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Hedging Strategies: Electricity Investment Decisions under Policy
Uncertainty

Jennifer F. Morris,* Vivek Srikrishnan,** Mort D. Webster,** and John M. Reilly***

ABSTRACT

Given uncertainty in long-term carbon reduction goals, how much non-carbon
generation should be developed in the near-term? This research investigates the
optimal balance between the risk of overinvesting in non-carbon sources that are
ultimately not needed and the risk of underinvesting in non-carbon sources and
subsequently needing to reduce carbon emissions dramatically. We employ a
novel framework that incorporates a computable general equilibrium (CGE)
model of the U.S. into a two-stage stochastic approximate dynamic program
(ADP) focused on decisions in the electric power sector. We solve the model
using an ADP algorithm that is computationally tractable while exploring the
decisions and sampling the uncertain carbon limits from continuous distributions.
The results of the model demonstrate that an optimal hedge is in the direction of
more non-carbon investment in the near-term, in the range of 20–30% of new
generation. We also demonstrate that the optimal share of non-carbon generation
is increasing in the variance of the uncertainty about the long-term carbon targets,
and that with greater uncertainty in the future policy regime, a balanced portfolio
of non-carbon, natural gas, and coal generation is desirable.
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1. INTRODUCTION

As the United States considers its options for reducing greenhouse gas (GHG) emissions
to confront climate change, it is clear that the electric power sector will be a critical component of
any emissions reduction efforts. In the U.S., electric power generation is responsible for approxi-
mately 40% of all carbon dioxide (CO2) emissions. To reduce electricity emissions society must
switch to cleaner energy sources for generation and/or reduce overall energy use by reducing con-
sumption or increasing efficiency. Electricity generation investments are expected to operate for 40
or more years, so the decisions we make today can have long-term impacts on the electricity system
and the ability to meet long-term environmental goals. Uncertainty in future government climate
policy affects the solvency of long-lived capacity investments. If a climate policy is implemented
during the lifetime of a power plant, it would greatly affect the cost-effectiveness of that plant,
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which in turn impacts the value of the investment. Currently, many non-carbon generation tech-
nologies, such as wind, solar, nuclear, and coal or natural gas with carbon capture and storage
(CCS), are relatively more expensive than conventional coal and natural gas generation and may
not yet be commercially available. In the absence of current regulations, investment now in these
non-carbon technologies are only rational if we consider the prospect of future emissions limits.

Regardless of future greenhouse gas emissions restrictions, electric sector investments
continue to be made in the present. Our question is: given the uncertainty in future emissions limits,
what level of investments (if any) in the near term should be made into expensive non-carbon
generation? Investing now in carbon-free generation technologies has higher near-term costs, but
future emissions reductions may be achieved at lower costs if necessary. However, there is also the
risk of sunk costs if future reductions are not required.

In the liberalized markets in parts of the U.S. and in other countries, and even in regulated
vertically integrated utilities, investment decisions are made by many different agents. Nevertheless,
in the absence of long-term economy-wide climate policy, government regulations often attempt to
guide the technology mix that results from the aggregate of these decentralized decisions through
instruments such as renewable portfolio standards and emissions performance standards that pro-
mote or de facto rule out specific technologies (e.g., coal without carbon capture). Our question is
focused on the aggregate social welfare maximizing level of near-term investment in high-cost
carbon-free technologies under uncertainty in future emissions limits. Exploring this question re-
quires applying uncertainty analysis to an economy-wide model that appropriately represents the
welfare impacts on the representative consumer.

There is an extensive literature on mathematical programming-based (e.g., linear program-
ming, mixed integer programming, etc.) generation and/or transmission capacity expansion models
applied to broad range of research questions. Many of the generation planning analyses focus on,
for example, capacity expansion under competitive markets, with uncertainty in wind penetration,
fuel prices, carbon allowances, and/or actions by other market agents (e.g., Ehrenmann and Smeers,
2011; Wogrin et al., 2011). Other studies have focused on generation expansion that incorporates
operational flexibility, addressing uncertainty in processes on shorter time scales such as wind
availability and demand (e.g., Jin et al., 2014; De Jonghe et al., 2012; Ma et al., 2013; Shortt et
al., 2013). Game theoretic and stochastic modeling are combined to address random outages and
load forecast errors using Monte Carlo simulation in Roh et al. (2009), and random load and price
fluctuations using dynamic programming in Barforoushi et al. (2010). Closer to the question ex-
plored here, Reinelt and Keith (2007) develop a stochastic dynamic programming model of firm
investment decisions that minimizes the expected present value of future power generation costs
under uncertain natural gas and carbon prices, exploring the implications of regulatory uncertainty
on generation technology choice and the optimal timing of investment. Park and Baldick (2015)
employ a two-stage stochastic programming version of capacity expansion, where the load and
demand are the random variables, and explore the impacts of carbon taxes and renewable portfolio
standards (RPS). Studies by Mejia-Giraldo and McCalley (2014a, 2014b) use an adjustable robust
optimization approach to design a flexible expansion plan with respect to an uncertainty set that
includes carbon emissions limit. Kettunen et al. (2011) explore investments in power facilities using
a multistage stochastic optimization model with exogenous uncertainty in carbon price. Chrono-
poulos et al. (2016) use a real options framework to investigate how investment timing and capacity
sizing decisions are affected by price and policy uncertainty. Bistline and Weyant (2013) use a
stochastic formulation of the MARKAL model to study the optimal generation mix with uncertainty
in which of three scenarios of carbon limits will be realized. Similarly, in the transmission planning
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context, Munoz et al (2014) also use a stochastic formulation to find the optimal transmission
additions under uncertainty in future carbon limits and RPS requirements represented by three
scenarios. In general, few capacity expansion or investment planning studies consider uncertainty
in future carbon emissions limits, and of those that do, most use only a few scenarios. In addition,
all of these studies only examine the electric power sector, not the full economy, and therefore are
not able to quantify social welfare impacts

Other studies do use models with a representation of the full economy, which allows
substitutions among inputs in other sectors as relative prices change. Of these, a number of studies
have used two-stage or multi-stage decision models to explore the optimal near-term climate policy
in the context of uncertainty in other factors such as climate damage or abatement costs (e.g. Webster
et al., 2012; Lemoine & Traeger, 2011; Gerst et al., 2010; Crost & Traeger, 2010; Webster, 2008a;
Webster et al., 2008b; Yohe et al., 2004; Webster, 2002; Kelly & Kolstad, 1999; Nordhaus & Popp,
1997; Kolstad, 1996; Manne and Richels, 1995; Hammitt et al.,1992). However, none of these
studies have addressed the question faced by regulators and industry in the present political context:
before we know what level of emissions-intensity we will want in the future, what level of non-
carbon energy production is socially optimal in the near-term?

We contribute to the literature by using a model that represents the full economy embedded
within a stochastic framework where the uncertainty in future carbon emissions limits are sampled
from a continuous probability distribution. To implement this, we apply approximate dynamic
programming (ADP) to a CGE model to investigate near-term electricity investment decisions under
uncertainty in future emissions limits. We first incorporate the CGE model into a two-stage dynamic
programming (DP) framework. We then develop and apply an ADP algorithm to solve the model
at high resolution to provide insight into non-carbon electricity investments under policy uncer-
tainty.

By using a simple and transparent CGE model that nevertheless represents the essential
structure of the economy, we demonstrate the importance of representing decision making under
uncertainty with learning and the ability to revise decisions over time in an economy-wide setting
that can measure social welfare impacts. Using a CGE model has several advantages: all sectors of
the economy are included, important feedbacks such as those from substitution and leakage are
captured, prices (e.g., fuel prices) are endogenous, “stranded capital” can be represented, and the
net impact on consumers (i.e., social welfare) is estimated. The drawbacks of CGE models are their
framing as either myopic (each model period is solved independently) or forward-looking (assuming
perfect foresight across all model periods), and the need to aggregate and simplify representations
of sectors and technologies. However, incorporating the CGE model into a two-stage approximate
dynamic program creates a more realistic temporal structure, and much insight can be gained even
with simplified technology representation.

This research demonstrates the value of considering uncertainty—illustrating how uncer-
tainty affects investment strategies as well as the expected cost of future policy. When uncertainty
is explicitly considered, questions of electric generation capacity expansion and emissions reduc-
tions become fundamentally questions of risk management and hedging against future costs. The
results obtained from this model can provide insight and information about socially optimal near-
term electricity investment strategies that will hedge against the risks associated with uncertainty
in future policies.

The paper is organized as follows: first, we describe the CGE model (Section 2). We then
describe the dynamic programming (DP) approach (Section 3). Section 4 then introduces the ap-
proximate dynamic programming (ADP) approach we developed to overcome the curse of dimen-
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1. For a detailed description of the model see Morris (2013).
2. For a description of how nested CES functions are used in a CGE model see Chen et al. 2015 and Rausch et al.,

2011.
3. Due to the aggregation in the GTAP dataset, conventional electricity aggregates all generation in the base year,

including nuclear, hydro and other generation. Nuclear and hydro in the base year can be manually separated from conven-
tional fossil generation. However, we have not done that here, since the goal is a simple representation of generation sources
(coal, natural gas and non-carbon). Instead, we assume that all generation in the base year is coal or gas, and consider new
investments in nuclear and hydro to fall into the category of non-carbon generation.

sionality that plagues DP, and presents the results from the ADP. Section 5 gives a concluding
discussion.

2. THE CGE MODEL

The objective of the CGE model presented here is to provide a simple representation of
the U.S. economy while preserving essential features: (1) an electric power sector that can use coal,
natural gas and non-carbon emitting sources of generation, and (2) the rest of the economy which
uses electricity, other fuels and other inputs to produce final goods for the representative consumer.
The reason to keep the model otherwise simplified is because the solution of the sequential decision
under uncertainty requires many simulations (on the order of tens of thousands).

Toward this goal, we develop a single region computable general equilibrium (CGE) model
approximating the U.S. in terms of overall size and composition of the economy that highlights
choices between fossil and non-fossil electricity generation investment decisions. There is a single
representative consumer that makes decisions about household consumption. There are six produc-
tion sectors: crude oil, refined oil, coal, natural gas, electricity and other. Other, which includes
transportation, industry, agriculture, services, etc., comprises the vast majority of the economy. The
factors of production included are capital, labor and natural resources (crude oil, coal and natural
gas). The base CGE model follows the structure of the MIT Economic Projection and Policy
Analysis model (Chen et al., 2016; Paltsev et al., 2005), although considerably simplified.1

The underlying social accounting matrix (SAM) data is based on GTAP 5 (Hertel, 1997;
Dimaranan and McDougall, 2002) data recalibrated to approximate 2010, which is used as the base
year for the model. The model is written in the General Algebraic Modeling System (GAMS)
programming language and is formulated in MPSGE (Rutherford, 1999). Carbon dioxide (CO2)
emissions are associated with fossil fuel consumption in production and final demand.

Production and consumption functions are represented by nested Constant Elasticity of
Substitution (CES) functions.2 Production functions for each sector describe the ways in which
capital, labor, natural resources and intermediate inputs from other sectors can be used to produce
output, and represent the underlying technology through substitution possibilities between the in-
puts. The consumer utility function describes the preference for each good and service and how
they contribute to utility (welfare). The change in aggregate consumption is an equivalent variation
measure of welfare in each period.

Two electricity generation technologies are represented: conventional (i.e., fossil) and non-
carbon. The single conventional electric technology uses coal and natural gas as its fuel inputs,
allowing substitution between the two fuel sources.3 Unlike linear programming-based capacity
expansion models, the CGE model represents the flow of economic value over longer periods of
time (e.g., one year) parameterized with CES production functions. This production function in-
cludes an elasticity of substitution between coal and gas inputs, so that the relative ratios can adjust
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when the relative fuel prices change. We assume an elasticity of substitution of 2.5, which is
consistent with many econometric estimates (see Stern, 2012). The non-carbon electricity generation
technology produces no carbon emissions and is more expensive, representing advanced non-carbon
technologies like wind, solar, carbon capture and storage (CCS), and advanced nuclear. These
technologies have little or no market penetration at present, but could take significant market share
in the future under some energy price or climate policy conditions. The non-carbon technology is
modeled as a single generic technology, highlighting the importance of the relative costs of con-
ventional and non-carbon technologies. The electricity produced from the generalized non-carbon
technology is a perfect substitute for conventional electricity. It has a higher cost than conventional
generation in the first model period, and its price then evolves endogenously over time. The incre-
mental cost is parameterized in the model by a markup factor, which is the cost relative to the
conventional generation against which it competes in the base year. We calculate the levelized cost
of electricity (LCOE) for several technologies based on EIA (2015) data: conventional coal is 6.9
cents/kWh, advanced nuclear is 12.8 cents/kWh, natural gas with CCS is 9.5 cents/kWh, wind is
8.7 cents/kWh, and solar PV is 17.5 cents/kWh. Each LCOE is compared to that of conventional
coal, resulting in markups of 1.86, 1.38, 1.26, and 2.51 for advanced nuclear, gas with CCS, wind
and solar PV, respectively. We use 1.5 as a representative markup for the generalized non-carbon
technology, meaning the non-carbon technology is assumed to be 50% more expensive than con-
ventional electricity.

The CGE model is dynamic, running from 2010 to 2030 in 5-year time steps. The processes
that govern the evolution of the economy and its energy characteristics over time are: (1) capital
accumulation, (2) fossil fuel resource depletion, (3) availability of non-carbon electricity technology,
(4) population growth, and (5) energy efficiency improvements. The first three processes are en-
dogenous while the last two are exogenous.

Of particular importance for this analysis is the representation of capital vintaging, which
is applied to the electricity sector and reflects the irreversibility of decisions. Capital vintaging
tracks the amount of electricity generation capacity available from previous years, remembering
for each “vintage” (i.e., time period of installation) the technical characteristics of that capacity
(e.g., amount capital vs. labor vs. fuel, etc.). As the model steps forward in time it preserves four
vintages (20 years) of rigid capital, minus depreciation, with each vintage retaining the factor input
shares at the levels that prevailed when it was installed with no possibility of substituting between
inputs (i.e. elasticities of substitution equal to zero). This approach captures the phenomenon that
today’s decisions about how much of each technology to build will affect the electricity system
long into the future.

The availability of the non-carbon technology is also an important dynamic. As noted by
Jacoby et al. (2006), penetration rates for new technologies have historically exhibited gradual
penetration, for which there are numerous reasons, including limited trained engineering and tech-
nical capacity to install/operate these technologies and electricity system adjustment costs. To ap-
proximate this dynamic, a fixed factor resource is included in the model, which simulates an ad-
justment cost to the expansion of a new technology. The fixed factor component can be thought of
as the inverse of a resource depletion process. Initially, a very small amount of fixed factor resource
is available. Once new capacity is installed, the fixed factor resource grows as a function of the
technology’s output in the previous period, simulating the effect that increasing production enables
that technology to expand further. As non-carbon electricity production expands over time, the fixed
factor endowment is increased, and it becomes non-binding. The intuition is that expansion of
output in period t incurs adjustment costs, but the experience gained leads to more engineering and
technical capacity in period t + 1 (for a more detailed explanation see Morris et al., 2014).
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3. DYNAMIC PROGRAMMING APPROACH

3.1 DP-CGE Model

The problem we wish to consider is how uncertainty in the future emissions limit impacts
the near-term electricity technology mix, as well as near-term emissions decisions. This problem is
one of decision making under uncertainty, and requires a stochastic formulation. There are, of
course, several approaches to stochastic optimization with recourse. Because the underlying sub-
problem (the CGE model) is not a linear program, implementation as a stochastic dynamic program
has advantages over stochastic programming for this application. In this section, we formulate the
problem as a two-stage finite horizon stochastic dynamic programming (DP) problem, with uncer-
tainty about the future emissions limit that is resolved in the second period.

The deterministic CGE model is a myopic recursive–dynamic model that solves for each
time period sequentially. For a given period, the original CGE model endogenously chooses an
electricity technology mix (and all other outputs) based on the current-period maximization of
consumption. However, here we are interested in the technology mix in each period that maximizes
the current period consumption plus the expected future consumption. Specifically, we solve the
following maximization problem:

maxC (x ) + E {max[C (x ,S ,h)]} (1)1 1 h 2 2 2
x x1 2

where Ct is the consumption in period t, xt is the vector of decision variables, h is the emissions
cap (uncertain in period 1 and becomes known in period 2), S2 is the system state, which is a
function of the previous period’s decision, and .t∈{1,2}

We initially solve the maximization problem in equation (1) using dynamic programming
(DP). The DP objective is to choose actions to maximize total expected discounted social welfare
in the economy over the planning horizon. The Bellman equation (Bellman, 1957) expresses the
optimality conditions as:

V = max[C (S ,x ) + γE{V (S (S ,x ,h ))}] (2)t t t t t + 1 t + 1 t t t
xt

where t is the decision stage, V is the total value, S is the vector of state variables (electric power
capacity of each technology and cumulative emissions level), C is the economy-wide consumption
(welfare), x is the vector of decision variables (non-carbon share of new electricity and amount of
emissions reductions), h is the uncertainty (probability distribution over Stage 2 carbon constraint),
and γ is the discount factor = (1–discount rate), where the discount rate = 4%.

In the DP, there is uncertainty (h) in the future climate policy (i.e., the cumulative emissions
limit in Stage 2). Two decisions are made: (1) the non-carbon technology’s share of new electricity
in each stage (i.e. how much of the new electricity capacity built should consist of non-carbon
technologies?), and (2) Stage 1 reductions of electricity emissions (i.e. is it cost-effective to begin
reducing emissions now in anticipation of future policy?). The first decision about the non-carbon
production share in each stage is exogenously imposed as a constraint within the CGE model. This
constraint forces the allocation of new capital and of labor to the non-carbon sector in amounts that
may not have been optimal in a static myopic CGE model. The second decision to reduce Stage 1
emissions via a “self-imposed” emissions cap provides a price signal (i.e. the carbon price) in the
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CGE model that affects the operation of existing electricity capacity as well as the optimal share
of non-carbon new electricity, by shifting production among sectors, substituting input fuels (gas
for coal), and/or reducing electricity output. One potential result is to leave some vintage capital
unused or underutilized. Ultimately, this emissions reduction decision variable affects the choices
of coal vs. natural gas, conventional vs. non-carbon, and building new vs. operating existing ca-
pacity differently, as well as total amount of electricity output.

The uncertainty modeled is the level of the Stage 2 emissions cap. We define emissions
caps in terms of the cumulative emissions from the electric power sector from 2015 to 2030 (e.g.
an emissions cap of X% below the cumulative no policy emissions). The policy cases focus on
cumulative emissions because it is cumulative emissions, not the specific emissions level at any
one point in time, which determine long-term global temperatures. This framing is also consistent
with previous cap-and-trade proposals in the U.S., which have included intertemporal flexibility
(banking and borrowing of emission permits) for meeting a long-term emissions target.

Because this uncertainty aggregates the future results of many political, social, and sci-
entific processes, there is no objective source for a probability distribution over future emissions
caps. To provide insights into the effects of uncertainty on near-term decisions, we explore several
illustrative probability distributions and investigate the relative effect of alternative beliefs on the
near-term optimal decision in online Appendix A. Using Approximate Dynamic Programming in
Section 4, we treat this uncertainty as continuous, and compare the impacts of different mean-
preserving spreads.

The underlying CGE model consists of 5-year time steps, but the time horizon for the DP
aggregates these into two decision stages. Stage 1 includes CGE periods 2015 and 2020 while Stage
2 includes 2025 and 2030 (2010 is the benchmark year). In the underlying CGE model, the decision-
maker is a hypothetical central planner of the economy. Although the optimal electricity mix is
solved as if from the perspective of a central planner, one can think of it as the aggregate result of
individual firms maximizing their own profits according to their production functions, input costs
and the policy constraints imposed by the central planner under conditions of perfect competition.
The decisions and uncertain outcomes are exogenously imposed on the CGE model, which then
endogenously chooses all other output quantities, including the shares of natural gas and coal
generation. Consumption (social welfare) is calculated for each decision stage and used in the
Bellman equation (eq. 2), along with the probabilities of uncertain outcomes, to identify optimal
Stage 1 decisions. The model formulation follows the classic act-then-learn framework (Manne and
Richels, 1992): Stage 1 decisions are made under uncertainty in the emissions cap, which is revealed
before the Stage 2 decision is made. In effect, the CGE model performs intra-period optimization
and the DP performs inter-period optimization.

3.2 Representing Path Dependency

In the DP formulation of the electricity investment decision problem, we include an ad-
ditional element to the problem structure—that of path-dependency in the non-carbon investment
decision. For many of the non-carbon technologies, scaling up to a large penetration of the new
technology within the energy sector requires a significant investment in new physical/organizational
infrastructure. For renewables such as wind and solar, their intermittency will require fundamental
restructuring of power systems operations/markets to maintain reliability. For carbon capture and
sequestration, a new infrastructure for transportation and storage of carbon must develop. For such
technologies, insufficient levels of near-term investment would likely constrain the rate at which
the share of the technologies can be expanded in the future, even if needed.
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4. ADP is also sometimes referred to as neuro-dynamic programming, forward dynamic programming and adaptive
dynamic programming.

We represent this effect with a parameter defined as the maximum allowable increase in
the share of non-carbon production in Stage 2, relative to the share of production in Stage 1. This
exogenous non-carbon production growth rate limit may be binding even when the fixed factor is
no longer binding, depending on the assumed maximum growth rate. This additional constraint
limits the rate of growth of non-carbon production as a share of new electricity between Stage 1
and Stage 2. For example, if the share of non-carbon cannot increase by more than 50 percentage
points from Stage 1 to Stage 2, and if the production share was 0% in Stage 1, then the most it
could be in Stage 2 is 50%. If the share was 20% in Stage 1, the most it could be in Stage 2 is
70%. It is possible that there is no limit on how much the share of non-carbon grows—non-carbon
could constitute 0% of new electricity in Stage 1 and 100% in Stage 2. This would represent a
situation in which all new electricity production added during 2021–2030 is non-carbon. While
theoretically possible, such a solution does not seem likely or technologically feasible. All investors
would have to decide to build non-carbon capacity, an unlikely prospect. Further, engineering and
operational constraints (e.g. transmission constraints, reliability issues, etc.) would have to be over-
come in a very short period of time in order for the electricity system to handle such large non-
carbon capacity additions. However, in the past we have seen fairly rapid expansion of nuclear
electricity, and currently natural gas generation is rapidly expanding due to the new supply of shale
gas, which suggests that there may not be a limit to the rate of non-carbon electricity growth.
Because it is difficult to assess and people have widely varying opinions about what type of non-
carbon growth rate is realistic from engineering and technological perspectives, we perform sen-
sitivity analysis to explore a range of assumptions about the limit to non-carbon generation expan-
sion rates.

4. APPROXIMATE DYNAMIC PROGRAMMING APPROACH

The focus of this analysis is on the optimal near-term decisions about new electricity
investment shares and emissions reductions under different scenarios of uncertainty in the future
emissions limit. As a first step, we solved the exact DP, which required discretizing the decision
and uncertainty spaces (results from the exact DP are presented in online Appendix A). Compu-
tational demands cause the implementation to be relatively coarse resolution. To gain better insight
into the true decision problem, it is desirable to represent the decision and uncertainty spaces as
continuous.

Here, we apply Approximate Dynamic Programming (ADP),4 which is a class of methods
developed to address the Curse of Dimensionality that plagues dynamic programming (Powell,
2011; Bertsekas & Tsitsiklis, 1996). ADP allows for higher resolution and larger-scale represen-
tation of problems, while remaining computationally feasible. ADP combines Monte Carlo simu-
lation, adaptive sampling, and response surface approximation strategies to approximate the value
function (eq. 2). The idea is that instead of exhaustively searching through all possible states,
decisions, and information signals, ADP iteratively samples paths through the scenario tree to
construct an approximation of the value function, which can then be used to make optimal decisions
for any feasible state. In turn, those approximate decisions guide the next set of sample paths to
progressively focus on the highest value region of the state space. The optimization is broken into
two steps: (1) deterministic optimization to select the best action for a sample state and sample
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information signal based on the current approximation of the value function, and (2) stochastic
simulation to improve the estimate of the expected value for a sample state, given its best action.
Recent work (e.g., Webster et al., 2012a & 2017; Godfrey & Powell, 2002; Basler, 2006; Powell
et al., 2012) has successfully implemented ADP methods on large-scale, multi-dimensional prob-
lems.

There are two broad classes of ADP algorithms: (1) iterative approaches, which are based
on value iteration or policy iteration (examples include TD-learning and Q-learning), and (2) linear
programming based approaches (Schweitzer and Seidman, 1985; de Farias and Van Roy, 2003).
Here, we develop and apply an ADP solution method that combines the strengths of both classes
of algorithms. We call our algorithm a Q-factor Adaptive Relaxed Linear Problem (QARLP) al-
gorithm. A full description of the algorithm is presented in online Appendix B. We apply the
QARLP algorithm to solve the stochastic dynamic program formulated in the previous section for
continuous decision and state spaces.

4.1 ADP Results

Using our QARLP algorithm to explore our problem at a higher resolution, we provide
insight into the effect of variance in the uncertainty of future climate policy, the impact of constraints
on non-carbon expansion, how the optimal strategy compares to common heuristics, and the value
of including uncertainty.

4.1.1 Role of Variance in Uncertainty

We first explore how the optimal Stage 1 investment is impacted by the variance in the
uncertainty of the Stage 2 emissions limit. To model the continuous distribution of future emissions
limits, we use the Beta distribution family. The Beta distribution is a flexible parametric distribution
with two parameters, α and β, and is defined over the closed interval [0,1], but can be scaled and
shifted to any other interval. We explore beta distributions with shape parameters α = β = 0.25, 0.5,
1, 1.5, 2, and 4, and all are location-scaled onto the interval [0.6; 1] (where 0.6 = –40% cap and
1 = no cap) to allow for a maximum emissions cap of –40% from the reference case. The probability
density functions for these distributions are shown in Figure 1. These distributions all have the
same mean of 0.8 (–20% cap), but differing variances. Also note that the Beta(1,1) distribution is
by definition equivalent to the Uniform(0,1) distribution.

The optimal decisions with respect to each of these distributions are given in Table 1.
Increasing the variance in the uncertainty of the Stage 2 emissions limit leads to a greater share of
non-carbon investment and to more emissions reductions being optimal in Stage 1. Under the highest
variance distribution, the optimal decision is 29% non-carbon electricity production from new
capacity and 16.1% emissions reductions below the reference emissions. Under the lowest variance
distribution, a 5% share of non-carbon electricity and 12.3% emissions reductions is optimal. The
more aggressive reductions under the high variance distribution is a result of the higher probability
that the Stage 2 cap will be stringent. Because the marginal costs of emissions reductions are
increasing, there is an asymmetric loss function such that it is very costly to meet a strict cap in
Stage 2 if little or no non-carbon investment or emissions reductions have occurred in Stage 1. In
order to avoid that situation, more near-term investment in non-carbon generation and emissions
reductions is optimal as the probability of a strict cap increases. As a consequence, the share of
natural gas decreases with the variance of the Stage 2 distribution while the share of coal increases
(though to a lesser extent) with the variance. These results demonstrate that the main tradeoff is
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Figure 1: Distributions of Stage 2 Emissions Limit with Constant Mean and Different
Variances

Table 1: Optimal Stage 1 Emissions and New Electricity
Investments for Different Distributions of the Stage 2
Emissions Limit

Distribution Variance
Emissions
Reductions

Low-Carbon
Share Coal Share

Natural Gas
Share

Beta(0.25,0.25) 0.167 16.1% 29% 24% 47%
Beta(0.5,0.5) 0.125 15.3% 25% 24% 51%
Beta(1,1) 0.083 15.0% 20% 22% 58%
Beta(2,2) 0.050 13.5% 5% 19% 76%
Beta(4,4) 0.028 12.3% 5% 20% 75%

Note: Non-carbon growth limit is 0.3.

between non-carbon and natural gas generation, and also that an increasingly well-balanced port-
folio approach is optimal as the variance of the Stage 2 distribution increases. Under high variance,
high non-carbon investment provides a hedge against a strict cap while higher coal investment
provides a balancing hedge against a lax or no cap, and natural gas fills in the rest. As the variance
decreases and a moderate cap becomes more likely, the investment portfolio increasingly relies on
natural gas.

4.1.2 Role of Constraints on Non-Carbon Expansion

Here we demonstrate how constraints on the ability to expand the non-carbon electricity
share in the future affect the optimal Stage 1 decisions. As described above, past experience with
technological transitions suggests that technologies with a low share in Stage 1 may not be able to
rapidly expand to a larger share of new generation in Stage 2, due to infrastructure limits, capacity
constraints, and electricity system adjustment costs. We have modeled this non-carbon growth limit
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Table 2: Sensitivity of Optimal Stage 1 Decisions to the Non-carbon Growth Limit

Growth Limit 0.3 Growth Limit 0.5 Growth Limit 0.7

Distribution
Non-Carbon

Share
Emissions
Reduction

Non-Carbon
Share

Emissions
Reduction

Non-Carbon
Share

Emissions
Reduction

Beta(0.25,0.25) 29% 16.1% 21% 16.0% 5% 15.0%
Beta(0.5,0.5) 25% 15.3% 18% 15.2% 5% 14.1%
Beta(1,1) 20% 15.0% 5% 13.8% 5% 12.5%
Beta(2,2) 5% 13.5% 5% 12.3% 5% 10.1%
Beta(4,4) 5% 12.3% 5% 10.2% 5% 7.5%

as a constraint on the maximum allowable increase in the renewable share of electricity from Stage
1 to Stage 2. This growth limit is an additional constraint to the fixed factor constraint that is
endogenous in the CGE model. We compare the results obtained for growth limits of 0.3, 0.5 and
0.7 (a growth limit of 0.5 means, for example, that if 20% of investment in Stage 1 is in the non-
carbon technology, then the max non-carbon share in Stage 2 is 70%).

Table 2 gives the resulting optimal Stage 1 decisions for various non-carbon growth limits
and distributions of Stage 2 emissions limit with different variances. The results for the 0.3 growth
limit are the same as those presented above in Table 1. With a higher growth limit—more flexibility
to expand the non-carbon share in the future despite minimal investment in the near-term—a lower
share of non-carbon electricity and fewer emissions reductions are optimal in Stage 1. This result
is consistent across all distributions of uncertainty in future emissions limits. In this model, a 0.7
growth limit is not a binding constraint in any scenario. When non-carbon growth is unconstrained,
the optimal Stage 1 non-carbon investment share is 5% for all distributions. 5% is the minimum
non-carbon production share needed to render the fixed factor constraint in the CGE model non-
binding in Stage 2, thereby providing unlimited flexibility to expand non-carbon penetration to the
desired amount in Stage 2. Greater flexibility to expand non-carbon in Stage 2 also requires fewer
emissions reductions in Stage 1, because emissions reductions can be achieved more easily in stage
2 by increasing the share of non-carbon generation.

4.1.3 Optimal vs. Heuristic Strategies (Consequences of Alternative Rules)

An important question is how the optimal strategy identified by a decision-making under
uncertainty approach compares with common heuristic strategies. To address this question we com-
pare the results from four different strategies, each with different optimal Stage 1 decisions:

1) “Optimal”: Optimal decision under uncertainty found using QARLP
2) “Deterministic”: Heuristic strategy that assumes that the expected value of the Stage 2

emissions limit distribution will be the certain outcome (i.e., the Flaw of Averages)
3) “Myopic”: Heuristic strategy focused on maximizing near-term welfare, such that Stage

1 involves no emissions reductions and the minimal non-carbon share needed to over-
come the fixed factor constraint

4) “Aggressive”: Heuristic strategy based on the precautionary principle to avoid the worst
case outcome in the future (i.e., a strict cap with little to no prior non-carbon or emis-
sions reductions investments made).

Each of these strategies corresponds to different objectives. The Optimal strategy, the focus
of this analysis, derives from the solution to the approximate dynamic program that explicitly seeks
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Table 3: Stage 1 Decisions under Different Heuristic Strategies

Strategy

Stage 1
Emissions
Reduction

Non-Carbon
Share Coal Share

Natural Gas
Share

Optimal 15.03% 20% 22% 58%
Deterministic 7.60% 5% 28% 67%
Myopic 0.01% 5% 39% 56%
Aggressive 24.24% 50% 21% 29%

Note: These Optimal strategy results assume a Beta(1,1) distribution for the Stage 2
emissions limit and a non-carbon growth limit of 0.3.

Table 4: Stage 2 Non-carbon Share given Different Stage 1 Heuristic Strategies as a
Function of the Revealed Stage 2 Emissions Limit and the Non-carbon Growth
Limit

Revealed
Emissions
Limit

Non-Carbon Growth Limit = 0.3 Non-Carbon Growth Limit = 0.5

Optimal Deterministic Myopic Aggressive Optimal Deterministic Myopic Aggressive

0.6 0.5 0.35 0.35 0.54 0.55 0.55 0.55 0.54
0.7 0.49 0.35 0.35 0.34 0.55 0.55 0.55 0.34
0.8 0.34 0.35 0.35 0.03 0.38 0.4 0.54 0.03
0.9 0.03 0.22 0.29 0.02 0.11 0.22 0.29 0.02
1 0.03 0.03 0.04 0.02 0.03 0.03 0.04 0.02

to maximize expected welfare given the uncertainty in the Stage 2 emissions cap and the ability to
adapt in Stage 2. The Deterministic (expected value) strategy is often used when it is deemed that
incorporating a probability distribution is computationally prohibitive or would be too difficult to
incorporate into the model. The Myopic strategy focuses on short-term welfare, and does not con-
sider the potential future costs. The Aggressive strategy takes a precautionary approach in which
the goal is to minimize the worst-case scenario (which in our case is the most stringent cap in Stage
2, assumed to occur with certainty). Note that determining the decisions under each strategy (other
than Optimal) is straightforward and requires much less computational effort than the DP/ADP
solutions.

The optimal Stage 1 decisions from following each strategy are given in Table 3, and the
respective Stage 2 non-carbon shares are given in Table 4 for several possible revealed emissions
limits. In some cases, the non-carbon growth limit has a clear impact and is a binding constraint.
For example, the Deterministic and Myopic strategies are extremely limited in their Stage 2 non-
carbon share expansion under a 0.3 growth limit, and are moderately constrained even under a 0.5
growth limit. Even if the Optimal decision is made in Stage 1, Stage 2 non-carbon expansion can
still be limited by the growth limit constraint, depending on the realized cap. The range of the caps
for which the Stage 2 policies are constrained by the growth limit is a function of not only the
Stage 1 non-carbon share, but also the Stage 1 emissions reductions, as seen by the differences in
the Deterministic and Myopic curves. Under the Myopic strategy, the higher emissions in Stage 1
requires all of the cumulative emissions reductions to occur in Stage 2. Further, the inability to
increase the non-carbon share in Stage 2, because of insufficient investment in Stage 1, leads to
even higher marginal costs of those emissions reductions, which must therefore be achieved from
conventional electricity generation.
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Figure 2: Cumulative Consumption Given Different Stage 1 Strategies and Depending on
the Revealed Stage 2 Cap: (a) 0.3 Non-carbon Growth Limit, and (b) 0.5 Non-
carbon Growth Limit

For each of the four strategies, we perform a Monte Carlo simulation, sampling the Stage
2 emissions cap to obtain probability distributions of costs and other outcomes. The results here
assume the uncertainty in the cumulative emissions cap is uniform (i.e., Beta(1,1)), and we perform
Latin Hypercube Sampling with sample sizes of 1000. The full impacts of a regulation on the
electric sector cannot be estimated by focusing only on that sector. Those regulations will shift the
quantities demanded and produced, which in turn causes a shift in prices. The economy will adjust
to the new prices through substitution among inputs to other production sectors and through sub-
stitution by the consumer across the consumption bundle. The ultimate impact on consumption can
be amplified or dampened by the substitution effects. Moreover, the net change in carbon emissions
may be less than the electric sector target due to leakage to other sectors. The CGE model used in
this analysis is intended to capture all of these effects.

Figure 2 shows the resulting percentage change in cumulative (2010–2030) consumption
(social welfare) relative to the reference no policy consumption, using a discount rate of 4%. The
Optimal strategy results in smaller consumption losses than the Aggressive decision for all but the
strictest caps. The greater losses in cumulative consumption under the Deterministic and Myopic
strategies as the cap increases in stringency demonstrates the asymmetric behavior discussed above.
With increased flexibility to increase the renewable share (growth limit of 0.5), these losses are not
as large, but the asymmetric trend is the same.

Figure 3 uses the probability distribution of the Stage 2 emissions limit to translate the
cost curves from Figure 2 into boxplots. The Optimal strategy results in the lowest expected cost
(reduction in consumption) for both non-carbon growth limits. The Optimal strategy also exhibits
smaller variance in costs than the Deterministic and Myopic strategies, significantly reducing the
downside (i.e., the largest cost is not as large as the other strategies) without limiting the upside by
too much. Although the Aggressive strategy has the smallest variance in cost, the smallest worst
case loss, and a lower expected cost than the Deterministic and Myopic strategies, it also has the
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Figure 3: Loss in Cumulative Consumption by Strategy Relative to Reference: (a) 0.3 Non-
carbon Growth Limit, and (b) 0.5 Non-carbon Growth Limit

greatest minimum cost (i.e., best case outcome is not as good as the best case outcomes under the
other strategies). That is the nature of a precautionary or robust strategy—it protects from the
downside but also truncates the upside. It is a very risk-averse strategy that flattens out the possible
consumption outcomes (as apparent in Figure 2). The Myopic strategy has the greatest variance in
cost, and, with the greatest potential for a poor outcome, has the greatest expected cost. The De-
terministic strategy only fares slightly better than the Myopic. For both, the downside is driven by
the potential of ending up in the worst case scenario—a strict cap in Stage 2 after little or no Stage
1 non-carbon investments or emissions reductions. The increased flexibility that comes with a high
non-carbon growth limit, does not change these qualitative relationships, but does reduce both the
variance (particular on the low end) and the expected cost for the three strategies that are impacted
by the growth limit (all but the Aggressive strategy).

By examining the utilization of vintaged capital, tracked by the CGE model, the drivers
for the asymmetric losses are more apparent. Figure 4 shows unused vintage capital in Stage 2 from
the electric sector (aggregating non-carbon and fossil capital) as a function of the Stage 2 cap and
the Stage 1 decision strategy. As the cap becomes more stringent, the Deterministic and Myopic
strategies (and the Optimal strategy to a lesser extent) lead to increasing amounts of vintaged capital
being stranded. This represents overinvestment in conventional fossil generation capacity in Stage
1 that cannot be fully utilized in Stage 2 due to the emissions constraint. It is very expensive to
leave existing (vintaged) capacity unused or underutilized, and this cost contributes to the greater
consumption losses for stringent caps evident in Figures 2 and 3. In contrast, even when there turns
out to be a less binding emissions cap or no cap, the Aggressive and Optimal strategies continue
to utilize all vintaged non-carbon generation. It is never economic to leave the non-carbon electricity
capital unused, even if it is not required to meet the emissions limit. This difference between
stranded fossil capital under tight caps and the absence of stranded non-carbon capital under loose
caps causes the asymmetry in consumption losses.

The results above demonstrate the cost asymmetry between overinvesting in conventional
generation and overinvesting in non-carbon generation. This is clearly shown by comparing the
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Figure 4: Unused Vintage Electricity (Fossil + Non-Carbon) Capital for the Stage 1
Heuristic Strategies as a Function of the Revealed Stage 2 Cap: (a) 0.3 Non-
carbon Growth Limit, and (b) 0.5 Non-carbon Growth Limit

Myopic strategy under a strict cap (e.g. 0.6, or –40%) to the Aggressive strategy under no cap
(e.g. 1.0). The Myopic strategy with a realized cap of 0.6 in Stage 2 results in a consumption loss
of 0.9% relative to the reference (no policy) case, and $10 trillion worth of vintaged fossil capital
stranded. The Aggressive strategy with no cap in Stage 2 results in only 0.2% consumption loss
relative to reference and no vintage capital stranded. In that case, even though the non-carbon
generation turned out to be unnecessary in the absence of policy, it continues to be used. This
asymmetry is a consequence of the variable costs of electricity production. With an emissions limit,
the implicit carbon price increases the fuel cost component of conventional (fossil) generation. Even
though the capital investment is a sunk cost, the variable cost of operating the conventional gen-
eration (mainly the fuel cost) becomes greater than the full cost of investing in new non-carbon
generation, and therefore goes unused. On the other hand, non-carbon generation has low variable
costs (and no fuel costs), so once the capital investment is made, operation is relatively inexpensive,
and is lower cost than the full cost of investing in new conventional generation. As a result, vintage
non-carbon capacity continues to be used even when there is no emissions limit. Because of this
cost asymmetry a robust near-term investment strategy should err on the side of more non-carbon
generation rather than more carbon-emitting generation.

In addition to providing estimates of consumption (social welfare) and stranded capital,
our CGE approach also has the advantage of being able to track emissions leakage. Because we
have defined our policies as limits to emissions from the electricity sector, emissions in other sectors
of the economy that are not covered by the cap can increase relative to what those emissions would
have been without any policy. The amount of leakage largely depends on the ability to shift dirtier
energy sources to unregulated sectors of the economy. A cap on electricity sector emissions will
decrease the amount of fossil fuel energy, particularly coal, used in generation. This may cause the
price of coal to decrease. Other sectors of the economy that are able to substitute toward using
more coal will do so in response to the lower coal price, and as a result, these sectors will start
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Figure 5: Emissions Leakage Given Different Stage 1 Strategies and Depending on the
Revealed Stage 2 Cap: (a) 0.3 Non-carbon Growth Limit, and (b) 0.5 Non-carbon
Growth Limit

producing more emissions. The ability of other sectors to take advantage of lower cost fossil re-
sources helps to offset the cost of the sectoral policy, but also reduces the economy-wide emissions
impact of the sectoral cap. Figure 5 shows emissions leakage for each of the Stage 1 strategies
depending on the Stage 2 cap and the assumed non-carbon growth constraint. In general, the more
stringent the policy, the more leakage occurs. However, for stringent caps (less than 0.8), the Myopic
and Deterministic strategies lead to greater leakage. This is because the absence of sufficient in-
vestment in the first stage necessitates dramatic reductions in Stage 2, which increases the electricity
prices significantly. Higher electricity prices induce substitution away from electricity to other
sectors that do not have emissions limits, resulting in leakage.

4.2 Value of Including Uncertainty

One of the contributions of this research is demonstrating how decision making under
uncertainty can be represented using a CGE model and the value of doing so. The expected value
of including uncertainty (EVIU) (Morgan and Henrion, 1990; Savage, 2009), also called the value
of a stochastic solution (VSS) (Birge and Louveaux, 1997), is a metric that captures the value of
representing uncertainty or, equivalently, the incremental cost of choosing a non-optimal strategy
by explicitly neglecting uncertainty. EVIU reflects the improvement in decisions that can be ob-
tained by formally modeling uncertainty in the decision-making process. To quantify the value of
accounting for uncertainty, we compare the expected value of the Optimal strategy to that under
the other strategies, for three different probability distributions for the Stage 2 cap, and for two
different non-carbon growth limits (Table 5). The EVIU is calculated by comparing policy costs
from each strategy to those from the Optimal strategy. Note that the definition of EVIU typically
refers to the comparison of the “Deterministic” strategy to the optimal; i.e., the loss from using
expected values for the uncertain parameters and solving for the deterministic optimal decision for
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Table 5: Expected Policy Cost and Expected Value of Including Uncertainty (EVIU)

Expected Policy Cost for Each Strategy
(Relative to Reference) ($B)

EVIU
(% Increase in Cost of Alternative

Strategy vs. Optimal Strategy)

Distribution
Growth
Limit Optimal Deterministic Myopic Aggressive Deterministic Myopic Aggressive

Beta(0.5,0.5) 0.3 149 228 312 183 53% 109% 23%
0.5 137 174 233 183 27% 70% 34%

Beta(1,1) 0.3 134 181 256 179 35% 91% 34%
0.5 121 143 199 179 18% 64% 48%

Beta(2,2) 0.3 121 143 213 174 18% 76% 44%
0.5 103 118 171 174 15% 66% 69%

that case. However, “Myopic” and “Aggressive“ represent other commonly used heuristics that are
either explicitly or implicitly employed as an alternative to formally modeling the uncertainty.

The expected costs of each strategy (difference between expected cumulative consumption
under the strategy and under the reference case in billions of U.S. $) are given in Table 5 for each
strategy, as well as the percentage increase in costs from the three strategies that do not explicitly
solve the stochastic decision problem. For the Deterministic strategy, the consumption losses from
using this heuristic range from 15% to over 50%, depending on the variance in the uncertainty and
the degree to which current non-carbon investment constrains future non-carbon investment. The
greatest losses occur for the highest variance distribution—the less confident one is in the direction
of future policy, the greater the expected losses from using this analytical shortcut. The losses from
the Myopic strategy are even greater, ranging from 60% to more than 100%, and are also greatest
for higher variance distributions. Under the Aggressive strategy, the trend is reversed in that the
expected losses are greatest for lower variance distributions. This is because the Aggressive strategy
is a heuristic for finding a robust strategy; this is visually demonstrated in Figure 2 where the costs
of this strategy are nearly constant over the full range of potential Stage 2 emissions limits.

5. CONCLUSIONS

When making a decision under uncertainty, one often needs to hedge against a risk. More
difficult are decisions that must balance two risks, each of which imply hedging in different direc-
tions. The problem analyzed here is an example of that type of decision problem. The amount of
non-carbon electricity generation that should be developed over the next decade, before we know
what long-term carbon targets are, is a decision that must balance the risk of overinvesting in non-
carbon energy with the risk of underinvesting. Underinvesting could lead to very high costs in the
future if dramatic carbon reductions are needed. Overinvesting could impose higher costs now that
turn out to be unnecessary. In the absence of careful analysis, it is not obvious a priori in which
direction society should be hedging.

The work presented here has applied a simple computable general equilibrium model of
the U.S. economy, and embedded it within a stochastic approximate dynamic programming frame-
work. The dynamics of this model have demonstrated that there is in fact an asymmetry to the costs
of overinvesting in non-carbon generation vs. underinvesting. Specifically, the expected losses from
underinvesting in non-carbon electricity in the near-term is much larger than the corresponding
costs of overinvesting. There are three main factors that drive this asymmetry in costs. First, ex-
cessive investment in conventional fossil technologies poses a great risk under policy uncertainty—
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if a stringent policy is implemented in the future, some of the overbuilt conventional fossil capacity
may become stranded due to high operating costs, driven by high fuel costs that reflect the shadow
price of the carbon limit. In the converse situation, excessive non-carbon generation capacity built
in the near-term will be used in the long term even in the absence of stringent emissions caps. There
will be unnecessary sunk capital costs, but low operating costs would allow this non-carbon capacity
to continue to be used. Second, insufficient investment in non-carbon generation in the near-term
could reduce the flexibility to ramp up investment later, even if needed, due to capacity constraints
and a lack of infrastructure. Third, if non-carbon generation capacity was insufficient in the near
term and future expansion is therefore constrained, dramatic reductions, if needed rapidly, would
have to be achieved by other more costly means. Because of this cost asymmetry a robust near-
term investment strategy should err on the side of more non-carbon generation rather than more
carbon-emitting generation.

Another result of this analysis is that the optimal share of new non-carbon generation in
the next decade is increasing in the variance of the uncertainty in future carbon targets. In general,
the less confidence we have in what the long-term carbon reduction goals will turn out to be, the
more non-carbon generation we should build now. However, equally critical is that with greater
uncertainty, more coal generation should also be added, at the expense of natural gas. New gen-
eration dominated by natural gas is optimal if we have high confidence that the long term carbon
goal will be a moderate one (e.g., 20% reduction by 2030). Greater uncertainty is best addressed
by a balanced portfolio of a range of technologies with varying emissions rates in the near-term.

Overall, while our model is stylized and numbers should be treated with caution, our results
show that near-term non-carbon investments should be in the range of 5–30% of new production
and emissions reductions in the range of 8–16%, depending on the uncertainty in future emissions
policies and constraints on future non-carbon expansion. The low end of the ranges is best if we
expect that a future strict cap is quite unlikely, or one in which it is easy to quickly expand non-
carbon generation. The high end of the ranges is best if one believes that there is at least a non-
negligible probability of a future strict cap, especially if the ability to expand non-carbon generation
could depend on what we put in place now.

Finally, this work demonstrates the value of formally representing uncertainty in decision
support models. Existing modeling approaches typically do one of two things with regard to un-
certainty: (1) ignore it (either by being myopic or pretending we have perfect foresight), or (2)
consider scenarios, each with certainty, and then use the optimal decision from the middle scenario
or from a scenario that assumes the average value of the uncertainty to be the known value. Here
we compared the optimal decisions identified by our approximate dynamic programming approach
to other common strategies, including a myopic “wait and see” approach, a deterministic expected
value or “flaw of averages” approach, and an aggressive precautionary or “worst case” approach.
We showed that these approaches result in different near-term investment strategies that increase
the expected policy cost relative to the optimal hedging strategy from an approximate dynamic
programming framework that explicitly considers decision making under uncertainty. Given the
experimental design, the expected policy cost is increased by 15–54% by pursuing a deterministic
strategy, by 64–109% by pursuing a myopic strategy, and by 23–69% by pursuing a worst-case
strategy. Considering uncertainty in decision-making results in investment strategies that minimize
expected policy costs, and are reasonably robust while not being as extreme as more precautionary
approaches.

The main technical contribution of this work is to provide a new decision support frame-
work that considers economy-wide effects of electric power sector investment decisions under
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uncertainty. There have been sector-specific studies that capture decision-making under uncertainty
well, but cannot address economy-wide social welfare implications. There have been economy-
wide computable general equilibrium (CGE) studies with uncertainty (Monte Carlo), but without
capturing the critical nature of making decisions under uncertainty, learning, and then making
decisions again. This work makes the unique contribution of modeling decision-making under
uncertainty with learning and the ability to revise decisions over time in a framework that represents
the entire economy and can measure social welfare impacts. It does so by first incorporating a CGE
model into a dynamic programming framework, and then applying an algorithm for an approximate
dynamic programming version of the model that can replicate the DP results with accelerated
computation time. Our Q-Factor Adaptive Relaxed Linear Programming (QARLP) approach also
allows the exploration of the model at dramatically higher resolution than the DP, permitting greater
insight into optimal near-term decisions. In addition, this approach demonstrates that the model can
be scaled up without being limited by the curse of dimensionality. Future work using this approach
could use a more detailed/disaggregated model structure, more technologies, or more decision
periods. Ultimately, applying this new modeling approach allows for a quantitative evaluation of
near-term electric power investment decisions under uncertainty. In doing so, we demonstrate how
a CGE model can be structured to capture stochastic dynamic expectations. As a result, this work
facilitates further model development and analysis in this area. In addition, the modeling approach
developed here can be applied to other sectors, other decisions, and other uncertainties.
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