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Summary

Correctly accounting for the energy and emissions embodied in consumption and trade
is essential to effective climate policy design. Robust methods are needed for both policy
making and research—for example, the assignment of border carbon adjustments (BCAs)
and greenhouse gas emission reduction responsibilities rely on the consistency and accuracy
of such estimates. This analysis investigates the potential magnitude and consequences of
the error present in estimates of energy and emissions embodied in trade and consumption.
To quantify the error of embodied emissions accounting, we compare the results from the
disaggregated Global Trade Analysis Project (GTAP 8) data set, which contains 57 sectors
to results from different levels of aggregation of this data set (3, 7, 16, and 26 sectors), using
5,000 randomly generated sectoral aggregation schemes as well as aggregations generated
using several commonly applied decisions rules. We find that some commonly applied
decision rules for sectoral aggregation can produce a large error. We further show that an
aggregation scheme that clusters sectors according to their energy, emissions, and trade
intensities (net exports over output) can minimize error in embodied energy and emissions
accounting at different levels of aggregation. This sectoral aggregation scheme can be
readily used in any input-output analysis and provide useful information for computable
general equilibrium modeling exercises in which sector aggregation is necessary, although
our findings suggest that, when possible, the most disaggregated data available should be
used.
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Introduction

Any effective energy and climate policy will require sound
accounting procedures. Practitioners often sacrifice data de-
tail in favor of sectoral aggregates for the purpose of assigning
reduction burdens based on energy and greenhouse gas emis-
sions (hereafter emissions for brevity) embodied in consump-
tion or trade. Depending on the scheme used, aggregation can
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introduce large error into emissions accounting (Su et al. 2010).
It can misrepresent the potential and limitations of abatement
measures and distort the associated costs to parties involved. It
is therefore of crucial importance to understand the origins of
this error, the factors that affect its magnitude, and aggregation
strategies practitioners can adopt to preserve the integrity of
emissions accounting.
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Accounting for emissions after aggregating sectors is com-
mon practice. Many scholars have discussed the merits of us-
ing life cycle emissions embodied in consumption as a basis
for allocating responsibility for emissions reductions (e.g., Rose
et al. 1998; Kverndokk and Rose 2008; Springmann et al. 2015;
Zhang et al. 2016a). Consumption-based emissions are equiva-
lent to conventional territorial production-based emissions mi-
nus emissions embodied in net exports. Border carbon adjust-
ments (BCAs) are likewise based on calculations of emissions
embodied in a region’s net exports. Applications of modeling
tools used to support policy decision making also adopt vari-
ous conventions for aggregating embodied emissions across sec-
tors. However, it is well known that aggregation could lead to
errors under certain conditions when the aggregation process
involves nonlinear computations. For the case of embodied
emissions accounting, matrix inversion is a necessary step, so
it will inevitably introduce errors. The same accounting issues
apply to embodied energy or material use accounting, which
have become more popular with the widely spread idea of life
cycle assessment. Therefore, discussions on the embodied emis-
sions accounting in this paper could be easily generalizable to
the field of applied energy and industrial ecology (see review
articles, e.g., Dixit et al. [2013]).

Our analysis contributes to the literature on embodied emis-
sions by providing generalizable insights on the errors of sec-
toral aggregation and identifying more robust sector aggrega-
tion strategies. Using both algebraic derivation and numerical
examples, we clearly show how errors can be introduced by
sectoral aggregation: The total emissions intensity of sectors
varies significantly across aggregation schemes. With a large-
scale Monte-Carlo simulation, we show the size of errors using
a commonly used sectoral aggregation scheme under different
aggregation levels and test the accuracy of alternative schemes.
Our numerical results favor giving equal weights to trade inten-
sity and emission intensity.

The rest of the paper is structured as follows. We first review
the literature on sectoral aggregation and the need to under-
stand the origins and magnitude of error as well as methods for
limiting its influence. We then develop an analytical framework
to illustrate the sources of error in a closed and open economy
and discuss whether finer disaggregation is always preferred.
We further develop a numerical simulation to show the conse-
quences of increasing levels of aggregation and test the potential
of several aggregation rules to minimize error. We conclude the
paper by providing some implications of our findings and the
ease of implementing aggregation schemes that deliver more
robust estimates of embodied emissions. Above all, our results
underscore that, when possible, the most disaggregated data
should be used.

Literature Review

The use of input-output (I-O) analysis (IOA) to com-
pute indirect factor usage has a long history dating back to
Leontief. In the environmental field, it is used to compute
full life cycle emission inventories and identify the indirect

emissions to be attributed to specific sectors. Multiregional
input-output (MRIO) analysis allows the computation of emis-
sions embodied in a country’s imports, exports, and consump-
tion (see, e.g., Peters and Hertwich 2008). Similar analysis can
be easily extended to embodied energy and material use ac-
counting, and there is a fast-growing literature using the method
focusing on specific sectors, including power generation (Wu
et al. 2016), residential buildings (Stephan and Stephan 2016),
building construction (Gong et al. 2012; Han et al. 2013; Dixit
2017), as well as domestic and international trade (Wiebe et al.
2012; Cui et al. 2015; Su and Ang 2014; Zhang et al. 2016b).

Researchers have very rapidly identified the potential errors
caused by the aggregation of sectors when using I-O methods.
Early papers (Malinvaud 1954; Theil 1957; Morimoto 1970,
and others) have focused on single-country IOA and identified
the causes for aggregation error in the output changes caused
by changes in final demand.

In a single-country, open economy setting, Feenstra and
Hanson (2000) compute the conditions under which aggrega-
tion will lead to an error in the factor content of trade. They
find the error to be a function of the covariance between trade
intensity and factor intensity (share of factor input in total out-
put). In the environmental context, Su and colleagues (2010)
find an analytical formula for aggregation error in emissions
embodied in trade as well as some empirical estimates which
reveal this error to be potentially large, but rapidly decreasing,
in the number of included sectors. Lenzen (2011) uses numeri-
cal Monte-Carlo analysis and also finds substantial evidence for
aggregation error even if the disaggregated dataset is built from
imperfect data.

In a MRIO setting, Lenzen and colleagues (2004) have
observed that sectoral aggregation can cause significant error
in the computation of embodied carbon dioxide (CO2) trade
balances. However, their analysis is based on a small num-
ber of countries and only two levels of aggregation, and they
do not estimate the error in bilateral flows. Bouwmeester and
Oosterhaven (2013) find that substantial errors occur with sec-
toral and spatial aggregation when estimating embodied CO2

emissions and water use using the EXIOPOL database. Simi-
larly, de Koning and colleagues (2015) also find that aggregating
the original 46 material categories into 16 categories using the
EXIOPOL database changes the calculated material footprint
of countries by about 30%. Su and Ang (2013) further analyze
the effects of competitive imports on the emissions account-
ing in trade. Steen-Olsen and colleagues (2014) use four global
MRIO systems and analyze the sensitivity of a set of aggregate
CO2 multipliers to aggregations in the MRIO. Our analysis
complements this literature of aggregation error1 by providing
additional evidence, both algebraically and empirically.

I-O tables (IOTs) also serve for the calibration of multi-
sectoral computable general equilibrium (CGE) models, which
have been widely used for the analysis of the international im-
plications of climate policy. Doing so requires a data set, such as
Global Trade Analysis Project (GTAP) data, which covers both
bilateral trade and IOTs for a large number of countries. These
models have been extensively used to compute the response of
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the emissions content of trade to various carbon pricing poli-
cies (see Babiker 2005), for example, or to compute BCAs and
understand their impacts (see McKibbin and Wilcoxen 2008).
Caron (2012) has investigated the potential magnitude of ag-
gregation error which might occur in the general equilibrium
estimates of emissions leakage and BCAs. The paper identifies
a large error caused by different aggregations of the GTAP data
set, and also compares the emissions embodied as estimated by
GTAP to those generated with a more disaggregated data set.
The paper identifies the error in trade response to be a function
of trade intensity and CO2 intensity at the subsectoral level.
Overall, CGE modeling is a field in which aggregation is often
required due to computational constraints and could greatly
benefit from a systematic assessment of aggregation error and a
better understanding of efficient aggregation schemes.

A separate strand of the literature has focused on identi-
fying criteria which can be used to build “optimal” aggrega-
tion schemes (which minimize aggregation error). Fisher (1958)
identifies criteria for “consistent” aggregation and realizes that
the choice of aggregation scheme is bound to depend on the
metric of interest (see also Kymn [1990]). Blin and Cohen
(1977) and Cabrer and colleagues (1991) develop the idea of
using smart clustering approaches which minimize aggregation
error by clustering “similar” sectors together. However, their
analysis is limited to one-dimensional clustering based on input
similarity only. Finally, perhaps closest in spirit to the present
paper is Murray (1998), who has implemented a numerical op-
timization model to identify the optimal aggregation scheme
using a numerical solver, similar to the methodology in this pa-
per. However, it deals with an unrealistically small problem and
does not consider a multiregional setting. We are unaware of
another paper which applies a clustering approach to emissions
accounting using a full MRIO data set.

Measuring Error Introduced by Sectoral
Aggregation

Given the impossibility of achieving an arbitrarily fine-level
sectoral disaggregation, our analysis requires a clear and mea-
surable definition of aggregation error. We define the error as-
sociated with sectoral aggregation as the discrepancy between
the values of a particular accounting index calculated for the
aggregated and original data sets. In this analysis, we focus on
emissions embodied in both trade and final consumption. Be-
low, we describe the relevance and origins of aggregation error
in closed and open economy settings.

Closed Economy

We first demonstrate that for a closed economy, production-
and consumption-embodied emissions are consistent using the
I-O inversion approach irrespective of the sectoral aggregation.
Here, we consider a closed economy with multiple regions in-
dexed by r = 1, . . . , R (alias s), multiple sectors indexed by
i = 1, . . . , I (alias j ). Let a diagonal matrix X ((I ∗ R) ×
(R ∗ I )) denote the output matrix, Z ((I ∗ R) × (R ∗ I ))

denote the intermediate input matrix, Y ((I ∗ R) × 1) de-
note the consumption vector, and ξ ((I ∗ R) × 1) denote the
vector [ 1 . . . 1 ]T (equation 1).

y = (X − Z)ξ (1)

Let de ((I ∗ R) × 1) denote the direct emissions from pro-
duction by sector and by region, ti ((I ∗ R) × 1) denote the
total (direct plus indirect) emissions intensity by sector by re-
gion, and EP and EC denote total production-based emissions
and consumption-based emissions, respectively (equations 2
and 3).

EP = deTξ (2)

EC = tiTy (3)

According to the conservation of total emissions, ti satisfies
(equation 4):

tiTX = deT + tiTZ (4)

From equation (4), equation (5):

tiT = deT(X − Z)−1 (5)

From equations (1), (2), (3), and (5), equation (6):

EC = EP (6)

Given that EP does not change when sectors or regions
are aggregated together, EC also will not change with sectoral
aggregation, an observation made in Lenzen and colleagues
(2004). Therefore, total consumption-based emissions are not
influenced by the level of sectoral aggregation. However, we
should note that the embodied emissions at the detailed sec-
toral and regional levels, for example, consumption decomposed
to household consumption, government consumption, and in-
vestment, could be affected by aggregation.

Open Economy

Under an open economy setting, the above relationships
do not necessarily hold. We consider an open economy with
multiple sectors. Let the diagonal matrix X (I × I ) denote
the output matrix, ξ(I × 1) denote the vector [1 . . . 1]T, Z
(I × I ) denote the intermediate input matrix (Zi, j represents
the use of good from sector i in sector j ), y (I × 1) denote the
consumption vector, and nx (I × 1) denote the vector of net
exports (equation 7).

X ξ =
∑

j

zi, j + y + nx (7)

The matrix de (I × 1) denotes the direct emissions from
production by sector, while EP, EC, and ENX denote to-
tal emissions from production, consumption, and net exports,
respectively.

Analogous to (7) equation (8):

EP = EC + ENX = deT ξ (8)

Zhang et al., Aggregation Bias in Embodied Emissions Accounting 3
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We aggregate the sectors with prime superscripts denot-
ing the parameters in the aggregated data set. Using our def-
inition of aggregation error, we calculate differences in pro-
duction emissions (δEP), emissions embodied in consumption
(δEC), and emissions embodied in net exports (δENX), respec-
tively as: δEP = |EP′ − EP| , δEC = |EC′ − EC| and δENX =
|ENX′ − ENX| . From equation (8), we know that δEP ≡ 0.
Therefore, δEC = δENX . In the remaining part of this section,
we only focus on δEC.

From equation (5) above we have equations (9) and (10):

tiT = deT(X − Z)−1 (9)

δEC = ∣∣EC′ − EC
∣∣ =

∣∣∣ti′Ty′ − tiTy
∣∣∣ (10)

To simplify the discussion, we assume that this open econ-
omy only consumes one unit from sector 1: y1 = 1 and
y2 = . . . = yI = 0. Therefore, δEC is determined by the to-
tal emissions intensity of sector 1 from the two data sets as
follows:

δEC =
∣∣∣ti′1 − ti1

∣∣∣ (11)

We then explore the consequences of sectoral aggregation
error by showing how total emissions intensity of sector 1 may
change upon aggregation.

Effects of Sector Aggregation
We first show that if sector 1 is combined with others (as

opposed to being preserved) in the process of aggregation, er-
ror can arise in the consumption-embodied emissions through
changes in the total emissions intensity of sector 1.

The following 2 × 2 example develops this intuition as
follows:

X =
[

x1 0
0 x2

]
, Z =

[
z11 z12

z21 z22

]
, de =

[
e1

e2

]

We first compute the total emissions intensity (equation
12):

tiT = deT(X − Z)−1 =
[

(x2−z22)e1+z21e2
(x1−z11)(x2−z22)−z12z21

z12e1+(x1−z11)e2
(x1−z11)(x2−z22)−z12z21

]T

(12)

After the two sectors are aggregated, the new total emissions
intensity for the aggregated sector can be expressed as follows
(equation 13):

TI
′ = (e1 + e2)

x1 + x2 − z11 − z12 − z21 − z22
(13)

We can find cases in which δEC = |TI ′
1 − TI1| is not al-

ways equal to zero (e.g., X =
[

1 0
0 2

]
, Z = 0, de =

[
1
1

]
).

Therefore, error can exist in measures of emissions embodied
in consumption after aggregation.

Impact on Sectors That Remain Intact in the Aggregation
Process
Even if sector 1 is not aggregated with other sectors dur-

ing the aggregation process, error may arise in consumption-
embodied emissions through changes in the total emissions in-
tensity of the sector 1. We show this situation by a 3 × 3
example as follows (equation 14).

X =
⎡
⎣ x1 0 0

0 x2 0
0 0 x3

⎤
⎦ , Z =

⎡
⎣ z11 z12 z13

z21 z22 z23

z31 z32 z33

⎤
⎦ , de =

⎡
⎣e1

e2

e3

⎤
⎦

TI1 = e1 [(x2 − z22)(x3 − z33) + z22z33] + e2 [z21(x3 − z33) + z31z23] + e3 [z31(x2 − z22) + z21z32]
d et(X − Z)

(14)

We aggregate sectors 2 and 3 and consider the impact on the
total emissions intensity of sector 1. We express the total emis-
sions intensity of sector 1 after aggregation as (equation 15):

t i
′
1 = e1(x2 + x3 − z22 − z23 − z32 − z33) + (e2 + e3)(z21 + z31)

d et(X′ − Z′)

(15)

Given that it is not intuitive to calculate δEC = |ti′1 − ti| ,
we run the following (equation 16):

Max/Mi n ti ′
1 − t i1 (16)

s .t. z11 + z21 + z31 < x1

z12 + z22 + z32 < x2

z13 + z23 + z33 < x3

z11 + z12 + z13 < x1

z21 + z22 + z23 < x2

z31 + z32 + z33 < x3

x1, x2, x3 > 0

z11, z12, z13, z21, z22, z23, z31, z32, z33 ≥ 0

By choosing different initial values, we find that the mag-
nitude of t i ′

1 − t i1 can range from infinity to negative infinity,
which implies that total emissions intensity of the sector, which
remains the same after aggregation, could change significantly,
suggesting the potential for large error in the calculation of emis-
sions embodied in consumption after aggregation. A numerical
example is as below:

X =
⎡
⎣ 100 0 0

0 100 0
0 0 100

⎤
⎦ , Z =

⎡
⎣ 0 0 0

0 1 0
99 0 1

⎤
⎦ ,

de =
⎡
⎣ 0

10000
1

⎤
⎦ ,
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t i1 = 2, t i ′
1 = 51.5.

The intuition is that when the emission-intensive sector
2 and the less emission-intensive sector 3 are aggregated, the
emissions intensity of the aggregated sector becomes higher
than that of sector 3. Therefore, sector 1, which highly de-
pends on sector 3, also has higher total emission intensity after
aggregation.

More Disaggregated Is Not Always Better
As stated previously, all data are characterized by some level

of aggregation in reality. However, it is not necessarily true
that a data set which is less aggregated than another data set
aggregated from the same original data set will produce a bet-
ter estimate of embodied emissions. A simple numerical ex-
ample illustrates the intuition. Starting from a 3 × 3 matrix,
we illustrate a case in which a two-sector aggregation can pro-
duce an outcome that is more biased than aggregation to a single
sector. Specifically, by aggregating sectors 2 and 3, the resulting
embodied emissions are significantly reduced.

X =
⎡
⎣ 2 0 0

0 2 0
0 0 2

⎤
⎦ , Z =

⎡
⎣ 0 0 0

0 0 1
0 0 0

⎤
⎦ , y = [

1 0 1
]
,

de =
⎡
⎣ 0

0
10

⎤
⎦

The resulting aggregation scheme yields consumption-based
emissions estimates ECn for an aggregation at the level of n sec-
tors: EC1 = 4, EC2 = 3.33, EC3 = 5. It is further notable
that the discrepancy between the two- and one-sector aggre-
gations is larger than the discrepancy between the three- and
one-sector aggregations (|EC2 − EC1| > |EC3 − EC1|). The
intuition is that aggregating less emission-intensive sector 2 and
emission-intensive sector 3 introduces a large error under the
two-sector aggregation, while this error is “countervailed” in
the three-sector aggregation when emission-intensive sector 1
is aggregated.

Numerical Example

The magnitude of the error illustrated in the extreme ex-
ample in the above section raises concerns, but it is not clear
whether this error would be large in real-world applications.
Therefore, we investigate the extent of error in estimates of
total emissions in trade (net exports and bilateral trade) that
can emerge through aggregation using an established global en-
ergy and economic dataset. We use the Global Trade Analysis
Project data set, GTAP 8, which is comprised of consistent
national accounts on production and consumption (IOTs) to-
gether with bilateral trade flows for 57 sectors and 129 regions
for the year 2007 (Narayanan et al. 2012).

Our strategy is as follows. First, we are interested in the
magnitude of error associated with the use of an aggregation
scheme commonly used in a variety of modeling applications

(see, e.g., Paltsev et al. 2005). This scheme is based on group-
ing together sectors of similar nature (e.g., grouping agricultural
goods together). Second, we test aggregation schemes based on
alternative criteria to evaluate performance, which we compare
to the results of 5,000 randomly generated aggregation schemes2

as well as the commonly used scheme. This comparison allows
us to identify schemes that can be used with greater confi-
dence in global trade-related and consumption-based emissions
accounting.

Large Error Is Associated with a Common Aggregation
Scheme

We first explore the magnitude of error associated with a
commonly used aggregation scheme. This aggregation scheme
adopts an intuitive (if somewhat arbitrary) sectoral mapping
that attempts to preserve common sectoral classification, for
instance, goods associated with agriculture, energy, manufac-
turing, services, and so on. For our analysis, the GTAP data
are aggregated to 26 regions (from 129 regions) to facilitate
calculation (see Supporting Information Appendix I available
on the Journal’s website for the detailed regional list), simi-
lar to some modeling practices (e.g., Paltsev et al. 2005). As
Su and Ang (2010) have discussed, there is no clear guideline
yet for an appropriate spatial aggregation; therefore, we choose
26 regions as the aggregation level because it reasonably simpli-
fied the computation while maintaining some regional resolu-
tion, which allows us to explore the results for key regions. Re-
garding sector aggregation, we assume the disaggregated GTAP
data set with 57 sectors constitutes the “true” data and use it to
develop four aggregated data sets that use a common sectoral
mapping and are aggregated at a level of 26, 16, 7, and 3 sectors
sequentially (e.g., in Zhang et al. [2013] and Springmann et al.
[2015]; see Supporting Information Appendix II on the Web
for detailed sectoral mappings).

In this section, we focus on the error of emissions embod-
ied in net exports ENX (R × 1) and emissions embodied in
bilateral trade ETR (R × R) for each region, where R is the set
of 26 regions. We note that ETR is particularly important in
the case of policies focused on emissions embodied in bilateral
trade. It is also related to consumption-based emissions because
δEC = δENX as we have shown in the above section.

The error is measured as the distance between the results
generated with the aggregated data set and the original data set.
We consider two measures of error: Euclidean and Chebyshev
distances. The error of emissions embodied in net exports is
measured by Euclidean distance (δENXE ) (equation 17)

δENXE =

√√√√∑
r

(
ENXr

′ − ENXr

ENXr

)2

(17)

and the Chebyshev distance (δENXC ) (equation 18):

δENXC = max
r

∣∣∣ENXr
′ − ENXr

∣∣∣
ENXr

(18)

Zhang et al., Aggregation Bias in Embodied Emissions Accounting 5



R E S E A R C H A N D A N A LYS I S

Figure 1 Error in the emissions embodied in net exports
measured by Euclidean distance.
Note: From left to right: aggregation to 3, 7, 16, and 26 sectors. The
box and whisker plot shows the mean, interquartile, and 95% values
of the distance associated with different simulated aggregation
strategies.

It is also straightforward to compute the error of emissions
embodied in bilateral trade as measured by Euclidean distance
(equation 19):

δETRE =
√√√√∑

r,s

(
ETRr,s

′ − ETRr,s

ETRr,s

)2

(19)

And by the Chebyshev distance (equation 20):

δETRC = max
r,s

∣∣ETRr,s
′ − ETRr,s

∣∣
ETRr,s

(20)

Both of these distance measures describe the error associ-
ated with sectoral aggregation. Euclidean distance reflects the
average error, and Chebyshev distance provides intuitive in-
formation about how extreme the error could be for emissions
embodied in net export in specific regions or emissions embod-
ied in specific bilateral trade flows.

We also compare δENXE , δENXC , δETRE , and δETRC for each
instance of aggregation from the “true” data set using the com-
monly used scheme and 5,000 randomly generated schemes.
We acknowledge that 5,000 is a small number compared to the

number of total possible partitions, which can be calculated by
using the Stirling number of the second kind S(n,k) as shown
in equation (21) (Riordan 1958) (equation 21).3

S (n, k) = 1
k!

k∑
j =0

(−1)k− j
(

k
j

)
j n (21)

However, this partitioning strategy generates a diverse range
of schemes which we believe to be sufficient to assess the rel-
ative performance of the common aggregation strategy. It is
possible that a larger sample may generate aggregations with
smaller error, which means the current analysis may under-
estimate the relative error and makes the common scheme
look better than it otherwise would with a greater number of
samples.

Figure 1 shows the distribution of errors in the emissions
embodied in net exports measured by Euclidean distance under
different aggregation schemes at different aggregation levels.
There is a clear trend of decreasing error with the increase of
disaggregation level.

We first explore the performance of the commonly used
scheme at different aggregation levels using different metrics.
Results in table 1 indicate that the performance is in gen-
eral low with highly aggregated data, but increases significantly
when data are more disaggregated. Compared to the original
“true” data with 57 sectors, the deviation of emissions embod-
ied in net exports for a certain region using the commonly used
scheme could be as high as 13 times the “true” value when the
data are aggregated to 16 sectors. For the two largest emitters,
China and the United States, the deviations are 9% and 7%.
Even if the resolution of data only decreases by about half, that
is, from 57 sectors to 26 sectors, the numerical results suggest
that the deviation could be more than a factor of 2. Though the
deviations for China and the United States decrease to 2% and
0%, respectively, they can be still large for other major coun-
tries, for example, 25% for India and 37% for Mexico. Table 1
also shows the percentile (rank) in which the commonly used
scheme would fall if the 5000 randomly generated schemes were
sorted according to the error they generate. We can also clearly
see that the commonly used aggregation performs well com-
pared to a randomly generated aggregation for lower levels of
aggregation, especially for the index for emissions embodied in
bilateral trade. However, it performs poorly at more aggregated

Table 1 Error and percentile rank of the commonly used scheme using alternative distance measures at three different levels of aggregation

δE NXE δE NXC δETRE δETRC

Euclidean Chebyshev Euclidean Chebyshev
Net exports Net exports Bilateral trade Bilateral trade

Value Rank Value Rank Value Rank Value Rank

3 sectors 14.44 92.7% 11.43 87.2% 3.55 97.0% 1.67 96.6%
7 sectors 12.24 72.6% 11.05 73.9% 2.68 67.0% 1.75 92.3%
16 sectors 13.97 81.2% 13.83 85.4% 0.70 0.0% 0.30 0.0%
26 sectors 2.34 0.4% 2.26 13.6% 0.41 0.0% 0.18 0.0%

Note: Error defined relative to the “true” 57-sector data set.
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Figure 2 Error in embodied in trade as measured by Euclidean distance.
Note: From left to right: aggregation to 3, 7, 16, 26 sectors. Blue: randomly generated; Red: Clustering; Black square: handpicked most
robust scheme; Green: Commonly used. Horizontal axis: δE T R E , vertical axis: δE N XE (Data with δE N XE > 15 not included).

levels. To summarize, the results suggest that using aggregated
estimates of emissions embodied in trade to compute the level
of tariffs for BCAs can lead to large errors.

Using Clustering to Identify Aggregation Schemes with
Reduced Error

The fact that large error can result from common aggrega-
tion methods motivates our search for schemes that consistently
produce less error across all potential levels of aggregation. A
range of criteria exist that we expect could preserve estimates of
embodied emissions under a range of aggregation schemes. For
instance, sectoral output, trade, CO2 intensity, and electricity
intensity are all indices that, when used to group sectors in the
aggregation process, might be expected to preserve the integrity
of embodied emissions measures. We perform clustering by ap-
plying different weights on these criteria. Comparing the results
regarding the embodied emissions measures as above, we iden-
tify the clustering schemes with small error and that are robust
at all aggregation levels.

We apply output, trade, CO2 intensity, and electricity in-
tensity as criteria for clustering. For each criterion, we use one
vector to reflect different characteristics of different sectors.

Output vO (57 × 1): total output
Trade vT (57 × 1): total trade FOB (Free On Board) value
CO2 intensity vC (57 × 1): total emissions/total output
Electricity intensity vI (57 × 1): total electricity use/total
output
The matrix measuring distances of different sectors un-

der different dimensions consists of the four vectors above
(equation 22):

X = [vO vT vC vI] (22)

We then normalize all the vectors by dividing each ele-
ment in the vector by the value of the largest element in the

vector. Therefore, all the vectors have the maximum value of 1
(equation 23).

X̄ = [vO vT vC vI] (23)

We then apply different weight vectors wi , which we multi-
ply with X̄ (equation 24):

wi =

⎡
⎢⎢⎣

wO,i

wT,i

wC,i

wI,i

⎤
⎥⎥⎦ (24)

where wO,i , wT,i , wC,i , wI,i ∈ [0, 1, 4].
Therefore, the matrix used for clustering is as follows (equa-

tion 25):

Xi = X̄ wi (25)

Besides wi = 0 which will have no meaning for clustering,
there will be 34 − 1 = 80 types of wi. Each of them represents
one type of criteria for clustering. For example, wi = [4 1 1 0]T

means the criterion selected for clustering includes output,
trade, and CO2 intensity, with more weight put on output.
We choose the value as 4 because our numerical trials suggest
lower or higher values will not usually generate a different
aggregation scheme.

Simulation Results

Using a numerical simulation, we first compare the perfor-
mance of the randomly generated aggregations (blue), aggre-
gations generated using the clustering approach (red), and the
commonly used aggregation method (green) shown in figure 2.

We rank the performance of different clustering schemes
at different aggregation levels and handpicked the most robust
aggregation scheme as being wi = [0 1 1 0]T . This result sug-
gests the best criteria selected for clustering includes trade and
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CO2 intensity with the same weights. The finding is in line
with Caron (2012), which identified the correlation of trade
intensity and CO2 intensity to be the main determinant of ag-
gregation error in the emissions embodied in trade. A similar
conclusion was identified by Feenstra and Hanson (2000) with
regard to the error in computation of the factor content of trade.

Conclusions

Climate policy instruments that span across national borders
will be most effective and inspire the confidence of signatory
nations if they are based on accurate and consistent estimates
of embodied emissions. This analysis has demonstrated that
the choice of aggregation scheme can introduce and affect the
magnitude of error found in embodied emissions estimates. It
suggests that, when possible, the most disaggregated data should
be used, given that error can increase disproportionately as the
level of sector aggregation increases. It further shows that this
error can be reduced significantly by employing aggregation cri-
teria that group sectors using the criteria of trade intensity and
CO2 intensity with equal weights. This result is in line with
Caron (2012). It is perhaps not surprising that these two crite-
ria emerge as important, given that they are sources of sector
heterogeneity that, when pooled together, can mask features
of sectors that directly affect emissions embodied in trade and
consumption.

Moving to more robust aggregation schemes may be attrac-
tive for modelers and policy practitioners, although this choice
is not without trade-offs. For modelers who typically aggregate
sectors in the process of representing key features of an economy
and its response to policy, it may be more important to group
sectors to represent key relationships among them, such as
substitutability of inputs or outputs or consumer preferences
across various categories of consumption. An aggregation
scheme that muddles these distinctions will face difficulties to
accurately estimate elasticities or long-term trends that govern
policy responses or dynamics. An important next step would
be to explore if and where the schemes identified here could be
combined with structural model requirements. Understanding
conditions under which models might produce misleading re-
sults would help to avoid such instances and increase confidence
in the application of such tools as a basis for policy decisions.

We find that applying intuitive criteria that reflect com-
monly used economic categorizations can introduce significant
error into emissions estimates as sectors are aggregated. These
types of aggregation schemes are used in computable general
equilibrium models such as Paltsev and colleagues (2005). Our
results suggest that the commonly used aggregation performs
reasonably well, in line with findings from Su and colleagues
(2010) who find that 40 sectors seem to be sufficient to reduce
most of the error. Similarly, we find that aggregation to 26 sec-
tors is associated with relatively less severe error. Therefore, for
applications that benefit from intuitive mappings that preserve
sector input relationships or substitution possibilities (such as
CGE modeling), practitioners should preserve as much sectoral
detail as possible.

Policy makers and governing bodies involved in setting emis-
sions reduction responsibilities and border penalties can also
benefit from improved aggregation schemes, given that more
accurate accounting improves the fidelity of the policy signal.
However, as in the case of modeling, there is a trade-off associ-
ated with determining initial allocations or tariffs based on more
robust, but less intuitive, sectoral aggregates (e.g., plasticware
could be grouped together with motor oil). Particularly in the
case of BCAs, which explicitly assign tariffs based on a calcu-
lation of embodied carbon in a sector that was at some point
likely aggregated, bureaucracies may be more easily able to han-
dle aggregations that delineate target industries or categories of
goods for logistical reasons.

Nevertheless, the potential error of common aggregation
strategies should not be ignored, and at least an effort should be
made to appreciate the origins and consequences of error and
find robust practices for aggregation schemes when aggregation
is needed. We recommend the regulating parties build stronger
incentives to structure accounting practices in their favor.
An important advantage of developing tools and practices for
measuring error and raising awareness of the error in embodied
emissions accounting is that it will make it more difficult for
regulated parties to introduce an error of their own.
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Notes

1. To facilitate the discussion, we focus on sectoral aggregation to il-
lustrate the aggregation error and compare the accuracy of different
aggregation schemes. However, as Andrew and colleagues (2009)
and Su and Ang (2010) have discussed, spatial aggregation could
similarly introduce significant error in the accounting and there is
always a trade-off between sectoral and spatial aggregation. Our dis-
cussion on the aggregation error and proposed aggregation schemes
could be extended to spatial aggregation with additional simulation.

2. Since the main purpose of generating random aggregation schemes
is to illustrate the possible range of aggregation errors, we do not
impose any constraints (i.e., not allowing one sector aggregated with
another sector) for these schemes.

3. The Sterling number is computed as follows: S(57,26) = 3.5e+52,
S(57,16) = 3.5e+55, S(57,7) = 3.0e+44, S(57,3) = 2.6e+26.
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