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Technical Change, Investment and Energy Intensity

Kurt Kratena
†

Abstract

This paper analyzes the role of different components of technical change on energy intensity by applying a

Translog variable cost function setting to the new EU KLEMS dataset for 3 selected EU countries (Italy,

Finland and Spain). The framework applied represents an accounting of technical change components,

comprising autonomous as well as embodied and induced technical change. The inducement of embodied

technical change is introduced by an equation for the physical capital stock that is a fixed factor in the short-

run. The dataset on capital services and user costs of capital in EUKLEMS enables explaining capital

accumulation depending on factor prices. The model can be used for explaining and tracing back the long-run

impact of prices and technical change on energy intensity.
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1. INTRODUCTION

Decomposition of the development of energy intensity is one main application of input-output

analysis. This line of research focuses on decomposition of aggregate energy intensity into a

technological and a structural change component (Ang and Zhang, 2000, 2006). The general

result of these studies is that the contribution of the two components also varies between

different periods. In “low energy price periods” the contribution of the structural component

becomes increasingly important. The focus in this discussion was on appropriate decomposition

methodology especially on the theoretical background of different indices.

Another line of the literature deals with explaining and further decomposing the technical

change component within a cost function and factor demand framework applied to disaggregate

KLEM datasets. The first generation of studies dealt with total factor productivity (TFP) and the

bias in technical change (Jorgenson and Fraumeni, 1981; Jorgenson, 1984). A major result in

these studies was that in some periods as well as in some industries energy using bias in

technical change dominated. Sue Wing and Eckaus (2004) as well as Welsch and Ochsen (2005)

apply the framework of factor demand equations to KLEM datasets in order to decompose

different factors that impact energy use or energy intensity. Welsch and Ochsen (2005) in a

Translog function approach allow for biased technological change and treat capital as a fully

adjusting factor. Sue Wing and Eckaus (2004) in a restricted variable cost function approach

(Berndt et al., 1981; Watkins and Berndt, 1992) differentiate between different types of technical
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change (biased and embodied technical change) and due to their treatment of capital as a short-

run fixed factor are able to derive short as well as long-run elasticities of energy intensity to

changes in prices. This short- and long-run distinction captures effects that operate by adjustment

of capital stocks to their long-run equilibrium levels and represent one direct causal link between

energy prices, technological progress and energy intensity.

To summarize, there is broad empirical evidence on the importance of the structural

component on energy intensity in input-output analysis and on the role of embodied and biased

technical change within the KLEM factor demand function framework. As all approaches focus

on the aspect of how embodied and induced technical change is influenced by energy prices in

the long-run, the dynamic adjustment of the capital stock to its long-run equilibrium level has not

been analyzed yet. This extension would allow quantifying the role of energy prices for technical

progress in a framework accounting also for induced technical change. That should also help to

explain the established empirical result that long-run reactions in energy intensity to energy

prices exceed the short-run reactions by far (Hogan, 1989). The concept of inducement of

technical change used in this paper therefore is one of “price-induced” (Sue Wing, 2006) and

embodied in the (physical) capital stock. Alternative formulations deal with induced technical

change as embodied in the stock of knowledge (cumulated R&D expenditure) or explain it by

applying time series models such as Carraro and Sartore (1986) and Boone et al. (1996). Several

attempts can be found in the literature to establish a direct link between the technical progress

behind energy intensity improvement and energy prices. These studies mostly use a direct

specification of this relationship without embedding it into a complete framework of energy

demand (for recent examples, see Metcalf (2006), and Dowlatabadi and Oravetz (2006)).

The main feature in this paper therefore is the extension of studies dealing with the long-run,

such as Sue Wing and Eckaus (2004), by adding a consistent investment equation and applying

that to a new preliminary KLEMS dataset for selected European countries with long time series

(Finland, Italy and Spain). An important empirical feature of the application in this paper is that

for explaining investment one can take advantage of the extensive and elaborate data work on

adequate measuring of capital inputs in the EUKLEMS project.

2. ENERGY DEMAND AND TECHNICAL CHANGE

The starting point of the analysis is a variable cost function with capital input as a short-run

fixed factor. There are several types of extending this core framework to a model incorporating

investment demand. The simplest method consists of including an equation that explains

adjustment of the short-run fixed capital stock to its long-run level. This can be done by a partial

and ad hoc adjustment mechanism like a flexible accelerator mechanism. As Galeotti (1996) has

pointed out, this mechanism describes a systematic ex post adjustment, where errors in the past

are corrected but where expectations about the future development of exogenous variables play

no role. In that sense this approach describes backward looking behavior and is only “pseudo-

dynamic.” The next more elaborated step consists of explicitly taking into account internal

adjustment costs of changing the capital stock (also of replacement of capital) such as in the
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work of Berndt et al. (1981) as well as Watkins and Berndt (1992). In this case the derivation of

the optimal capital stock yields a more complex optimality condition, from which an explicit

adjustment term follows for the investment equation. This can be implemented in a full dynamic

model or again into a pseudo-dynamic ex post adjustment model. The final most elaborate model

version consists of formulating a full dynamic model either with rational expectations (Galeotti,

1996) or with other expectations formation mechanisms (Morrison, 1986). In this study the first

type of “pseudo-dynamic” model shall be used, where the capital stock is adjusted ex post to its

optimal level with fixed parameters of adjustment.

2.1 Cost function and factor demand

The representative producers in each industry all face a cost function, G, comprising short-run

variable costs, 
  
VC p

v
,x

K
,Y ,t , as well as expenditure for (aggregate) investment, I, with price

index of (aggregate) investment goods, pI :

  
G =VC p

v
,x

K
,Y ,t + p

I
I , (1)

where pv is a vector of variable input prices, xK is the level of the quasi-fixed input to production,

Y is the level of output and t is time. Note then equation (1) would in general allow for different

types of assets xK . Dealing only with one aggregated capital stock and taking into account that

gross investment in this stock comprises changes in the stock plus depreciation with depreciation

rate, , we have:

   
G =VC p

v
,x

K
,Y ,t + p

I
(x

K
+ x

K
) . (2)

The producers choose a time path of xK to minimize discounted costs over a time horizon  for

which values for the exogenous variables are given:

   
min e r (t ) VC

t
( p

v
, x

K
,Y ,t) + p

I
(x

K
+ x

K
) dt , (3)

where 
  
x

K
 represents the change in xK.

The two main optimality conditions following from this cost minimization problem are given

by Shephard’s Lemma and the envelope condition for the capital stock:

v
p

VC

v

= (4)

I

K

pr
x

VC
)( += . (5)

The envelope condition in this simple, “pseudo-dynamic” case just states that the shadow price

of fixed assets must equal the user costs of capital. This expression becomes much more complex

in the case with explicit adjustment costs for 
  
x

K
 or in real dynamic models with rational

expectations (see Galeotti, 1996). The shadow price of capital is given by the negative of the

term that measures the impact of capital inputs on short-run variable costs.
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The next step consists in parameterizing the variable cost function VC, which shall be

assumed to be Translog with one aggregate capital stock, xK:

  

logVC =
0
+

Y
logY +

E
log( p

E
/ p

M
) + log p

M
+

L
log( p

L
/ p

M
)

+
K

log x
K
+

t
t +

1

2 tt
t

2
+

1

2 YY
(logY )2

+
1

2 LL
(log( p

L
/ p

M
))2

+

+
LE

log( p
L

/ p
M

) log( p
E

/ p
M

) +
1

2 EE
(log( p

E
/ p

M
))2

+
1

2 KK
(log x

K
)2
+

+
YL

logY log( p
L

/ p
M

) +
YE

logY log( p
E

/ p
M

) +

+
YK

logY log x
K
+

KL
log x

K
log( p

L
/ p

M
) +

KE
log x

K
log( p

E
/ p

M
) +

+
tY

t logY +
tK

t log x
K
+

tL
t log( p

L
/ p

M
) +

tE
t log( p

E
/ p

M
)

(6)

In this equation
 
p

E
,
 
p

L
 and 

 
p

M
 are the prices of the variable inputs energy (E), labor (L), and

materials (M), and the , ,  and  are vectors of parameters to be estimated. The homogeneity

restriction for the price parameters 

 
ij

i

 = 0, 

 
ij

j

 = 0 has already been imposed in (6), so that

the terms for the price of materials, 
 
p

M
, have been omitted. As is well known, Shepard’s Lemma

yields the cost share equations in the Translog case, for example: 

  

logVC

log p
E

=
VC

p
E

p
E

VC
=

p
E
E

VC
:

  

p
L
L

VC
=

L
+

LL
log( p

L
/ p

M
) +

LE
log( p

E
/ p

M
) +

YL
logY +

KL
log x

K
+

tL
t

p
E
E

VC
=

E
+

LE
log( p

L
/ p

M
) +

EE
log( p

E
/ p

M
) +

YE
logY +

KE
log x

K
+

tE
t

(7)

The omitted cost share equation can simply be derived as the residual: 
  

p
M

M

VC
= 1

p
L
L

VC

p
E
E

VC
.

The usual parameter restrictions of the Translog function imply in this case:

 

i

i

 = 1,  

 
ij

i

 = 0, 

 
ij

j

 = 0, 

 

ti

i

 = 0, 

 
Yi

i

 = 0, 

 
Ki

i

 = 0

with i,j = L, E, M (the variable factors). Assuming constant returns to scale implies another set of

restrictions (Berndt and Hesse, 1986): 
 Y

+
K

=1, 
 KK

+
YK

= 0, 
 YY

+
YK

= 0, 
 tY

+
tK

= 0,

 Yi
+

Ki
= 0, with I = L, E, M, which have not been imposed here. The missing parameters for M

can be calculated using those restrictions imposed. In (7) we can clearly identify two of the three

components of technical change we want to deal with in this study, namely the biases (measured

by
 tL

, 
 tE

 and
 tM

) and the impact of embodied technical change (measured by 
 KL

, 
 KE

, 
 KM

)

on factor demand.

The variable cost equation (7) contains all components of technical change and shows their

impact on overall unit costs. That comprises components of autonomous and embodied technical

change that exert an influence on total unit costs as well as on factor demand. Autonomous
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technical change can be found for output (
 tY

), for the capital stock (
 tK

) and for the factors (i.e.

the factor biases
 tL

, 
 tE

 and
 tM

). Another source of autonomous technical change that only

influences unit costs is TFP, measured by 
 t

and 
 tt

. Embodied technical change only exerts an

influence on factor demand measured by the same parameters as appear in the factor demand

equations, namely 
 KL

, 
 KE

and 
 KM

.

2.2 Optimal capital stock and investment demand

The envelope condition (5) must in the Translog case be formulated in terms of the shadow

value expression, i.e. the share of the ex ante and the ex post (the shadow value) return to capital

in variable costs. We can first of all proceed by deriving the shadow value expression in analogy

to Berndt and Hesse (1986):

  

logVC

log x
K

=
VC

x
K

x
K

VC
=

K
+

KK
log x

K
+

YK
logY +

KL
log( p

L
/ p

M
) +

KE
log( p

E
/ p

M
) +

tK
t . (8)

This expression must be negative and represents the negative value of the shadow price cost

shares,
 

z
K

x
K

VC
, so that the shadow price, zK,  correspond to – 

 

VC

x
K

.

Berndt and Hesse (1986) proceed by stating that the ex post rate of return for the capital stock

must be equal to the shadow price of the capital stock. That means that 
 

z
K

x
K

VC
 in equation (8) is

substituted by the observed “cost share” of gross operating surplus ( ):

  VC
=

K
+

KK
log x

K
+

YK
logY +

KL
log( p

L
/ p

M
) +

KE
log( p

E
/ p

M
) +

tK
t . (9)

The last part of the model presented here describes the adjustment process of the capital

stocks to its long-run equilibrium level. First we can combine the envelope condition (5) with

equation (8) to arrive at an expression for the optimal capital stock (
  
x

K

* ):

  

log x
K

*
=

K
+

YK
logY +

KL
log( p

L
/ p

M
) +

KE
log( p

E
/ p

M
) +

tK
t +

u
K

x
K

VC

KK

. (10)

In equation (10), 
 

u
K

x
K

VC
represents the share of the user cost of capital in the variable cost,

where
  
u

K
= (r + ) p

I
. As the Translog cost function chosen here does not incorporate adjustment

costs for the capital stock, as in the models of Berndt, Morrison and Watkins (1981) or Watkins

and Berndt (1992), a flexible accelerator model in the spirit of Jorgenson (1963) shall be applied:

  
log x

K ,t
= log x

K ,t

* log x
K ,t 1

. (11)

In equation (11) the adjustment of the capital stock corrects past errors and the parameter  > 0

guarantees a smooth adjustment process. That implies that starting from a point out of
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equilibrium the relationship between the shadow price term (the ex post return of capital) and the

user cost term (the ex ante return of capital) must guarantee convergence towards equilibrium

without an instantaneous jump to the equilibrium value. That might be explained by costs of

adjusting the capital stock, which have not been made explicit in this approach. Reformulating

equation (11) gives an expression for the level of the capital stock:

  
log x

K ,t
= log x

K ,t

*
+ (1 ) log x

K ,t 1
. (12)

This expression could be further transformed into a general distributed lag formulation with

decreasing weights of past errors for the current stock adjustment. The explicit investment

equation is then derived by inserting (10) into (12):

  

log x
K ,t

=
K
+

YK
logY +

KL
log( p

L
/ p

M
) +

KE
log( p

E
/ p

M
) +

tK
t +

u
K

x
K

VC

KK

+

+(1 ) log x
K ,t 1

(13)

The full model presented here consists of the following equations: (i) the variable cost

function (6), (ii) the factor demand functions (7), (iii) the rate of return equation (9), and (iv) the

investment demand function (13). This model shall be used in what follows to analyze short-run

dynamics in energy intensity as well as the adjustment process towards long-run equilibrium in

Italy, Finland and Spain.

2.3 Impacts on intra-industry energy efficiency

As in Sue Wing and Eckaus (2004), one can proceed by deriving the elasticities of energy

intensity on prices, as well as on embodied and disembodied technical change. With the use of

these elasticities it is possible to compare the short-run case with the long-run equilibrium

without explicitly analyzing the adjustment path. As the main extension of this study consists of

describing this adjustment path by the inclusion of an investment function, a method of “mid

term” elasticities is additionally applied, measuring the impact of prices on energy intensity

along the adjustment path. An alternative methodology would be to apply different

decomposition methods, as in the one proposed by Sue Wing and Eckaus (2004) or the similar

method of Welsch and Ochsen (2005). The starting point is the formulation of energy intensity

E/Y from the factor demand function for energy:

  

E

Y
=

VC / Y

p
E

E
+

vE
log p

v

v

+
YE

logY +
KE

log x
K
+

tE
t . (14)

The short-run elasticity of this energy intensity with respect to a change in the price of a variable

factor v = L, E, M is:
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log(E / Y )

log p
v

=
(E / Y )

log p
v

Y

E
=

VC / Y

p
E

s
E

log p
v

Y

E
. (15)

The impact of embodied technical change on energy intensity can in a first step simply be

assessed by the following elasticity:

  

log(E / Y )

log x
k

=
(E / Y )

log x
k

Y

E
=

VC / Y

p
E

s
E

log x
k

Y

E
. (16)

In equations (15) and (16) the cost share equation for energy,

  
E
+

vE
log p

v

v

+
YE

logY +
KE

log x
K
+

tE
t , has been substituted by the term sE.

As the elasticity is derived as a compensated elasticity, i.e. under the ceteris paribus condition

  

logY

log p
E

= 0 , the elasticity of E/Y to changes in pE is the same as the elasticity of E:

E

EEEE

E

EE
s

ss

p

YE +
==

2

log

)/log(
. (17)

Taking into account that the term 

 

VC

x
K

 equals the negative of the shadow price of capital (– zK),

the elasticity of energy intensity to embodied technical change becomes:

VC

Kz

sx

YE
K

E

KE

k

KE
==

log

)/log(
. (18)

Equation (18) reveals that it is not a necessary condition for embodied technical change to be

energy-saving, and that the parameter for capital in the factor share equation ( KE) is negative. It

is sufficient that the relationship of this parameter to the cost share for energy is smaller than the

cost share of the shadow price of capital. Therefore for energy intensive industries (high cost

share of energy) we might, even with small positive values of the parameter KE, find energy-

saving embodied technical change.

This analysis is in line with other studies that differentiate between the short- and long-run

impact of energy prices on energy demand or energy intensity (e.g., Sue Wing and Eckaus,

2004). The extension in this study in terms of the explicit inclusion of an investment function

leads to the option of deriving elasticities of energy intensity in period t (Et /Yt) to energy price

changes in  periods before period t. This can be done by taking into account the adjustment in

the capital stock to changes in energy prices as given in investment function (13) and combining

this impact with the elasticity of embodied technical change as given in equation (18):
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EE ( )
=

log(E
t
/ Y

t
)

log p
E ,t

=
log x

K ,t

log p
E ,t

(E
t

/ Y
t
)

log x
K ,t

Y

E
. (19)

From the distributed lag formulation of the investment function (13) one can derive for the

impact of past energy price changes on current capital stock:

  

log x
K ,t

log p
E ,t

= 1( ) KE

KK

. (20)

Due to the equilibrium condition the parameter  is restricted to be positive and the impact of

energy price increases in the past on the capital stock are positive, if the term KE / KK is negative.

Equation (20) could also capture the instantaneous impact of energy prices on capital (  = 0),

which is given by 

 

KE

KK

. The long-run impact is given by the sum of this instantaneous and

the lagged impacts of equation (20) and therefore is 

 

KE

KK

, which can also be seen from (10).

Reinserting equation (20) into (19) and combining with (18) gives the final expression for the

impact of past energy price changes on current energy intensity brought about by embodied

technical change:

  
EE ( )

= 1( ) KE

KK

KE

s
E

z
K

K

VC
. (21)

The full elasticity of past energy prices on current energy intensity is then derived by

summing up over all impacts as given in equation (21) along the path from period  to period t

(without including the instantaneous impact in  = 0):

  
EE

=
EE ( )

. (22)

This elasticity (
EE

) can be seen as the main instrument by which one can trace back the path of

energy intensity to price changes in the past (for example 5 years) and explain the difference

between short- and long-run reactions to price changes.

One could further also derive the elasticity of energy intensity to autonomous technical

change by applying the formula 
  

(E / Y )

t

Y

E
=

VC / Y

p
E

s
E

t

Y

E
. This elasticity not only depends

on the bias of technical change towards energy but also on the TFP-impact on variable costs.
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3. DATA AND ESTIMATION RESULTS

The econometric estimation is carried out for the system comprising the variable cost function

(6), the factor demand functions (7), the rate of return equation (9), and the investment demand

function (13) using the preliminary dataset of the EUKLEMS project
1
 for those EU countries

with longest time series available: Italy (1970-2004), Finland (1970-2003) and Spain (1980-

2004). The basic data in the EUKLEMS database are in general available for 60 NACE 2 digit

industries. Due to some lack of data in some variables the aggregation level that can be chosen

for a certain analysis will always be determined by the largest common denominator. In the case

of this analysis that leads to an aggregation level of 28 industries in each of the three economies

(Italy, Finland and Spain) out of which 13 are manufacturing sectors, to which this analysis has

been limited. The core variables in EUKLEMS are:

Values

GO Gross output at current basic prices (in millions of local currency)

II Intermediate inputs at current purchasers’ prices (in millions of local currency)

IIE Intermediate energy inputs at current purchasers’ prices (in millions of local currency)

IIM Intermediate material inputs at current purchasers’ prices (in millions of local currency)

IIS Intermediate service inputs at current purchasers’ prices (in millions of local currency)

VA Gross value added at current basic prices (in millions of local currency)

LAB Labor compensation (in millions of local currency)

CAP Capital compensation (in millions of local currency)

Volumes

GO_QI Gross output, volume indices, 1995 = 100

II_QI Intermediate inputs, volume indices, 1995 = 100

IIE_QI Intermediate energy inputs, volume indices, 1995 = 100

IIM_QI Intermediate materials inputs, volume indices, 1995 = 100

IIS_QI Intermediate serviceinputs, volume indices, 1995 = 100

VA_QI Gross value added, volume indices, 1995 = 100

LAB_QI Labor services, volume indices, 1995 = 100

CAP_QI Capital services, volume indices, 1995 = 100

LP_I Gross value added per hour worked, volume indices, 1995 = 100

For estimating the model outlined here the inputs for intermediate material inputs (IIM) and

intermediate service inputs (IIS) have been aggregated into one materials (M) category and price

indices have been calculated for all inputs. Additional data available that have been used are data

for the aggregate capital stock as well as an estimate for the user costs of capital in each industry,

based on data for 5 different assets (investment and depreciation) and for interest rates in the

business sector. The EU KLEMS project has been inspired by the work of Jorgenson on growth

accounting for the US (e.g, Jorgenson, Ho and Stiroh, 2003) and therefore puts special emphasis

                                                  
1
 This dataset has been made available by the EUKLEMS project team at the University of Groningen and I am

especially indebted to Marcel Timmer for supplying me with these data.
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on measuring the effective inputs (input services), especially for labor and capital. That leads to a

rich data set for capital inputs of different assets and their corresponding rates of return (ex ante

and ex post), which is a precondition for estimating the investment equation (13). The estimation

procedure (SURE) yields 22 parameter values for each industry in each of the three countries

Italy, Finland and Spain.

One important result is the derivation of the short-run own price-elasticity of energy intensity

as described in equation (17). Most of the elasticities show the right sign and are based on

significant parameter estimates.
2
 The analysis has been limited here to the manufacturing sector,

where energy plays a more important role in production than for (most) services. These short-run

elasticities show a large heterogeneity across industries as well as across the three countries. If

one defines the industries “pulp and paper,” “coke, refined petroleum,” “chemicals,” “other non-

metallic minerals” and “basic metals” as energy intensive, it is not at all clear that the short-run

elasticity is generally higher in these industries than in other manufacturing (Table 1). This is

only the case for “pulp and paper” in Spain and “basic metals” in Italy.

Table 1. Own price elasticities of energy intensity (short-run), EE. (Comma indicates decimal separator.)

Italy Finland Spain

Food, beverages and tobacco -0,507 -0,346 -0,109

Textiles, leather and footwear -0,710 -0,328 -0,921

Wood and of wood and cork -0,636 -0,639 -0,458

Pulp, paper, printing and publishing -0,304 -0,882 -1,236

Coke, refined petroleum, nuclear -0,074 -0,166 -0,315

Chemicals and pharmaceuticals -0,819 -0,253 -0,505

Rubber and plastics -0,456 -0,288 -0,187

Other non-metallic mineral -0,245 -0,429 -0,683

Basic metals and fabricated metal -1,170 -0,583 -0,919

Machinery nec -0,898 -0,557 -0,490

Electrical and optical equipment -0,835 -0,503 -3,975

Transport equipment -0,596 -0,312 -1,431

Manufacturing nec and recycling -0,507 -0,619 -1,111

The estimation results for the parameters measuring embodied as well as autonomous

technical change are only significant and only show energy-saving technical change for a limited

number of industries. The anticipated negative sign for the embodied technical change parameter

( KE) is found in 5 out of 13 manufacturing industries in Italy, but only in 3 industries in Spain.

For Finland most of the industries show this negative sign for embodied technical change,

though not based on significant estimation results. An unresolved and probably important issue

in this model’s estimates is a possible multicollinearity problem between the capital stock and

the deterministic trend. Welsch and Ochsen (2005), who have tested for multicollinearity

between a deterministic trend and other variables in the Translog model, have shown that this

can be an important issue.

                                                  
2
 Details of the estimation results are available from the author upon request.
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The first conclusion therefore is that energy-saving embodied technical change plays some

role for energy intensity in certain industries, but is not a general phenomenon in production. The

estimation results reported in Table 2 additionally confirm other former studies for the US, such

as Jorgenson and Fraumeni (1981) and Sue Wing and Eckaus (2004), concerning the existence of

energy-saving as well as energy using bias in technical change, tE.

Table 3 reports the elasticity of energy intensity with respect to embodied technical change in

those industries, where the parameter ( KE) has a negative sign, i.e. embodied technical change is

energy-saving. These elasticities are not concentrated among the energy intensive industries and

also do not in general show higher values in energy intensive industries. Especially Finland and

Spain reveal high elasticities of energy intensity with respect to embodied technical change in

non-energy intensive industries.

As has been emphasized in the theoretical part of this paper the main extension compared to

existing studies is the incorporation of an investment function into the system. The estimation

results for the parameters concerning capital (which play an important role in the investment

function) generally show the importance of additions to the capital stock for total variable costs

( KK) as well as for the variable inputs ( KL, KE).

Only some industries in the three countries exhibit negative signs for KL, so that embodied

technical change is generally also not labor-saving. The absolute magnitude of the two

parameters KL, and KE plays an important role for the impact of price changes in variable

factors for investment decisions. The general picture is that the role of the price of labor is more

Table 2. Parameter values for embodied ( KE) and autonomous technical change ( tE) in energy
intensity. (t-values in parenthesis)

Italy Italy Finland Finland Spain Spain

KE tE KE tE KE tE

Food, beverages and tobacco 0,0443 0,0004 -0,0381 0,0004 0,0224 -0,0003

(2,88) (0,48) (-3,11) (1,82) (1,69) (-0,54)

Textiles, leather and footwear 0,0176 0,0001 -0,0346 0,0000 -0,0105 -0,0007

(2,46) (0,44) (-3,57) (-0,15) (-0,44) (-1,46)

Wood and of wood and cork -0,0001 -0,0008 -0,0005 -0,0003 -0,1412 0,0062

(-0,01) (-2,20) (-0,03) (-0,71) (-6,18) (5,54)

Pulp, paper, printing and publishing -0,0047 0,0009 0,0055 -0,0051 0,1013 -0,0041

(-0,41) (1,23) (0,30) (-1,63) (2,49) (-2,92)

Coke, refined petroleum, nuclear -0,0094 0,0018 -0,0287 -0,0026 0,0549 -0,0097

(-0,34) (1,08) (-1,44) (-1,34) (1,81) (-5,21)

Chemicals and pharmaceuticals 0,1173 -0,0006 0,1275 -0,0013 0,0073 -0,0022

(8,21) (-0,64) (7,51) (-0,65) (0,39) (-1,20)

Rubber and plastics 0,0119 0,0002 -0,0109 0,0003 0,0361 -0,0006

(1,06) (0,34) (-1,02) (0,82) (2,42) (-0,50)

Other non-metallic mineral -0,0173 0,0011 -0,0034 -0,0009 0,1336 -0,0067

(-0,70) (-0,67) (-0,20) (-2,73) (3,79) (-3,83)

Basic metals and fabricated metal 0,0282 -0,0031 0,0702 -0,0030 0,0865 -0,0036

(2,71) (-3,39) (5,92) (-3,87) (3,52) (-6,12)

Machinery nec 0,0268 0,0009 0,0108 -0,0002 0,0798 -0,0035

(3,40) (2,57) (0,71) (-0,53) (3,48) (-4,97)

Electrical and optical equipment 0,0062 0,0006 -0,0076 -0,0038 -0,0472 0,0024

(0,79) (1,55) (-0,63) (-3,20) (-3,03) (2,04)

Transport equipment 0,0126 -0,0002 0,0155 -0,0004 0,0036 -0,0005

(1,56) (-0,57) (0,92) (-1,82) (0,61) (-0,86)

Manufacturing nec and recycling -0,0039 -0,0013 0,0157 0,0004 0,0163 -0,0007

(-0,45) (-4,11) (0,99) (0,89) (1,25) (-2,68)
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Table 3. Elasticities of energy intensity to embodied technical change, KE.

Italy Finland Spain

Food, beverages and tobacco -2,071

Textiles, leather and footwear -1,677 -0,550

Wood and of wood and cork -0,162 -0,081 -5,009

Pulp, paper, printing and publishing -0,248 -0,092

Coke, refined petroleum, nuclear -0,104 -0,135 -0,048

Chemicals and pharmaceuticals -0,100

Rubber and plastics -0,540

Other non-metallic mineral -0,335 -0,229

Basic metals and fabricated metal

Machinery nec

Electrical and optical equipment -1,438 -2,707

Transport equipment

Manufacturing nec and recycling -0,283

Table 4. Parameter values for capital: Italy. (t-values in parenthesis)

KE KL

Food, beverages and tobacco 0,1672 0,0443 -0,0459 0,7004

(4,40) (2,88) (-1,94) (1,95)

Textiles, leather and footwear 0,2702 0,0176 0,0306 0,3122

(12,46) (2,46) (1,60) (8,42)

Wood and of wood and cork 0,3098 -0,0001 -0,0339 1,0633

(8,26) (-0,01) (-1,32) -5,32

Pulp, paper, printing and publishing 0,1810 -0,0047 0,0937 0,2411

(4,02) (-0,41) (3,59) (3,75)

Coke, refined petroleum, nuclear 0,0944 -0,0094 -0,1030 0,2417

(2,66) (-0,34) (-5,46) (2,61)

Chemicals and pharmaceuticals 0,1543 0,1173 0,1253 0,2824

(4,83) (8,21) (9,83) (8,73)

Rubber and plastics 0,1753 0,0119 -0,0019 0,2839

(6,17) (1,06) (-0,06) (7,12)

Other non-metallic mineral 0,0110 -0,0173 0,0252 0,0324

(0,55) (-0,70) (0,94) (0,55)

Basic metals and fabricated metal 0,1794 0,0282 0,0111 0,2847

(11,43) (2,71) (0,75) (12,96)

Machinery nec 0,0072 0,0268 0,1220 0,0107

(0,33) (3,40) (6,68) (0,33)

Electrical and optical equipment 0,0521 0,0062 0,0997 0,0825

(1,98) (0,79) (3,96) (1,94)

Transport equipment 0,0407 0,0126 0,0575 0,0893

(2,22) (1,56) (1,62) (2,55)

Manufacturing nec and recycling 0,0825 -0,0039 -0,0013 0,1811

(4,49) (-0,45) (-0,06) (5,10)
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Table 5. Parameter values for capital: Finland. (*: restricted; t-values in parenthesis)

KE KL

Food, beverages and tobacco 0,0200 -0,0381 -0,0563 -0,3460

(*) (2,88) (-3,23) (-5,54)

Textiles, leather and footwear 0,0130 -0,0346 0,0437 0,0270

(-0,60) (-3,57) (1,70) (0,59)

Wood and of wood and cork 0,0834 -0,0005 -0,1288 0,3738

(1,74) (-0,03) (-3,94) (3,55)

Pulp, paper, printing and publishing 0,0912 0,0055 0,0331 0,2255

(3,25) (0,30) (1,49) (3,65)

Coke, refined petroleum, nuclear 0,1000 -0,0287 -0,0218 0,5022

(*) (-1,44) (-0,82) (3,55)

Chemicals and pharmaceuticals 0,0009 0,1275 0,0638 0,0041

(0,08) (7,51) (3,34) (0,08)

Rubber and plastics 0,0918 -0,0109 0,1245 0,2319

(3,79) (-1,02) (5,07) (3,72)

Other non-metallic mineral 0,1000 -0,0034 0,0022 0,3038

(*) (-0,20) (0,08) (8,86)

Basic metals and fabricated metal 0,1042 0,0702 0,0887 0,1780

(4,33) (5,92) (5,38) (5,62)

Machinery nec 0,1000 0,0108 0,3137 -0,6746

(*) (0,71) (6,88) (-6,29)

Electrical and optical equipment 0,0180 -0,0076 0,0002 0,0360

(0,62) (-0,63) (0,01) (0,62)

Transport equipment 0,1391 0,0155 -0,0044 0,2539

(3,50) (0,92) (-0,16) (3,65)

Manufacturing nec and recycling 0,1000 0,0157 0,1607 -0,4403

(*) (0,99) (6,36) (-5,68)

important (has a higher parameter value associated) than the price of energy and therefore has a

larger impact on optimal capital stock and therefore on investment. This is an important result for

the analysis outlined here of deriving the inducement of (embodied) technical change via energy

prices. A low weight of the energy price in the investment decision necessarily gives a low

inducement factor. As according to equation (20) the relationship KE/ KK determines the reaction

of capital to energy price changes, the parameter KK also plays an important role. As this

parameter is mainly positive, energy prices only have a positive impact on capital accumulation

in industries with energy-saving embodied technical change (i.e. negative values of parameter

KE). Concerning the speed of adjustment ( ) for Italy and Spain, significant positive parameter

values have been found for most industries. For Finland that was not the case and the parameter

had to be restricted to positive values in some industries in order to guarantee a conversion

towards equilibrium in capital stock adjustment. Generally the values of  are far below 1

indicating sluggish adjustment towards the optimal capital stock. This result is corroborated by

large and long-lasting deviations of the shadow price cost share,
 

z
K

x
K

VC
, from the share of the user

cost of capital in the variable cost,
 

u
K

x
K

VC
, in the past sample.
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Table 6. Parameter values for capital: Spain. (*: restricted; t-values in parenthesis.)

KE KL

Food, beverages and tobacco 0,1326 0,0224 0,0311 -0,0897

(2,90) (1,69) (2,10) (-2,49)

Textiles, leather and footwear 0,1525 -0,0105 -0,0261 -0,0829

(1,37) (-0,44) (-1,28) (-1,19)

Wood and of wood and cork 0,1628 -0,1412 0,0634 0,4199

(4,57) (-6,18) (2,19) (4,45)

Pulp, paper, printing and publishing 0,1671 0,1013 0,0661 0,4893

(4,44) (2,49) (1,18) (4,91)

Coke, refined petroleum, nuclear 0,0007 0,0549 -0,0527 0,0095

(0,13) (1,81) (-3,32) (0,13)

Chemicals and pharmaceuticals 0,0128 0,0073 0,1654 0,1203

(1,83) (0,39) (9,71) (3,26)

Rubber and plastics 0,1715 0,0361 -0,0371 0,4455

(5,93) (2,42) (-1,58) (7,86)

Other non-metallic mineral 0,0200 0,1336 0,1364 0,0615

(1,16) (3,79) (5,04) (1,20)

Basic metals and fabricated metal 0,0200 0,0865 0,3286 -0,4496

(*) (3,52) (7,95) (-4,99)

Machinery nec 0,1211 0,0798 0,1848 0,4351

(4,36) (3,48) (5,46) (5,05)

Electrical and optical equipment 0,2219 -0,0472 0,1028 0,3343

(5,50) (-3,03) (4,70) (5,15)

Transport equipment 0,1339 0,0036 0,0750 0,1314

(3,64) (0,61) (3,40) (3,89)

Manufacturing nec and recycling 0,2300 0,0163 0,0784 0,8682

(6,19) (1,25) (4,12) (9,79)

As Figure 1 shows, energy intensity has decreased continuously in the manufacturing sector

of the three countries until the end of the 1980s after the energy price shock of 1979/80. After

1990 the path of energy intensity decrease has become flatter. This picture is most clear for Italy

and Spain, Finland shows a slightly different development of a more continuous decrease over

the whole sample. One explanation for this development could be found in embodied technical

change, which as lined out in the theoretical model applied here is in turn influenced by energy

prices. The generally rather low values of  result in a long lasting impact of an energy price

shock on energy intensity as adjustment takes time. This is counterbalanced by the relatively

small importance of the energy prices for the investment decision, measured by the term KE/ KK.

Obviously the optimal capital stock is also determined by other factor prices, scale effects and

autonomous technical change.

The generally low or in some cases even positive values for
 EE

 in Table 7 are mainly due to

the lack of importance of the energy price for the investment decision (the optimal capital stock).

This is partly compensated by the low adjustment parameters . In some industries one finds a

considerable elasticity of past energy prices on energy intensity brought about by embodied

technical change. On the other hand, to explain the stylized facts in the data one must combine
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the elasticities presented in Table 7 with the actual past energy price shocks, which were about

+50% (1980) for the corresponding industries in Italy, about +30% (1980) in Finland, and about

+20% (1981) in Spain. Given a 50% energy price shock in 1980 therefore means that for

example the “non metallic mineral” industry in Italy had a 0.5% lower energy intensity in 1985

due to this price shock via embodied technical change. The full impact of embodied technical

change is of course larger, as the results in Table 3 indicate, but only this small part can be traced

back to the energy price shock.

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

1
9
7
0

1
9
7
1

1
9
7
2

1
9
7
3

1
9
7
4

1
9
7
5

1
9
7
6

1
9
7
7

1
9
7
8

1
9
7
9

1
9
8
0

1
9
8
1

1
9
8
2

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

Italy Finland Spain

Figure 1. Energy Intensity (per unit of gross output) of Manufacturing. (Source: EU KLEMS database.)

Table 7. Price elasticitiy of energy intensity after 5 years ( =5) due to embodied technical change, 
 EE

.

Italy Finland Spain

Food, beverages and tobacco 0,021

Textiles, leather and footwear -0,134 0,033

Wood and of wood and cork -0,001 -0,001 -0,830

Pulp, paper, printing and publishing -0,003 0,008

Coke, refined petroleum, nuclear -0,001 -0,003 0,001

Chemicals and pharmaceuticals 0,000

Rubber and plastics -0,009

Other non-metallic mineral -0,009 -0,001

Basic metals and fabricated metal

Machinery nec

Electrical and optical equipment -0,026 -0,213

Transport equipment

Manufacturing nec and recycling -0,002
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If we compare these results to those of Sue Wing and Eckaus (2004) for the US we find some

similarities. Sue Wing and Eckaus (2004) calculate a long-run elasticity of energy intensity

comprising the usual short-run elasticity plus the elasticity after full adjustment of actual to

optimal capital stock. For the Translog model used in this study this long-run elasticity would be

given by the expression 

 

KE

KK

KE

s
E

z
K

K

VC
. Their results for the manufacturing sector also

contain low differences between short- and long-run elasticities and in some cases even a

reversion of the sign or higher short-run elasticities. This result is found for dealing with one

aggregate capital stock as the fixed input. As Sue Wing and Eckaus (2004) also deal with

different assets (information technology, electrical equipment, machinery, vehicles and

structures) they find a significant and important contribution of certain assets to a long-run

impact of energy prices via embodied technical change. This is especially the case (across

different industries) for information technology and electrical equipment and could be seen as a

strong indication for disaggregating the capital stock into single assets.

4. CONCLUSIONS

In this paper energy intensity for three selected EU countries (Italy, Finland and Spain) is

analyzed by applying a Translog variable cost function setting to the new EU KLEMS dataset.

The purpose is to trace back the impact of embodied technical change in capital goods to past

energy price shocks. The central methodological innovation compared to existing studies is the

incorporation of an explicit investment function into the model.

The main conclusion of the results presented here is that energy-saving embodied technical

change plays a certain role in the case of European manufacturing, but cannot be mainly

explained as induced by energy prices. This is mainly due to the low weight of energy prices in

the derived expression for the optimal capital stock. Given the large price shocks at the

beginning of the 1980s a considerable influence can still be found also with low elasticity values

for induced technical change. As another study for the US (Sue Wing and Eckaus, 2004) also

indicates, the results might improve when the impact of the capital stock is split up into different

asset categories. This extension in turn would also require to be complemented by a further

development of the theoretical model. Investment functions for different assets would have as a

precondition a methodology of allocating the aggregate ex post return to total capital (given as

gross operating surplus from national accounts) across the different assets. This task could

probably best be integrated into a more complex dynamic cost function framework explicitly

including adjustment costs and expectation formation.

Another part of the analysis where further disaggregation could lead to new insights is the

classification of industries. The industry classification applied here within the manufacturing

sector does not allow for dealing with energy intensive activities separately. This is the case for

some of the energy intensive branches identified in this study, namely “pulp and paper,”

“chemicals,” “other non-metallic minerals” and “basic metals.” These industries all comprise
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energy intensive and non-energy intensive activities. Some of these aggregation problems can be

resolved by using data at the NACE 2 digit level (which should in principle be available), some

would require further disaggregation.
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