with a near-doubled intensity in Africa (by 2100) to offset slight efficiencies elsewhere. When the FAO scenario is changed from “Business as Usual” (CLE-like) to “Toward Sustainability” (MFR-like), the spread of activities is much less emissions-intensive (near-constant in Africa, South Asia, and the Middle East; substantially decreasing elsewhere), and relatively flat land use trends allow for declines in overall emissions. Non-agricultural NH$_3$ emissions play a smaller role but follow similar patterns, with increased emissions under the limited existing policies and further reductions (such as in waste) under more ambitious policies.

4. Discussion

Several factors can help explain the different projection scenarios of TAPS and the SSPs. First, sectoral scaling choices differ between IAMs, as described in Section 2.2 of the Supporting Information in Rao et al. (2017). One example is the much higher value for OC waste emissions in SSP1-2.6 vs. this study (Fig. 4), which comes from a
5. Conclusions

TAPS provides a flexible and comprehensive model for assessing climate and pollution pathways, integrating updated standards for emissions inventories, long-term activity scaling, and scenario-specific emissions intensities. Results from its application to selected scenarios show lower near-term emissions than the SSPs in many cases, both from NDCs’ greater climate policy ambition as well as recent pollution reduction actions now captured in GAINS. Less ambitious pathways show increased emissions in the long-term – particularly for the industrial and agricultural processes that have fewer existing control options. These increases are especially pronounced in developing regions where sharply growing activities are combined with few existing control options. All these scenarios can be applied to specific regions, sectors, or fuels in the framework to explore the effects of more granular climate policies applied at those levels. Activity trends could be adjusted to specific innovations beyond today’s technological control options. All these scenarios can be applied to specific regions, sectors, or fuels in the framework to explore the effects of more granular climate policies applied at those levels. Activity trends could be adjusted to other modeling tools could examine key inter-pollutant or pollutant-climate feedbacks, such as the increased NH3 emissions rates in a warming world (Yang et al., 2021). External coupling to other ensemble results could address

Such scenarios need not be limited to emissions intensity. With the regional, sectoral, and fuel-based EPPA outputs given in the data and code availability, users can readily explore the effects of more granular climate policies applied at those levels. Activity trends could be adjusted to study the effects of sector-specific policies on agricultural land use, fuel-specific policies on coal combustion levels, or region-specific policies that capture individual NDC updates (for example). Given the tool’s relatively quick runtime, uncertainty analyses could explore larger ensembles of policy or other inputs to efficiently explore first-order outcome ranges, following the approach of recent EPPA studies on socioeconomic (Morris, Reilly, et al., 2021) and climate forcing trends (Morris, Sokolov, et al., 2021).

Further application of TAPS could explore other scenarios by adjusting a range of climate or pollution policy inputs. Assessing other climate or activity scenarios could compare the health impacts of near-term fuel switching versus long-term negative emissions. Additional emissions intensity trends could add the aforementioned elements of land use, diet, or specific innovations beyond today’s technological control options. All these scenarios can be applied to specific regions, sectors, or fuels in the framework to explore more granular policies or target short-term actions with high-impact benefits.

Future tool development and linkages could consider other emissions sources – such as aviation, open burning, or wildfires – to explore the futures of additional activities that may have profound health effects. Integration with other modeling tools could examine key inter-pollutant or pollutant-climate feedbacks, such as the increased NH3 emissions rates in a warming world (Yang et al., 2021). External coupling to other ensemble results could address
6. References


important but out-of-scope elements such as meteorological uncertainty, given its importance in past studies that compared natural variability with other sources of uncertainty in health impacts analysis of air pollution (Pienkosz et al., 2019; Saari et al., 2019).

Finally, additional research with air quality and impact models can assess the health effects of TAPS emissions scenarios as well as their implications for decision-making. Quantified impacts should include a range of mortality and morbidity endpoints to capture recent epidemiological research (Danesh Yazdi et al., 2019), as well as analyses of equity, uncertainty, and sensitivity for key parameters (Hess et al., 2020). Using a combined assessment of climate and pollution policies could help reduce the siloes that have traditionally hampered the consideration of climate-health linkages in decision-making (Workman et al., 2018). Integrated impact metrics (whether through the weighting of multi-criteria decision analysis or the monetization of benefit-cost analysis) could also inform policy conversations. Ultimately, the TAPS framework could enable more flexible, efficient, and extensive scenario study of policies that affect climate change and health futures.

Acknowledgements

This work was carried out with support from the U.S. EPA and its Science to Achieve Results (STAR) program (no. R834279). The research has not been subject to EPA review and therefore does not necessarily reflect its views; no official endorsement should be inferred. Use of the EPPA model was made possible by the MIT Joint Program on the Science and Policy of Global Change, which is supported by an international consortium of government, industry and foundation sponsors (a list can be found at: https://globalchange.mit.edu/sponsors/current). Research was also supported by the Biogen Foundation, MIT’s Leading Technology and Policy Initiative, and its Research to Policy Engagement Initiative. We gratefully acknowledge the modeling input efforts of EPPA, GAINS, and SSP teams – particularly Zbigniew Klimont, Robert Sander, and Shilpa Rao. We also thank the manuscript’s reviewers for their insightful comments.


## Appendix A: CEDS Reference Data

Table A1. Percentage of base-year (2014) CEDS emissions from different fuel consumption vs. process sources (broken down by sector, aggregated globally).

<table>
<thead>
<tr>
<th>Sector</th>
<th>Fuel</th>
<th>SO₂</th>
<th>CO</th>
<th>NH₃</th>
<th>BC</th>
<th>OC</th>
<th>NO⁺</th>
<th>C₂H₄⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>coal</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>biofuels</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>oil/gas</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>process</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Energy</td>
<td>coal</td>
<td>65</td>
<td>11</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>biofuels</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>39</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>oil/gas</td>
<td>18</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>process</td>
<td>17</td>
<td>79</td>
<td>85</td>
<td>88</td>
<td>54</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>Industrial</td>
<td>coal</td>
<td>43</td>
<td>42</td>
<td>5</td>
<td>53</td>
<td>22</td>
<td>54</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>biofuels</td>
<td>0</td>
<td>8</td>
<td>35</td>
<td>19</td>
<td>72</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>oil/gas</td>
<td>18</td>
<td>5</td>
<td>9</td>
<td>27</td>
<td>6</td>
<td>33</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>process</td>
<td>38</td>
<td>46</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>Non-road transport</td>
<td>coal</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>biofuels</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>oil/gas</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>process</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Commercial</td>
<td>coal</td>
<td>71</td>
<td>51</td>
<td>25</td>
<td>49</td>
<td>44</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>biofuels</td>
<td>1</td>
<td>10</td>
<td>25</td>
<td>23</td>
<td>48</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>oil/gas</td>
<td>28</td>
<td>39</td>
<td>50</td>
<td>28</td>
<td>8</td>
<td>100</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>process</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>coal</td>
<td>37</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>23</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>biofuels</td>
<td>0</td>
<td>21</td>
<td>9</td>
<td>8</td>
<td>42</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>oil/gas</td>
<td>63</td>
<td>70</td>
<td>79</td>
<td>80</td>
<td>34</td>
<td>97</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>process</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Residential</td>
<td>coal</td>
<td>72</td>
<td>14</td>
<td>0</td>
<td>14</td>
<td>8</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>biofuels</td>
<td>18</td>
<td>86</td>
<td>96</td>
<td>69</td>
<td>91</td>
<td>56</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>oil/gas</td>
<td>10</td>
<td>1</td>
<td>4</td>
<td>17</td>
<td>0</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>process</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Transport</td>
<td>coal</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>biofuels</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>oil/gas</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>process</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shipping</td>
<td>coal</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>biofuels</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>oil/gas</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>process</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Solvents</td>
<td>coal</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>biofuels</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>oil/gas</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>process</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

CEDS reports NO⁺ as NO and NMVOC as speciated compounds; C₂H₄ is shown as an example NMVOC species. Global aggregate proportions are shown here for context; full regional and speciated values are used in TAPS.
## Appendix B: Mapping from GAINS Database

### Table B1. Mapping from GAINS EMF (based on IMAGE) to EPPA7 regions.

<table>
<thead>
<tr>
<th>EPPA7</th>
<th>GAINS EMF</th>
<th>EPPA7</th>
<th>GAINS EMF</th>
<th>EPPA7</th>
<th>GAINS EMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN</td>
<td>1 Canada</td>
<td>AFR</td>
<td>10 South Africa</td>
<td>IND</td>
<td>18 India</td>
</tr>
<tr>
<td>USA</td>
<td>2 USA</td>
<td>EUR</td>
<td>11 Western Europe</td>
<td>KOR</td>
<td>19 Korea</td>
</tr>
<tr>
<td>MEX</td>
<td>3 Mexico</td>
<td>EUR</td>
<td>12 Central Europe</td>
<td>CHN</td>
<td>20 China+</td>
</tr>
<tr>
<td>LAM</td>
<td>4 Rest Central America</td>
<td>ROE</td>
<td>13 Turkey</td>
<td>ASI</td>
<td>21 Southeastern Asia</td>
</tr>
<tr>
<td>BRA</td>
<td>5 Brazil</td>
<td>ROE</td>
<td>14 Ukraine+</td>
<td>IDZ</td>
<td>22 Indonesia+</td>
</tr>
<tr>
<td>LAM</td>
<td>6 Rest South America</td>
<td>ROE</td>
<td>15 Asia-Stan</td>
<td>JPN</td>
<td>23 Japan</td>
</tr>
<tr>
<td>AFR</td>
<td>7 Northern Africa</td>
<td>RUS</td>
<td>16 Russia+</td>
<td>ANZ</td>
<td>24 Oceania</td>
</tr>
<tr>
<td>AFR</td>
<td>8 Western Africa</td>
<td>MES</td>
<td>17 Middle East</td>
<td>REA</td>
<td>25 Rest South Asia</td>
</tr>
</tbody>
</table>

IMAGE regions are given in Figure S7.1 of Klimont et al. (2017) and compared to Fig. 2. Regions in italics differ slightly from EPPA definitions.

### Table B2. Mapping from GAINS NH₃ to CEDS/GFED sectors and fuels.

<table>
<thead>
<tr>
<th>Inventory sector</th>
<th>CEDS fuel</th>
<th>GAINS NH₃ sector classes</th>
<th>GAINS NH₃ sector class names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural waste</td>
<td>Process</td>
<td>WASTE_AGR</td>
<td>Agricultural waste burning</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Process</td>
<td>AGR, COWS, FCON, FERTPRO</td>
<td>Livestock and fertilizer (Table B3)</td>
</tr>
<tr>
<td>Energy</td>
<td>Coal</td>
<td>PP - BC1, BC2, DC, HC1, HC2, HC3</td>
<td>Power plants (brown, derived, and hard coal)</td>
</tr>
<tr>
<td></td>
<td>Biofuel</td>
<td>PP - OS1, OS2</td>
<td>&quot; (biomass and waste fuels)</td>
</tr>
<tr>
<td></td>
<td>Oil &amp; gas</td>
<td>PP - GAS, GSL, HF, LPG, MD</td>
<td>&quot; (natural gas, gasoline, heavy fuel oil, liquefied petrol gas, diesel)</td>
</tr>
<tr>
<td></td>
<td>Process</td>
<td>CON, PROD_AGAS, WASTE_FLR</td>
<td>Conversion, flaring and venting</td>
</tr>
<tr>
<td>Industry</td>
<td>Coal</td>
<td>IN_OC - BC1, BC2, DC, HC1, HC2, HC3</td>
<td>Industrial (brown, derived, and hard coal)</td>
</tr>
<tr>
<td></td>
<td>Biofuel</td>
<td>IN_OC - OS1, OS2</td>
<td>&quot; (biomass and waste fuels)</td>
</tr>
<tr>
<td></td>
<td>Oil &amp; gas</td>
<td>IN_OC - GAS, GSL, HF, LPG, MD</td>
<td>&quot; (natural gas, gasoline, heavy fuel oil, liquefied petrol gas, diesel)</td>
</tr>
<tr>
<td></td>
<td>Process</td>
<td>IN_BO, IO_NH3_EMISS</td>
<td>Boiler and other emissions</td>
</tr>
<tr>
<td>Residential, Commercial</td>
<td>Coal</td>
<td>(DOM) - BC1, BC2, DC, HC1, HC2, HC3</td>
<td>Residential-commercial (brown/derived/hard coal)</td>
</tr>
<tr>
<td></td>
<td>Biofuel</td>
<td>(DOM) - OS1</td>
<td>&quot; (biomass)</td>
</tr>
<tr>
<td></td>
<td>Oil &amp; gas</td>
<td>(DOM) - GAS, GSL, HF, LPG, MD</td>
<td>&quot; (natural gas, gasoline, heavy fuel oil, liquefied petrol gas, diesel)</td>
</tr>
<tr>
<td>Other (combustion)</td>
<td>Oil &amp; gas</td>
<td>TRA_OT_(AGR, CNS, LB, LD2)</td>
<td>Off-road engines, mopeds, construction &amp; agriculture vehicles</td>
</tr>
<tr>
<td>Shipping</td>
<td>Oil &amp; gas</td>
<td>TRAOTS</td>
<td>Maritime</td>
</tr>
<tr>
<td>Solvents</td>
<td>Process</td>
<td>IO_NH3_EMISS</td>
<td>Other industrial NH₃ emissions</td>
</tr>
<tr>
<td>Transport</td>
<td>Oil &amp; gas</td>
<td>TRA_RD</td>
<td>All road transportation</td>
</tr>
<tr>
<td>Non-road transport</td>
<td>Oil &amp; gas</td>
<td>TRA_OT_INW, TRA_OT_RAI</td>
<td>Inland waterways, railways</td>
</tr>
<tr>
<td>Waste</td>
<td>Process</td>
<td>WT_NH3_EMISS</td>
<td>Trash burning</td>
</tr>
</tbody>
</table>

CEDS fuel definitions are given in Table S1 of McDuffie et al. (2020) – with bioenergy separated between solid ("Biofuel") and liquid fuels ("Oil & gas"). Comparisons are based on Table S3 in Rafaj et al. (2021), with GAINS abbreviations described here. "Since NH₃ "Waste" data were only available for two countries, emissions intensity trends follow NO, "Waste" trends based on Gomez Sanabria et al. (2021).
Table B4. Mapping from \( n\text{H}_3 \) data sources to EPPA7 regions.

<table>
<thead>
<tr>
<th>EPPA7</th>
<th>G20 Corollary</th>
<th>FAO Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN</td>
<td>USA</td>
<td>High-income</td>
</tr>
<tr>
<td>USA</td>
<td>USA</td>
<td>High-income</td>
</tr>
<tr>
<td>MEX</td>
<td>Mexico</td>
<td>Latin America/Caribbean</td>
</tr>
<tr>
<td>LAM*</td>
<td>Argentina</td>
<td>Latin America/Caribbean</td>
</tr>
<tr>
<td>BRA</td>
<td>Brazil</td>
<td>Latin America/Caribbean</td>
</tr>
<tr>
<td>AFR*</td>
<td>South Africa</td>
<td>Sub-Saharan Africa</td>
</tr>
<tr>
<td>EUR</td>
<td>United Kingdom; France; Germany</td>
<td>High-income</td>
</tr>
<tr>
<td>ROE*</td>
<td>Turkey</td>
<td>Europe/Central Asia</td>
</tr>
<tr>
<td>RUS</td>
<td>Russia*</td>
<td>Europe/Central Asia</td>
</tr>
<tr>
<td>MES*</td>
<td>Turkey</td>
<td>Near East/North Africa</td>
</tr>
<tr>
<td>IND</td>
<td>India*</td>
<td>South Asia</td>
</tr>
<tr>
<td>KOR</td>
<td>South Korea*</td>
<td>EAP excluding China</td>
</tr>
<tr>
<td>CHN</td>
<td>China*</td>
<td>China</td>
</tr>
<tr>
<td>ASI*</td>
<td>China*</td>
<td>EAP excluding China</td>
</tr>
<tr>
<td>IDZ*</td>
<td>China*</td>
<td>EAP excluding China</td>
</tr>
<tr>
<td>JPN</td>
<td>Japan*</td>
<td>EAP excluding China</td>
</tr>
<tr>
<td>ANZ</td>
<td>Australia</td>
<td>High-income</td>
</tr>
<tr>
<td>REA*</td>
<td>India*</td>
<td>South Asia</td>
</tr>
</tbody>
</table>

Full GAINS data were only provided for G20 regions. Countries that approximate other regions are shown in italics, while corollaries that represent a part of their EPPA regions (or vice versa) are underlined. FAO regions are shown in Figure 1.2 of FAO (2018). * Countries with subnational regions in GAINS were aggregated based on their proportional emissions. ** Scaling for EPPA regions not well-captured by the GAINS G20 coverage is described in Sect. 2.3.
Joint Program Report Series - Recent Articles

For limited quantities, Joint Program Reports are available free of charge. Contact the Joint Program Office to order.
Complete list: http://globalchange.mit.edu/publications

359. A Tool for Air Pollution Scenarios (TAPS v1.0) to Facilitate Global, Long-term, and Flexible Study of Climate and Air Quality Policies. Atkinson et al., Jun 2022


357. The Changing Nature of Climate-Related Risks in Global Wind Power Resources. Schlosser et al., Feb 2022

356. Transition Scenarios for Analyzing Climate-Related Financial Risk. Chen et al., Jan 2022


353. Predictability of U.S. Regional Extreme Precipitation Occurrence Based on Large-Scale Meteorological Patterns (LSMPs). Gao & Mathur, Jun 2021


351. Meeting Potential New U.S. Climate Goals. Yuan et al., Apr 2021


347. Representing Socio-Economic Uncertainty in Human System Models. Morris et al., Feb 2021

346. Renewable energy transition in the Turkish power sector: A techno-economic analysis with a high-resolution power expansion model, TR-Power. Kat, Feb 2021

345. The economics of bioenergy with carbon capture and storage (BECCS) deployment in a 1.5°C or 2°C world. Fajardy et al., Nov 2020

344. Future energy: In search of a scenario reflecting current and future pressures and trends. Morris et al., Nov 2020


341. Emulation of Community Land Model Version 5 (CLM5) to Quantify Sensitivity of Soil Moisture to Uncertain Parameters. Gao et al., Feb 2020

340. Can a growing world be fed when the climate is changing? Dietz and Lanz, Feb 2020

339. MIT Scenarios for Assessing Climate-Related Financial Risk. Landry et al., Dec 2019


336. Did the shale gas boom reduce US CO2 emissions? Chen et al., Apr 2019


333. Statistical Emulators of Irrigated Crop Yields and Irrigation Water Requirements. Blanc, Aug 2018

332. Turkish Energy Sector Development and the Paris Agreement Goals: A CGE Model Assessment. Kat et al., Jul 2018

331. The economic and emissions benefits of engineered wood products in a low-carbon future. Winchester & Reilly, Jun 2018

330. Meeting the Goals of the Paris Agreement: Temperature Implications of the Shell Sky Scenario. Paltsev et al., Mar 2018


328. The Economic, Energy, and Emissions Impacts of Climate Policy in South Korea. Winchester & Reilly, Mar 2018

327. Evaluating India’s climate targets: the implications of economy-wide and sector specific policies. Singh et al., Mar 2018

326. MIT Climate Resilience Planning: Flood Vulnerability Study. Strzepek et al., Mar 2018

325. Description and Evaluation of the MIT Earth System Model (MESM). Sokolov et al., Feb 2018