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Abstract
Weestimate the costs of climate change toUS agriculture, and associated potential benefits of abating
greenhouse gas emissions. Fivemajor crops’ yield responses to climatic variation aremodeled
empirically, and the results combinedwith climate projections for a no-policy, high-warming future,
as well asmoderate and stringentmitigation scenarios. Unabatedwarming reduces yields of wheat and
soybeans by 2050, and cotton by 2100, butmoderate warming increases yields of all crops except
wheat. Yield changes aremonetized using the results of economic simulations within an integrated
climate-economymodeling framework.Uncontrolledwarming’s economic effects onmajor crops are
slightly positive—annual benefits<$4 B. These are amplified by emission reductions, but subject to
diminishing returns—by 2100 reaching $17Bundermoderatemitigation, but only $7Bwith stringent
mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of
elevated atmospheric carbon dioxide, withoutwhich unabatedwarming incurs net costs of up to $18
B, generating benefits tomoderate (stringent)mitigation as large as $26 B ($20 B).

1. Introduction

What are the costs and benefits to US agriculture of
mitigating greenhouse gas (GHG) emissions? Agricul-
ture has significant climate change exposure, but
despite being a sector that has long been studied (e.g.,
Mendelsohn et al 1994), projections of future impacts
on crops, and the associated costs of damage, remain
too uncertain to provide a definitive answer. The issue
is highlighted by disagreements over the responses of
US agricultural yields and profits inferred from
historical observations, and their implications for the
sign andmagnitude of future climate impacts.

The empirical climate economics literature pro-
vides ample evidence that yields of major US crops are
adversely affected by exposure to cumulative growing
season degree day extremes (Schlenker et al 2006,
Fisher et al 2012) and temperatures above a 86 °F
(30 °C) threshold (Schlenker and Roberts 2009, Ortiz-
Bobea 2013). But the economic consequences are con-
tested. The robustness of accumulated heat’s adverse
effects on farm profits (Schlenker et al 2006, Fisher

et al 2012) has been questioned in light of the poten-
tially confounding influence of spatially and tempo-
rally varying non-climatic factors (Deschênes and
Greenstone 2007, 2012). When combined with earth
systemmodel (ESM) simulations of future climate, the
latter responses suggest that climatic changes experi-
enced by 2100 would have only small impacts on
today’s agricultural system (annual losses of US
(2002)-$4 B to -$16 B).

Additional uncertainty abounds in the future tra-
jectory of production, and meteorological exposure,
of US agriculture—even for a given warming scenario.
Despite improved understanding of climate change
feedbacks on land use (Hurtt et al 2011), the future
geographic distribution and output expansion of US
field crops remain indeterminate. With fixed cropping
patterns and warming trajectories, assessment using
meteorological exposures from an ensemble of ESMs
can increase the range of projected impacts and the
magnitude of ‘worst-case’ losses (Deschênes and
Greenstone 2012, and especially Burke et al 2015).
Addressing the latter uncertainty, the Inter-Sectoral
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Impact Model Intercomparison Project (ISI-MIP)
uses global gridded crop models (GGCMs) forced by
ESM ensemble projections to quantify the range of
crop shocks to crop yields (Rosenzweig et al 2014),
which are in turn employed as input forcings to inte-
grated assessment models (IAMs) that simulate con-
comitant crop production, price and economic
welfare impacts (Nelson et al 2014).

The dollar value of damages depends critically on
the uncertain state of the economy in the future dec-
ades when climate change affects crop yields. How-
ever, the ISI-MIP impact modeling protocol’s baseline
socio-economic, technological and GHG mitigation
trajectories are not synchronized with the assump-
tions used by the IAMs that simulate the representa-
tive concentration pathway scenarios forcing ESM
projections. The key omission is the relative price
effects of the GHGmitigationmeasures that are neces-
sary to realize low-radiative forcing futures. Cost-ben-
efit analysis requires a modeling framework that can
simulate the economic effects of mitigation, the cli-
matic consequences of the resulting emissions, the
concomitant biophysical impacts and their effects on
the perturbed economy. A further limitation is that the
resulting economic impacts understate the potential
benefits of GHG mitigation by including adaptation
that arises out of IAMs’ price-driven substitution
responses—among the inputs to crop production and
the outputs of agricultural sectors, and between other
goods and agriculture, and domestic and imported
varieties of each commodity (Nelson et al 2014)—
whose cost-reducing effects are difficult tomonetize5.

This paper draws upon and extends aforemen-
tioned approaches to estimate the costs of climate
change to US agriculture, and the potential benefits of
GHG mitigation, in a manner that is both economic-
ally and climatically consistent, and exclusive of adap-
tation. We first econometrically model the long-run
yield response of five major crops (corn, soybeans,
wheat, cotton, sorghum) to climatic variation, using
data on weather, output and harvested area for∼3000
counties in the coterminous US over the period
1948–2010. We then combine the resulting yield
responses with ESM simulations of climate change
scenarios prepared for the US Environmental Protec-
tion Agency’s climate change impacts and risk analysis
(CIRA) project (Waldhoff et al 2014) to estimate yield
changes under a no-policy high-warming future as
well as two lower-warming emission mitigation sce-
narios. Finally, we use the resulting yield shocks in
conjunction with the output of the computable gen-
eral equilibrium (CGE) economic model that gener-
ated the CIRA emission scenarios (MIT-EPPA—
Paltsev et al 2013) to calculate aggregate economic
costs in terms of future revenue changes in each sce-
nario. Cost differences between the no-policy and

mitigation scenarios indicate the benefits of reducing
GHGemissions.

We find that unmitigated climate change has sub-
stantial adverse effects on yields of soybeans and wheat
by mid-century, and cotton by century’s end, but
compensating beneficial impacts on corn and sor-
ghum yields. Climatic shocks exhibit substantial geo-
graphic variation, with yield increases (reductions) in
regions that currently have cooler (warmer) average
climates, and, over time, increasingly severe impacts at
lower latitudes. If climatic changes projected by 2100
under the reference warming scenario were to occur
today, annual major crop revenues would be largely
unaffected. But once the agriculture sector’s projected
future expansion is taken into account, the upshot is
an annual net benefit of US (2010) $3 B by 2050, which
falls to $1.3 B by 2100. But forgoing less vigorous cli-
mate change is nonetheless costly. Both mitigation
policy scenarios have net beneficial effects, up to $1.2
B by 2050 and $2 B by 2100 if climate change were to
impact today’s agricultural system, and $3.3 B by 2050
and almost $17 B by 2100 with the price and output
level that are projected in the future. However, these
results are sensitive to the specification of the carbon
dioxide (CO2) fertilization effect (CFE), whose influ-
ence on yields is thought to be positive but subject to
considerable uncertainty. Omitting the CFE flips the
sign of our impact estimates, giving rise to net agri-
culture sector costs as high as $18 B, with attendant
amplification ofmitigation benefits.

The rest of the paper is organized as follows.
Section 2 summarizes our methodology for empiri-
cally modeling climate-yield relationships and cou-
pling these with ESM simulations. Section 3 presents
the resulting yield responses to climate change, chan-
ges in crop output at the county and regional levels,
and monetized damages. In section 4 we offer a sum-
mary of ourfindings and discussion of their caveats.

2.Methods

2.1. Empirical analysis: using historical observations
to infer climate impact on yields
Following the recent climate-economics literature
(Schlenker and Roberts 2006, 2009, Deschênes and
Greenstone 2007, 2012, Lobell and Burke 2010, Ortiz-
Bobea 2013, Burke and Emerick 2015)we quantify the
potentially nonlinear influence of climate on yields
using semi-parametric cross section-time series
regressions. Previous studies exploit the historical co-
variation between yields and weather shocks to infer
the effects of future climate. Motivated by Burke and
Emerick’s (2015) finding that long-run adaptations
are limited in their ability to alleviate the short-run
impacts of extreme heat, we extend their approach
using a dynamic modeling framework that statistically
distinguishes between the effects of short-run
(weather) and long-run (climate) shocks. Since

5
These are passive adaptations mediated by relative price changes

(see SueWing and Fisher-Vanden 2013).
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farmers’ planting, management and harvesting deci-
sions are based on land quality and expectations of
weather, yields and meteorological variables share a
long-run equilibrium relationship. In any given year,
weather shocks cause yields to diverge from their
expected long-run values, prompting farmers to revise
their long-run expectations, and make management
decisions that can have persistent effects6.

To statistically identify the former equilibrium and
latter disequilibrium responses we employ an error-
correctionmodel (ECM)7. Our data are an unbalanced
panel of c counties over t years, recording yields, Y
(calculated as the ratio of production, Q, to harvested
area, H ,) as well as three-hourly observations of
growing season temperature, precipitation and soil
moisture, indexed by v T P S, ,{ }= , respectively.
Interannual variation in log annual yield (y) is mod-
eled as a function of a vector of county-specific effects
( ,m which capture the influence of unobserved time-
invariant local characteristics such as topography and

soils), a vector of climatic covariates (within each

annual growing season, the cumulative exposure over
g crop growth stages to j temperature intervals, ,j g

T
,x k

precipitation intervals, ,k g
P
,x and l soil moisture inter-

vals, ,l g
S
, )x and a vector of time-varying county-level

statistical controls X( ).
Our model, which is derived and explained in the

supplementary information (SI), is written:
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and is estimated via ordinary least squares for five
crops (corn, soybeans, wheat, cotton, sorghum),
indexed by i. Interannual difference terms (prefixed
by )D model the yield impacts of transitory disequili-
brium shocks, the expression in square braces captures
the long-run equilibrium relationship between yields
and the covariates, and e is a random disturbance
term. Parameters to be estimated are the disequili-
brium (weather) impacts (β v), equilibrium (climate)
impacts (η v), short- and long-run effects of non-

climatic variables (γ and λ), and the error-correction
parameter ( )q measuring producers’ speed of adjust-
ment to the long-run equilibrium. The parameters
(η v) are vectors of semi-elasticities indicating the
percentage by which yields shift relative to their
conditional mean levels in response to additional time
spent in a given interval. The vectors’ elements—the
individual coefficient estimates—each capture the
distinct marginal effect of exposure within the corre-
sponding interval (e.g., the average impact of an
additional hour to 70–80 °F versus 80–90 °F tempera-
tures). Collectively, the elements of vh flexibly capture
v ’s overall long-run effect as a piecewise linear spline.
The shape of the resulting function is identified from
the covariation between observed yields andmeteorol-
ogy within each interval, as well as the distribution of
observations across intervals over the historical period
of the sample. With regard to temperature, the
advantage of this approach is that it more precisely
resolves the yield impacts of extreme heat relative to
the standard degree-day specification (see Schlenker
andRoberts 2009). Our dataset is described in the SI.

Omitted from equation (1) is the CFE. Rising CO2

concentrations are a time-varying shock that simulta-
neously affects yields in all counties. However, there is
near-perfect collinearity between the CFE and long-
run impacts of other strongly trending, spatially
homogeneous, beneficial influences such as total fac-
tor productivity improvements or technological pro-
gress. Data constraints preclude quantification of the
latter with accuracy sufficient to construct credible
statistical controls8. Given the potential for the long-
run coefficient on CO2 concentrations to erroneously
capture these confounding secular effects, we eschew
empirical estimation of the CFE and instead incorpo-
rate its effect on our yield projections using relation-
ships based on the literature.

2.2. Projecting yield impacts of future climate
change
Climate change impacts are quantified by combining
the fitted values of the equilibrium meteorological
parameters ( vˆ )h with meteorological exposures
derived from ESM simulations of different warming
scenarios. We spatially aggregate simulated 3-hourly
fields of temperature, precipitation and soil moisture
to the county level (T ,c̃ Pc̃ and Sc˜ ) and bin the
results into the j, k and l intervals (respectively) over
crop growth stages in current and future growing
seasons to generate exact analogs of the regression
covariates,

v
x̃ 9. Yields under irrigated and rainfed

management regimes (indexed by m I R,{ })= exhi-
bit different responses to precipitation andmoisture as

6
A key example is soil amendments. With agricultural profits,

analogous decisions involve inventory adjustments (Deschênes and
Greenstone 2012).
7
See Nickell (1985). Prior research employing ECMs to understand

climate change impacts on agriculture (e.g., Blanc 2012) has not to
our knowledge sought to explicitly partition yield variance into the
effects of weather versus climate. For a general application of ECMs
to agricultural supply response, seeHallam andZanoli (1993).

8
Absent specific indicators of technological advance (e.g. patent

stocks), productivity improvements are customarily modeled using
a time trend.
9
Comparing the future climate simulated by an ESM against

current climate simulated by the same model (as opposed to
observations) is a way of minimizing the impact of potential bias in
ESMprojections.

3

Environ. Res. Lett. 10 (2015) 115002 I SueWing et al



well as elevated CO2. Accordingly, we model them
separately (see SI), specifying rainfed impacts as a
function of temperature, precipitation, soil moisture
and ambient CO2 concentrations ,( ˜ )C and irrigated
impacts as a functions of temperature andCO2:
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Here, i
m� is a concave function that captures

the differential benefits of CO2 fertilization under
different moisture stress conditions, based on
Hatfield et al (2011) and McGrath and Lobell (2013).
Our calibration of the CFE index is documented in
the SI.

The terms i c
m
,y indicate the partial effects of cli-

mate on the logarithm of irrigated and rainfed yields.
Our normalized decadal index of climate impact is the
yield ratio:
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in which � is the expectation operator and c
vf̄ denotes

the average shares of irrigated and rainfed cultivation
from theMIRCA dataset (Portmann et al 2010), which
we treat as remaining fixed into the future. (This
assumption is discussed in § 3.2.) i c,Y is interpretable
as the climatically-attributable fractional change in a
county’s average yield relative to its own conditional
mean10. Accordingly, holding the current geographic
distribution of harvested area constant as well, the
change in production of each crop is simply the

quantity Yi c i c, ,

Current
Climate¯Y ´ .

Our simulated meteorological fields and ambient
CO2 concentrations are taken from the CIRA project
(Waldhoff et al 2014), a 15-member ensemble of
simulations using the MIT Integrated Global System
Model-Community Atmosphere Model (IGSM-
CAM) modeling framework (Monier et al 2013)11.
CIRA is underlain by three consistent socioeconomic
and emissions scenarios: a reference scenario with
unconstrained emissions and two climate stabiliza-
tion scenarios that impose uniform global taxes on
GHGs to limit total radiative forcing to 4.5 Wm−2

and 3.7 Wm−2 by century’s end. Reductions in cli-
mate damages to agriculture in moving from the
reference to the policy scenarios are interpretable as
the benefits of GHG mitigation, and the associated
differences in US agriculture sector output and rela-
tive prices are crucial to our cost estimates (Paltsev
et al 2013). For each emission scenario, IGSM-CAM
was run with different values of climate sensitivity
and aerosol forcing, and different representations of
natural variability, resulting in a 60-member ensem-
ble (Monier et al 2015).We focus on simulations with
a climate sensitivity of 3 °C, with each scenario run as
a 5-member initial condition ensemble in an attempt
to span the potential range of natural variability. Spa-
tially disaggregating these projections to the county
scale and using equations (2) and (3) enables us to
calculate yield impacts at the middle and the end of
the century (2036–2065 and 2086–2115) for each
combination of scenario and ensemble member. We
analyze 30-year time periods over 5 ensemble mem-
bers with different representations of natural varia-
bility, resulting in a total of 150 years defining
changes from the present day to the middle and end
of the century, in order to obtain robust estimates of
climate impacts on yield where the anthropogenic
signal is extracted from the noise associated with nat-
ural variability.

3. Results

3.1. Yield responses to climate change
Our long-run estimates are for the most part broadly
consistent with current agronomic understanding of
weather effects on field crop yields. Space constraints
preclude detailed description of these results for allfive
crops. We highlight our findings for corn and consign
the remaining results to the SI. Figure 1 shows corn’s
meteorological yield response functions (panel A) and
the changes in exposure to weather conditions experi-
enced by an average county in our three scenarios circa
2050 and 2100 (panels B and C). Yields decline
precipitously with extreme temperature (Schlenker

10
If 0,1i ( )Y Î the shift in themean climatic exposure reduces crop

productivity, and increases it otherwise.

11
IGSM-CAM links the IGSM, an integrated assessment model

coupling an earth systemmodel of intermediate complexity (EMIC)
to a global economic model (MIT EPPA—Paltsev et al 2013), with
theNational Center for Atmospheric Research (NCAR)Community
AtmosphereModel (CAM—Collins et al 2006).
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and Roberts 2009, Burke and Emerick 2015), but
stratification of our responses by growth phase high-
lights the large impact in the first half of the growing
season (Ortiz-Bobea 2013)—each additional 3 h per-
iod below 15 °C increases yields by as much as 0.005%

relative to their conditional mean, but similar expo-
sure above 40 °C triggers a reduction of more than
0.01%. Over the second half of the growing season,
temperatures cause slight yield declines below the
latter threshold but a marked increase above (as much

Figure 1.Corn empirical yield response functions (A) and the change in the distributions of average county temperature, precipitation
and soilmoisture exposure circa year 2050 (B) and 2100 (C), over growing season sub-periods. Gaps in splines correspond to
omittedmodal intervals. Histograms show the differences in the distributions of exposure between the no-policy reference scenario
and the current climate, and between the 4.5 W m−2 and 3.7 W m−2 GHGmitigation scenarios and the reference case. The vertical
axes of the differenced exposure distributions have non-linear scales to better illustrate the shifts inmeteorology due to climate
change.

5
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as 0.01% per 3 h)12. A key point of divergence with
prior results is our finding that yields increase strongly
and approximately linearly with precipitation, with
trace amounts associated with slight declines but 3 h
extreme exposures (>15 mm) increasing yields by up
to 0.01% (0.015%) in the early (late) sub-periods. The
instantaneous soil moisture response exhibits a gen-
eralized inverse U shape with an apex at the condi-
tional mean exposure, a very slight negative influence
over most of its range and sharply negative impact at
the upper extreme (>35 kg m−2), with reduction of up
to 0.004% (0.008%) in the early (late) sub-periods.
Other crops’ responses share many of these character-
istics (figures S3–S6)13.

In panels B and C, movements in the average dis-
tribution of exposure due to unmitigated climate
change shifts the relative weights on different spline
segments. The larger the increases in exposure within
intervals associated with negative semi-elasticities (the
pink bars), the greater the downward pressure on
yield. Throughout the growing season temperature
increases shift exposure out of low-temperature inter-
vals into high-temperature intervals, negatively affect-
ing yields, particularly in early stages of crop growth.
Climate change is also associated with increases in
both rainfall and soil moisture that shift exposure
from low to high ranges of these variables, which is
generally beneficial. But where the latter intervals are
associated with negative marginal effects, the sign of
the yield impacts is negative aswell.

GHG mitigation’s broad influence is to partially
reverse these shifts in probability mass (the green and
blue bars). Across meteorological variables, the most
common pattern is for the bars indicating the policy
scenarios to be of smallermagnitude butmostly oppo-
site sign to those corresponding to the reference case.
Crucially, such reversals are not always beneficial. In

the reference scenario, exposure to low precipitation
declines in both halves of the growing season circa
2100, and, relative to this outcome, GHG emission
mitigation increases the average frequency of such dry
episodes, with adverse late-season yield impacts. Simi-
larly, increases in large precipitation events under the
reference scenario improve yields, but mitigation
reduces these increases, curtailing this particular bene-
fit from unmitigated climate change. Finally, as indi-
cated in the SI (figure S2), a pervasive consequence of
mitigation is the reduction in the CFE and its atten-
dant yield benefits.

3.2. Projected changes in crop yields and production
Conditions within individual counties can diverge
markedly from the aforementioned average changes in
exposure. Maps of projected yield changes in figure 2
indicate the spatial patterns of the threat to the five
major crops posed by unmitigated climate change, as
well as the substantial threat reduction due to moder-
ate mitigation. Panel A shows the counties where crop
production is concentrated, while panels B and C
illustrate the percentage changes in yields calculated
using equation (3). All crops experience both bene-
ficial and adverse effects, depending on the region. In
the reference scenario, wheat yields increase in the
northwest and decline in the south central and south-
west regions circa 2050, a pattern that intensifies
markedly toward century’s end. For the remaining
crops, the patterns of impact tend to follow the north-
south temperature gradient. Soybean and corn yields
suffer pronounced negative impacts in the South and
the Mississippi River valley that first lessen before
turning positive with proximity to Canada. For cotton,
the largest adverse effects are dispersed across the
crescent of southernmost counties, while for sorghum
negative impacts are concentrated in the southwest.
The reductions in changes in climatic variables as a
consequence of mitigation policies attenuate the
amplitude of beneficial as well as adverse yield shocks.
Even a 4.5Wm−2 GHG stabilization policy limits
impacts to ±10% from baseline levels in the majority
of cultivated counties. Results for the stringent
3.7Wm−2 scenario (not shown) are similar but
further accentuated.

However, the risk to agricultural supply arises out
of the spatial intersection of yield shocks and patterns
of crop production in future decades when climatic
changes occur. Although the latter will likely differ
from today, given the challenges that attend prediction
of agriculture’s future geographic distribution (see,
e.g., Ortiz-Bobea and Just 2012, Iizumi and Raman-
kutty 2015), we follow the empirical literature in
assuming that irrigated and rainfed crop cultivation
will continue to follow the current geographic pattern
in panel A.We quantify the implications at the scale of
US climate regions in table 1.

12
The positive late response to high temperature is not the result of

outlying observations. Historically, corn has regularly been exposed
to this kind of heat, albeit in tiny amounts. In 23% of our 136 000
county × year observations, corn was exposure to one or more 3 h
periods with T 43 C> n in the second half of the growing season,
covering 2307 out of 2842 counties and all the years of our sample.
Using simpler empirical models, Blanc and Sultan (2015: figures
C1–C4) uncover similar beneficial yield responses to late extreme
heat in the results of ISI-MIP GGCMs. Work remains to be done to
understand themechanisms responsible for this phenomenon, both
inGGCMs and thefield.
13

We find negative and strongly nonlinear temperature sensitivity
of sorghum, soybeans, and, to a lesser extent wheat, especially in the
first half of the growing season (see Tack et al 2015). For the most
part, precipitation’s long-run effect is positive or statistically
insignificant over most of its range (especially in the second half of
the growing period). Exceptions are the negative and significant
impacts of early extreme precipitation on soybeans and wheat.
Long-run soil moisture responses peak apex at the modal exposure,
suggesting detrimental yield impacts of soil waterlogging as well as
drying, with the exception of cotton early in the growing season.
These results are generally in line with recent empirical findings. A
shortcoming of our model is its omission of freezing temperatures
and the associated negative response of wheat yields, whose
amelioration in a warming climate provides an offsetting beneficial
effect (Tack et al 2015).
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Under reference warming, circa 2050, there are
increases in yields of corn and sorghum, declines in
wheat and soybeans, and mixed impacts on cotton in
the regions where production of these crops is con-
centrated. Climate impacts thatmanifest in one or two
regions at mid-century often spread geographically by
2100, with production in regions that suffer early
adverse impacts (e.g., the southeast, and, to a lesser
extent, south central regions) often experiencing fur-
ther declines.Mitigation often only softens the blow in
regions with the largest percentage losses, and, para-
doxically, changes in weather patterns associated with
stringent emission reductionsmay have smaller ameli-
orative impacts (see south, southeast and central sor-
ghum and corn), likely due to the interplay between
the impact of changes in meteorological variables and
the CFE. Conversely, climate change improves yields
in the cooler northeast, northwest, and, less reliably,
north central areas aroundmid-century, with declines
in the pool of regions experiencing beneficial weather
as warming proceeds. Mitigation offsets output
declines from regions experiencing losses at the cost of
curtailing gains to those benefiting from climate
change. However, rarely does mitigation transform
gains under the reference into outright losses: more
commonly regions that gain experience smaller
benefits.

Our projected percentage changes in aggregate
yield understate those of prior studies, although a
clean comparison is elusive because of differences in
the scenarios of future warming and their meteor-
ological consequences as elaborated by ESMs (see table

S3). Our inclusion of the CFE accounts for some of
this divergence. Re-running our projections without
the CFE14 results in yield losses that are 20% larger for
wheat and between 2 and 4 times as large for soybeans
and cotton, and yield gains for corn and sorghum that
are 10%–15% smaller (table S2). More consequential
are our findings of countervailing effects of extreme
heat on corn yields (adverse early, beneficial late), and
the importance of precipitation generally. The latter is
particularly important given that our estimates
assume no water stress, and therefore no impact of
projected changes in precipitation or soil moisture, on
the irrigated fraction of the crop in each county. Rela-
tive to the customarymethod of applying a single fitted
yield response function everywhere, our approach
reduces yield losses (gains) in regions experiencing
precipitation and soilmoisture declines (increases).

3.3. Economic costs of agricultural impacts and
benefits of GHGmitigation
The implications for aggregate climate damage costs
and GHG mitigation benefits are summarized in
table 2. Costs (negative entries)and benefits (positive
entries) are assessed by establishing two baselines from
which to compute the absolute changes in output that
correspond to US-wide percentage changes. Panel A,
which collapses table 1, demonstrates that, under
reference warming, adverse national average yield
impacts are dominated by wheat, soybeans and,
toward century’s end, cotton. Conversely, corn and

Figure 2.Geographic distributions of 1980–2010 crop production (A), and%change in yields offivemajorUS crops relative to
current climate circa years 2050 and 2100, under a no-policy reference scenario (B) and amoderate GHGmitigation scenario (C).

14
This is achieved simply by setting 0i

mk = in equation (S9).
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sorghumexperience large increases in national average
yield. Panel B shows the result of a comparative static
calculation of the associated costs and benefits of
climate change if crop production and prices remain at
today’s levels. Output losses (i) follow the reference
pattern in Panel A, but negative impacts on wheat are
lessened and on soybeans are reversed by mitigation’s
reduction of warming to beneficial levels. The corre-
sponding economic impacts (ii) are expressed as

changes in revenue, calculated by multiplying the
quantity shocks by each crop’s 1981–2010 average real
farmgate price. Broadly echoing Deschênes and
Greenstone’s (2007) findings, climate change has a net
beneficial impact which is modest at mid-century ($1
B) but becomes negligibly small by 2100. Relative to
the reference, moderate mitigation generates addi-
tional annual benefits of $1 B ($2 B) circa 2050 (2100),
while stringentmitigation’s benefits are smaller: $0.6 B

Table 1.Changes in crop production (%) relative to current climate in the no-policy reference andGHGmitigation scenarios, circa years
2050 and 2100: byUS climate regions.

Note: Square braces: changes in output from the reference scenario; shaded cells: losses relative to the current period (in cells with square
braces, relative to reference scenario); bold:major producing regions.
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($0.8 B) per year by 2050 (2100). Panel B’s estimates
incorporate future increases in production, and asso-
ciated price changes, as simulated by MIT-EPPA’s
CIRA runs. Impacts are identical in sign, but expan-
sions in crop output and revenue increase the magni-
tude of costs and benefits15. Net annual benefits under
reference warming are still small ($3 B circa 2050, $1B
by 2100), while moderate (stringent) mitigation gives

rise tomodest additional annual benefits of $3 B ($1 B)
by 2050 and $17 B ($7 B) by 2100.

4.Discussion and conclusions

By combining empirical analysis with integrated
economic and climate projections, we demonstrate
that climate change effects on US crop yields are likely
to be slight around mid-century but substantially
costly near century’s end, with regions where climates
are already warm suffering losses but cooler regions

Table 2.Aggregate annual changes in crop yields, production and associated gross costs and benefits relative to
current climate in the no-policy reference scenario, and aggregate avoided changes in crop yields and associated
costs and benefits under GHGmitigation scenarios, circa years 2050 and 2100. (A) aggregate yield changes; (B)
prices and quantities in current agricultural system; (C)prices and quantities scaled according to future growth
simulated by theMIT-EPPAmodel’s CIRA simulations.

2036–2055 2086–2115

Ref 4.5 W m−2 3.7 W m−2 Ref 4.5 W m−2 3.7 W m−2

(A)Average change in yield relative to current climate (%)

Wheat −3.5 −0.3 −0.8 −7.9 −1.3 −1.9
Soybeans −1.6 3.5 1.8 −7.8 1.4 0.3
Sorghum 6.7 3.0 2.6 18.1 5.3 1.7
Cotton 2.2 3.6 2.6 −3.5 3.2 1.5
Corn 6.4 5.3 4.8 10.4 6.6 3.8

(B)Current agricultural system

(i)Average change in production relative to current climate (106 tons)
Wheat −2.1 −0.2 −0.5 −4.9 −0.8 −1.2
Soybeans −1.1 2.3 1.2 −5.2 1.0 0.2
Sorghum 1.1 0.5 0.4 2.9 0.9 0.3
Cotton 0.1 0.1 0.1 −0.1 0.1 0.1
Corn 14.9 12.3 11.0 24.1 15.2 8.7

(ii) Impact gross cost (negative) or benefit (positive) in reference scenario;mitigation net benefit
(positive) or cost (negative) in policy scenarios (2010$M)

Wheat −388 360 297 −887 741 673
Soybeans −336 1050 698 −1608 1904 1664
Sorghum 106 −58 −65 288 −204 −261
Cotton 138 85 24 −222 424 313
Corn 1503 −258 −390 2434 −895 −1553
Total 1024 1179 563 5 1971 836

(C)Projected future agricultural system

(i)Average change in production (106 tons)
Wheat −5.5 −0.4 −1.1 −32.4 −4.6 −5.8
Soybeans −2.8 5.5 2.6 −34.3 6.3 1.2
Sorghum 2.8 1.2 0.9 19.5 5.7 1.8
Cotton 0.2 0.3 0.2 −0.3 0.3 0.1
Corn 38.0 29.4 24.7 159.1 100.6 57.6

(ii) Impact gross cost (negative) or benefit (positive) in reference scenario;mitigation net benefit
(positive) or cost (negative) in policy scenarios (2010$M)

Wheat −1232 1170 1011 −8395 7368 7475
Soybeans −1065 3251 2143 −15 230 18 442 17 125
Sorghum 336 −199 −231 2726 −1973 −2682
Cotton 439 229 12 −811 1539 1199
Corn 4769 −1093 −1730 23 048 −8666 −15 985

Total 3247 3358 1205 1338 16710 7132

15
Relative to today, composite agricultural output is projected to

increase by a factor of 2.5 by 2050 and 6.5 by 2100, with real
composite agricultural prices increasing by 25% and 44%,
respectively.
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enjoying gains, and declines in production concen-
trated in soybeans, cotton and wheat that are partially
offset by increases in output of corn and sorghum.
Reductions in radiative forcing from GHG mitigation
generally offset output declines from regions and crops
that experience losses, but at the cost of curtailing
gains to those that benefit from climate change.

As summarized in figure 3, our results suggest that
the overall effect of mitigation policies on agricultural
revenues will be positive, but the magnitude is sensi-
tive to the beneficial impacts of CO2 fertilization.
Without the CFE, the impact of unmitigated climate
change flips sign, incurring annual net costs of $3 B
($18 B) circa 2050 (2100). This amplifies the positive
effect of emission reductions, increasing the benefits
of moderate mitigation by $1.4 B ($10 B) circa 2050
(2100), and of stringent mitigation by $1.1 B ($13 B)
circa 2050 (2100). These estimates, which should be
considered upper bounds on the costs of climate
change impact and corresponding emission reduction
benefits, highlight the critical importance of assump-
tions regarding the CFE. They are also somewhat lar-
ger than, but in the same general range as, climate
change damages generated by prior studies (see table
S2), though simple comparisons of total dollar values
are not appropriate given the use of different impact
endpoints (land values, agricultural profits, non-mon-
etized yields, or affected crops) and climate change
projections, as well as the lack of accounting for the
CFE. As a case in point, the study most closely related
to ours—Beach et al (2015)—employs a crop model

forced by the CIRA IGSM-CAM simulations to con-
struct gross-of-CFE changes in corn, soybean and
wheat yields and which are then applied as exogenous
shocks in a partial equilibrium simulation of the US
agriculture and forestry sector. Yield impacts are
mostly positive in the reference scenario and become
more beneficial with stringent mitigation, over
2015–2100 increasing cumulative agricultural surplus
by (2005) $45 B—or an average annual mitigation
benefit of $0.5 B.

Our analysis represents an advance over current
approaches to quantifying the costs and benefits of cli-
mate change. We use projections of the future state of
the agricultural economy using CGE model results
whose simulated growth rates of agricultural output
and prices are consistent with the economic expan-
sion, general equilibrium price and quantity effects of
mitigation policies, and concomitant GHG emissions,
radiative forcing and meteorological changes that
determine the shocks to crop yields in the decades in
which these impacts occur. By contrast, empirical stu-
dies’ comparative statics valuation of impacts as chan-
ges in agricultural revenues or profits under current
production and prices can understate costs (see
table 2). Modeling studies that simply impose GGCM-
simulated yield changes onto economic models risk
being inconsistent with the future economic condi-
tions, GHG emissions and the climatic forcing of yield
shocks that we argue is essential to consistent estima-
tion of costs and benefits. But the critical feature of
such model-based economic consequence analyses is

Figure 3.Annual costs (negative entries) and benefits (positive entries) of climate change impacts andmitigation onUS agriculture
with andwithoutCO2 fertilization, circa 2050 and 2100. (A) Impacts by crop (total shown at bottom). (B)Costs and benefits of
4.5 W m−2 and 3.7 W m−2 stabilization policies by crop (total shown at bottom).
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the additional uncertainty they introduce by simulat-
ing the moderating effects of adaptation via market-
mediated price and quantity adjustments (see Beach
et al 2015). Although adaptation will almost surely
occur, its associated indirect economic costs and bene-
fits are poorly characterized and difficult to estimate,
yet require accurate quantification to avoid potential
double-counting when estimating the net benefit of
mitigation. Our deliberately conservative approach is
therefore to exclude the effects of future adaptation
from our cost-benefit calculations. Instead we value
the impact of climate change under the economic con-
ditions likely to prevail at the instant such a shock
occurs, before producers and consumers have an
opportunity to react (Fisher-Vanden et al 2013).

Nevertheless, several caveats to our analysis
remain. Our narrow focus on well-documented
impact pathways omits myriad indirect climate-rela-
ted changes in crops’ growing environment (e.g.,
ozone concentrations, diseases, pathogens and weeds)
on which the literature provides less guidance regard-
ing yield responses. Space constraints preclude a full
uncertainty analysis of the underlying economic
assumptions in the MIT EPPA model and the climate
system response, and particularly the CFE’s yield ben-
efits, which were difficult to bound (see SI). The
dependence of yield changes on the assumption of
perfect water application in currently irrigated areas
highlights the sensitivity of our cost-benefit projec-
tions to the availability of water resources sufficient for
irrigation as crop production expands out to century’s
end. The latter, while driven by shifting precipitation
patterns, requires hydrological analysis (e.g., future
water infrastructure and efficiency assumptions, chan-
ges in runoff and discharge, competition with growing
municipal and industrial demands, groundwater
resource development and depletion) to determine
how, andwhere, it might influence our results. Finally,
the CGE model that we use resolves future changes in
aggregate agricultural activity, not individual crops.
Research is ongoing to address these issues.

More broadly, our results illustrate the potential of
reduced-form empirical analysis as an alternative to
GGCMs in evaluating climate change impacts on agri-
culture (Nelson et al 2014, Rosenzweig et al 2014).
Although crop models incorporate both detailed pro-
cess-based understanding of crop physiology and the
ameliorating effects of a plethora of management
options, concerns regarding their accuracy in captur-
ing crop yields’ responses to meteorological change
(Hertel and Lobell 2014) have been slow to prompt
extensive testing, especially at the geographic scales
examined here16. Our methodology can usefully be
applied to model the relationships between GGCM
simulated yields and their climatic drivers, and

thereby facilitate head-to-head comparisons that can
lead to more robust estimates of impact response,
future yield shocks, and associated economic costs and
benefits.
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