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Abstract In this study, we present a new modeling framework and a large ensemble of cli-
mate projections to investigate the uncertainty in regional climate change over the United
States (US) associated with four dimensions of uncertainty. The sources of uncertainty
considered in this framework are the emissions projections, global climate system parame-
ters, natural variability and model structural uncertainty. The modeling framework revolves
around the Massachusetts Institute of Technology (MIT) Integrated Global System Model
(IGSM), an integrated assessment model with an Earth System Model of Intermediate
Complexity (EMIC) (with a two-dimensional zonal-mean atmosphere). Regional climate
change over the US is obtained through a two-pronged approach. First, we use the IGSM-
CAM framework, which links the IGSM to the National Center for Atmospheric Research
(NCAR) Community Atmosphere Model (CAM). Second, we use a pattern-scaling method
that extends the IGSM zonal mean based on climate change patterns from various cli-
mate models. Results show that the range of annual mean temperature changes are mainly
driven by policy choices and the range of climate sensitivity considered. Meanwhile, the
four sources of uncertainty contribute more equally to end-of-century precipitation changes,
with natural variability dominating until 2050. For the set of scenarios used in this study,
the choice of policy is the largest driver of uncertainty, defined as the range of warming and
changes in precipitation, in future projections of climate change over the US.

This article is part of a Special Issue on “A Multi-Model Framework to Achieve Consistent Evaluation
of Climate Change Impacts in the United States” edited by Jeremy Martinich, John Reilly, Stephanie
Waldhoff, Marcus Sarofim, and James McFarland.
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1 Introduction

It is well established that the uncertainty in climate system parameters and projected
emissions are important drivers of uncertainty in global climate change (Sokolov et al.
2009; Webster et al. 2012). In our modeling system, the climate response to given emis-
sions is essentially controlled by three climate parameters, i.e., the climate sensitivity,
the strength of aerosol forcing and the ocean heat uptake rate (Forest et al. 2001; Forest
et al. 2008). Future emissions are driven by future economic activity and technological
pathways influenced by climate policies, and population growth. Other sources of uncer-
tainty in future climate projections, in particular at the regional level, include natural
variability and structural uncertainty associated with differences in parameterization in
existing climate models. It is well known that year-to-year variability in the climate sys-
tem is large, in particular at high latitudes, making the emergence of significant climate
change slow and signal-to-noise detection difficult (Mahlstein et al. 2011; Hawkins and
Sutton 2012; Mahlstein et al. 2012). At the same time, climate projections are heavily
influenced by the characteristics of the chosen climate model and global climate mod-
els remain inconsistent in capturing regional precipitation changes and other atmospheric
processes. Quantifying the likelihood of future regional climate change, such as the poten-
tial range of future warming, might be insightful to policy makers and impact modeling
research groups who investigate climate change and its societal impacts at the regional
level, including agriculture productivity, water resources and energy demand (Reilly et al.
2013).

In this study, we introduce a new modeling framework to investigate the uncertainty in
regional climate change over the United States (US) associated with four sources of uncer-
tainty, namely: (i) uncertainty in the emissions projections; (ii) uncertainty in the response
of the global climate system to changes in greenhouse gases and aerosols concentrations;
(iii) natural variability; and (iv) model structural uncertainty. The modeling framework
is built around the Massachusetts Institute of Technology (MIT) Integrated Global Sys-
tem Model (IGSM) (Sokolov et al. 2005; Sokolov et al. 2009), an integrated assessment
model with an Earth System Model of Intermediate Complexity (EMIC) (with a two-
dimensional zonal-mean atmosphere). Regional climate change over the US is obtained
through a two-pronged approach. First, we use the IGSM-CAM framework, which links
the IGSM to the National Center for Atmospheric Research (NCAR) Community Atmo-
sphere Model (CAM) Monier et al. (2013a). Secondly, we use a pattern-scaling method
that extends the IGSM zonal mean based on climate change patterns from various cli-
mate models (Schlosser et al. 2013 ). This two-pronged approach has been used to
compute probabilistic projections of 21st century climate change over Northern Eurasia
(Monier et al. 2013b).

In this paper, we present a description of the framework for modeling uncertainty in
regional climate change. We then give a description of the matrix of simulations and
present results of regional climate change over the US. We place a particular empha-
sis on quantifying the range of uncertainty and identifying the contributions of different
sources of uncertainty considered in this study. The simulations presented here are part of
a multi-model project to achieve consistent evaluation of climate change impacts in the US
(Waldhoff et al. 2013).
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2 Methodology

2.1 Modeling framework

In this study, the core simulations use the MIT IGSM version 2.3 (Dutkiewicz et al. 2005;
Sokolov et al. 2005), an integrated assessment model that couples an Earth System Model
of Intermediate Complexity (EMIC), with a two-dimensional zonal-mean atmosphere, to
a human activity model. The IGSM includes a representation of terrestrial water, energy,
and ecosystem processes, global scale and urban chemistry including 33 chemical species,
carbon and nitrogen cycle, thermodynamical sea ice, and a three-dimensional dynamical
ocean component based on the MIT ocean general circulation model (Monier and Gao
2013; Marshall et al. 1997b). Finally, the human systems component of the IGSM is the
MIT Emissions Predictions and Policy Analysis (EPPA) model (Paltsev et al. 2005), which
provides projections of world economic development and emissions over 16 global regions
along with an analysis of proposed emissions control measures.

Since the IGSM atmospheric component is two-dimensional (zonally averaged), heat
and freshwater fluxes are anomaly coupled in order to simulate a realistic ocean state. In
order to more realistically capture surface wind forcing over the ocean, six-hourly National
Centers for Environmental Prediction (NCEP) reanalysis 1 (Kalnay et al. 1996) surface 10-
meter wind speed from 1948–2007 is used to formulate wind stress. The data are detrended
through the analysis of the changes in zonal mean over the ocean (by month) across the
full 60-year period; this has little impact except over the Southern Ocean, where the trend
is quite significant (Thompson and Solomon 2002). For any given model calendar year, a
random calendar year of wind stress data is applied to the ocean. This approach ensures
that both short-term and interannual variability are represented in the ocean’s surface forc-
ing. Different random sampling can be applied to simulate different natural variability,
augmenting the traditional approach of specifying perturbations in initial conditions.

Because the IGSM includes a human activity model, it is possible to analyze uncertainties
in emissions resulting from both uncertainty in model parameters and uncertainty in future
climate policy decisions. Another major feature is the flexibility to vary key climate param-
eters controlling the climate response: climate sensitivity, strength of the aerosol forcing and
ocean heat uptake rate. Because the IGSM has a two-dimensional zonal mean atmosphere,
it cannot be directly used to simulate regional climate change. To simulate climate change
over the US, we use a two-pronged method.

On the one hand, the MIT IGSM-CAM framework (Monier et al. 2013a) links the IGSM
to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model
(CAM) version 3.1 (Collins et al. 2006b), with new modules developed and implemented
in CAM to allow climate parameters to be changed to match those of the IGSM. In partic-
ular, the climate sensitivity of CAM is changed using a cloud radiative adjustment method
(Sokolov and Monier 2012). In the IGSM-CAM framework, CAM is driven by green-
house gas concentrations and aerosol loading computed by the IGSM model as well as
IGSM sea surface temperature (SST) anomalies from a control simulation corresponding
to pre-industrial forcing superposed on an observed monthly climatology from the merged
Hadley-OI SST, a surface boundary dataset designed for uncoupled simulations with CAM
(Hurrell et al. 2008). More details on the IGSM-CAM framework can be found in (Monier
et al. 2013a).
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On the other hand, a pattern scaling method (Schlosser et al. 2013 ) extends the latitudi-
nal projections of the IGSM 2D zonal-mean atmosphere by applying longitudinally resolved
patterns from observations and from climate-model projections archived from exercises car-
ried out for the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate
Change (IPCC) (Meehl et al. 2007). The pattern scaling method relies on transformation
coefficients that reflect the relative value of any given variable at a specific grid cell in rela-
tion to its zonal mean. These transformation coefficients are calculated for each month of
the year. The following scheme is applied to expand IGSM zonal mean variables across the
longitude:

V IGSM
x,y =

(

COBS
x,y +

dCAR4
x,y

dTGlobal
· !TGlobal

)

· V IGSM
y (1)

C
Obs/AR4
x,y = V

Obs/AR4
x,y

V
Obs/AR4
y

(2)

where x and y are the longitude and latitude of a grid cell, V IGSM
y and V IGSM

x,y are the
original zonal mean IGSM data and the transformed IGSM data, !TGlobal is the global
IGSM temperature changes from present-day. COBS

x,y are the transformation coefficients

for present-day and
dCAR4

x,y

dTGlobal
are the rates of change of the transformation coefficient from

IPCC AR4 models with respect to global temperature change. The pattern scaling method is
applied to surface air temperature, precipitation, surface wind speed, surface relative humid-
ity, total cloud cover, sea surface temperature and surface water vapor pressure. COBS

x,y are
calculated for present-day conditions (for the period 1980–2009) using the Modern Era
Retrospective-analysis for Research and Applications (MERRA, Rienecker et al. 2011) for
all variables except for precipitation, which relies on the Global Precipitation Climatology
Project (GPCP, Adler et al. 2003). GPCP is preferred over MERRA for precipitation because
of the presence of substantial biases and discontinuity in the MERRA precipitation over the

1980–2009 period (Kennedy et al. 2011; Rienecker et al. 2011). Finally,
dCAR4

x,y

dTGlobal
are calcu-

lated based on the difference in 10-year mean climatology of CAR4
x,y between present-day

conditions and the time of doubling of CO2 in the IPCC simulations with a 1 % per year
increase in CO2 (equivalent to year 70 of the simulation), divided by the global mean tem-
perature difference of the same time period. The estimates of the derivatives are not very
sensitive to the choice of the averaging period or of the scenario considered. More details
on the pattern scaling method can be found in (Schlosser et al. 2013 ). This method allows
us to separate the difference in regional patterns of change between models from the global
climate system response.

The IGSM-CAM simulations provide daily output at a resolution of 2 ◦x2.5 ◦ while the
IGSM-pattern scaling method provides monthly output at the same 2 ◦x2.5 ◦ horizontal
resolution.

2.2 Description of the simulations

To investigate the uncertainty in projections of future climate change, a core of 12 simula-
tions with the IGSM is conducted with four values of climate sensitivity and three emissions
scenarios. The three emissions scenarios are (i) a reference scenario with unconstrained
emissions after 2012 (REF), with a total radiative forcing of 10.0 W m−2 by 2100; (ii) a sta-
bilization scenario (POL4.5), with a total radiative forcing of 4.5 W m−2 by 2100; and (iii) a
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more stringent stabilization scenario (POL3.7), with a total radiative forcing of 3.7 W m−2

by 2100. More details on the emissions scenarios and economic implications, along with
how they relate to the Representative Concentration Pathway (RCP) scenarios are given
in Paltsev et al. (2013). To limit the number of simulations in this study we only con-
sider one version of the three-dimensional dynamical ocean, with one particular ocean heat
uptake rate (see Monier et al. 2013a). The four values of climate sensitivity (CS) consid-
ered are 2.0, 3.0, 4.5 and 6.0◦C, which represent respectively the lower bound (CS2.0), best
estimate (CS3.0) and upper bound (CS4.5) of climate sensitivity based on the Fourth Assess-
ment Report of the Intergovernmental Panel on Climate Change (Pachauri and Reisinger
2007), and a low probability/high risk climate sensitivity (CS6.0). Because the correlation
between net aerosol forcing and climate sensitivity are conditional on the ocean heat uptake
rate, we rely on the bivariate (climate sensitivity-net aerosol forcing) probability distribu-
tion for the particular value of ocean heat uptake rate used in this study to estimate the
net aerosol forcing that provides the best agreement to reproduce historical climate change
(Monier et al. 2013a). The values for the net aerosol forcing are −0.25 W/m2, −0.70 W/m2,
−0.85 W/m2 and -0.95 W/m2 respectively, for CS = 2.0◦C, CS = 3.0◦C, CS = 4.5◦C and
CS = 6.0◦C.

For each set of emissions scenario and climate sensitivity, a five-member ensemble of
IGSM-CAM simulations is run with different random wind sampling and initial conditions,
referred to as simply initial conditions in the remainder of the article, in order to account for
the uncertainty in natural variability (Monier et al. 2013a), and the IGSM-pattern scaling
is applied to four different patterns of regional climate change. Three IPCC AR4 climate
models are chosen along with the IPCC AR4 multi-model ensemble mean. First, the NCAR
Community Climate System Model version 3 (CCSM3.0) (Collins W et al. 2006a) is chosen
to compare with the IGSM-CAM results since both modeling systems have the same atmo-
spheric and land components and they show similar biases over land (Monier et al. 2013a).
However, because they have different ocean component, simulations with the IGSM-CAM
and the IGSM-pattern scaling with CCSM3.0 are not necessarily expected to be identical.
Nonetheless, this provides an opportunity to examine if the relative simple pattern-scaling
scheme is sufficiently effective to replicate what can be represented in a more sophisticated
three-dimensional climate model. The two additional models chosen are the models with
the largest and smallest projected increases in precipitation over the US, respectively, the
Bjerknes Centre for Climate Research Bergen Climate Model version 2.0 (BBCR BCM2.0,
Otterâ et al. 2009) and the Model for Interdisciplinary Research on Climate version 3.2
medium resolution (MIROC3.2 medres, Hasumi and Emori 2004). Finally, the multi-model
ensemble pattern of regional climate change is obtained from 17 IPCC AR4 climate models
(see Schlosser et al. 2013 )

Overall, the modeling framework and experimental design used in this study allow
us to investigate the uncertainty in regional climate change associated with four dimen-
sions of uncertainty: emissions projections, global climate system parameters, nat-
ural variability and structural uncertainty. A summary of the simulation matrix is
shown in Fig. 1.

3 Results

In the remainder of this article, we refer to present-day as the mean over the 1991–2010
period and to 2100 as the mean over the 2091–2110 period.
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Fig. 1 Summary of the experimental design of the modeling framework and the simulation matrix used in
this study

3.1 Time series of US mean temperature and precipitation

Figure 2 shows time series of US mean surface air temperature and precipitation anoma-
lies from present-day for all the simulations with the IGSM-CAM, their ensemble mean
and the IGSM-pattern scaling along with observations. The simulations in this study exhibit
a wide range of changes by the end of the century relative to present-day. The projected
warming ranges from less than 1.0◦C to about 10◦C while the changes in precipitation
range from a decrease of -0.1 mm/day to increases up to 0.7 mm/day. The largest changes
generally occur for the reference emissions scenario and for the highest climate sensitiv-
ity. The IGSM-CAM simulations display a strong interannual variability, especially for
precipitation, which is in very good agreement with the observations over the historical
period. As a result, comparing two particular simulations to identify the impact of, for
example, the implementation of a stabilization policy or different values of climate sen-
sitivity, is generally difficult. However, once the five-member ensemble is averaged, the
signal is more easily extracted from the noise. Meanwhile, simulations with the IGSM-
pattern scaling method show limited interannual variability, even less than the IGSM-CAM
ensemble means simulations. This is because the temporal variability in temperature and
precipitation in the IGSM-pattern scaling method is controlled entirely by the IGSM zonal
mean, which displays a much weaker variability than would any particular grid cell along
the same latitude. For this reason, the IGSM-pattern scaling method underestimates nat-
ural variability and its potential changes, as well as climate and weather extreme events.
Finally, the choice of the model for the pattern scaling method has limited impact on the US
mean surface air temperature changes. However, the pattern scaling method projects both
increases and decreases in the US mean precipitation. This reflects the large uncertainty in
projections of precipitation, in particular over the US, by the IPCC AR4 models (Randall
et al. 2007) and the strength of the IGSM-pattern scaling method in accounting for structural
uncertainty.
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a b

Fig. 2 Time series of US mean (a) surface air temperature and (b) precipitation anomalies from present-day
(1991–2010 mean) for all the simulations with the IGSM-CAM, their ensemble means and the IGSM-pattern
scaling along with observations. The black lines represent observations, the Goddard Institute for Space
Studies (GISS) surface temperature (GISTEMP, Hansen et al. 2010) and the 20th Century Reanalysis V2 pre-
cipitation (Compo et al. 2011). The blue, green, orange and red lines represent, respectively, the simulations
with a climate sensitivity of 2.0, 3.0, 4.5 and 6.0◦C. The solid, dashed and dotted lines represent, respec-
tively, the simulations with the reference scenario, stabilization scenario at 4.5 W/m2 and the stabilization
scenario at 3.7 W/m2

3.2 Regional patterns of change

Figure 3 shows maps of changes in surface air temperature in 2100 relative to present-day
for the IGSM-CAM and IGSM-pattern scaling simulations, for different initial conditions
and different models under the POL4.5 CS3.0 scenario, for different values of climate sen-
sitivity under the POL4.5 scenario, and for different emissions scenarios for CS3.0. The
same analysis but focusing on the REF scenario is shown in Online Resource 2. Overall,
Fig. 3 displays a wide range of warming amongst the simulations presented in this study. The
IGSM-CAM simulations with different initial conditions under the same CS3.0 POL4.5
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Fig. 3 Changes in surface air temperature (in ◦C) in 2100 (2091–2110 mean) relative to present-day (1991–
2010 mean) for (a) the IGSM-CAM simulations with different initial conditions under the POL4.5 CS3.0
scenario, b the IGSM-CAM ensemble means with different climate sensitivities under the POL4.5 scenario,
c the IGSM-CAM ensemble means with different emissions scenarios under the CS3.0 scenario and (d) the
IGSM-pattern scaling with different climate models under the POL4.5 CS3.0 scenario

scenario show similar patterns of temperature change. The largest warming takes place over
the Great Basin while the South Central States show the least amount of warming. Differ-
ences between the five initial conditions are less than 1.0◦C, largely due to the use of 20-year
averages in this analysis. The IGSM-CAM ensemble means for the POL4.5 emissions sce-
nario with different values of climate sensitivity show a wide range in the magnitude of
the warming. The largest warming is seen for the ensemble mean with the highest climate
sensitivity, where increases in temperature over the Great Basin reach up to 4.0◦C under
the POL4.5 scenario (and up to 12.0◦C under the REF scenario). On the other hand, the
warming is reduced to just 1◦C in the ensemble mean with the lowest value of climate sen-
sitivity under the POL4.5 scenario (and to 5◦C under the REF scenario). The differences
in warming due to the implementation of different emissions scenarios under the same cli-
mate sensitivity (CS3.0) can also be seen in Fig. 3. It shows that both stabilization policies
greatly reduce the warming, with increases in temperature less than 2.5◦C over the entire
US. Finally, the IGSM-pattern scaling shows that the location and magnitude of the largest
warming differs significantly between the different models.
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Fig. 4 Same as Fig. 3 for precipitation changes (in mm/day)

The same analysis as Fig. 3 for changes in precipitation is shown in Fig. 4, while the
analysis focusing on the REF scenario is shown in Online Resource 3. The IGSM-CAM
generally shows decreases in precipitation on the West coast and increases everywhere else.
The use of different initial conditions leads to distinctively different locations and magni-
tudes of maximum changes in precipitation, and to different extent of the regions of drying.
For example, the largest decrease in precipitation, reaching up to 0.5 mm/day, takes place in
the simulation with initial condition 4 but is mostly constrained to Oregon and Washington.
On the other hand, the simulation with initial condition 2 projects precipitation decreases
of smaller magnitude (less than 0.3 mm/day) but over a larger region, including parts of
New England. Furthermore, the range of precipitation changes between IGSM-CAM sim-
ulations with different initial conditions appears as large as the range between ensemble
simulations with different values of climate sensitivity. This underlines the fact that initial
conditions have a larger impact on regional precipitation changes than on temperature. The
impact of the climate sensitivity appears to be strongly localized. The greater the climate
sensitivity the larger is the increase in precipitation over the Great Plains. On the other hand,
the implementation of a stabilization policy leads to decreases in the magnitude of precip-
itation changes over the entire US. Finally, Fig. 4 shows the difference in the patterns of
precipitation changes for the IGSM-pattern scaling. CCSM3.0 simulates decreases in pre-
cipitation over California, Arizona, most of New Mexico and the western part of Nevada,
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MEAN RANGE OF TEMPERATURE CHANGE OVER THE U.S.
FOR EACH SOURCE OF UNCERTAINTY

MEAN RANGE OF PRECIPITATION CHANGE OVER THE U.S.
FOR EACH SOURCE OF UNCERTAINTY
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Fig. 5 Times series of the mean (area-averaged over the contiguous United States) range of changes in (a)
temperature (◦C) and (b) precipitation (mm/day) relative to present-day (1991–2010 mean) for each source
of uncertainty (policy, climate sensitivity, natural variability and model) for the IGSM-CAM ensemble and
the IGSM-pattern scaling ensemble. The range is calculated every 20 years (2020, 2040, 2060, 2080 and
2100) based on the 20-year mean centered on the year considered

and increases everywhere else. This pattern bears some resemblance with the pattern of
precipitation of the IGSM-CAM, except that the latter extends more along the north of
the Pacific coast. BCCR BCM2.0 displays increases in precipitation over most of the US.
MIROC3.2 MEDRES shows moistening over the Northern US and drying over the South-
ern US. Finally, the multi-model mean displays decreases in precipitation over the Western
Texas, most of New Mexico and parts of Colorado, Kansas and Arizona.

Figure 5 shows times series of the mean (area-averaged over the contiguous US) range
of temperature and precipitation changes from present-day for each source of uncertainty
in the IGSM-CAM ensemble and in the IGSM-pattern scaling ensemble. The method to
compute the range of temperature and precipitation changes for each source of uncertainty
and ensemble is provided in Online Resource 4. In this analysis, we do not consider the
6◦C climate sensitivity scenario, which has a low probability, in order to account for a more
probable range of climate sensitivity. This analysis reveals that the contribution from each
source of uncertainty changes in time and that they contribute differently to temperature
and precipitation changes. For changes in temperature, the two ensembles show very simi-
lar contributions of the choice of policy and the climate sensitivity, both increasing in time
and following the same trajectory and magnitude. The analysis shows that natural variabil-
ity is the largest source of uncertainty at the beginning of the century (before 2020) and that
after 2060, the choice of policy dominates. Meanwhile, the climate sensitivity is the second
largest source of uncertainty over most of the century. By 2100, the range of temperature
changes caused by differences in policy is more than twice as large as the range associated
with the climate sensitivity. Finally, the choice of model shows the least contribution to the
overall range of temperature changes over the US. For precipitation changes, the contribu-
tion of the different sources of uncertainty is very different than for temperature changes. In
particular, the two ensembles show substantial discrepancies in the estimates of the contri-
bution of the choice of policy and climate sensitivity (more details can be found in Online
Resource 4). These differences can be explained by the contamination of natural variabil-
ity in the IGSM-CAM ensemble since averaging over 5 initial conditions is not enough to
completely filter out natural variability. Additionally, the pattern scaling method cannot rep-
resent the potential impacts of climate sensitivity or policy on precipitation at the local level,
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a

b

Fig. 6 Maps of the range of changes in (a) temperature (◦C) and (b) precipitation (mm/day) in 2100
(2091–2110 mean) relative to present-day (1991–2010 mean) for each source of uncertainty (policy, cli-
mate sensitivity, natural variability and model) for the IGSM-CAM ensemble and the IGSM-pattern scaling
ensemble

such as changes in circulation patterns leading to different location and magnitude of pre-
cipitation. For this reason, the IGSM-CAM and the IGSM-pattern scaling ensembles likely
overestimates and underestimate, respectively, the contributions of the choice of policy and
climate sensitivity. Nonetheless, this analysis reveals the large role of natural variability in
precipitation changes, being the largest source of uncertainty until 2060. By the end of the
century, the four sources of uncertainty seem to contribute more equally. It demonstrates
the importance of considering multiple sources of uncertainty in future regional climate
projections of precipitation changes.

Finally, Fig. 6 shows the spatial distribution of the range of temperature and precipitation
changes in 2100 relative to present-day for each source of uncertainty considered in this
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study and for each ensemble. The contributions of the choice of policy and climate sensi-
tivity display patterns similar to the IGSM-CAM (in the IGSM-CAM ensemble) and to the
multi-model mean (in the IGSM-pattern scaling ensemble). This indicates that changing the
policy or the climate sensitivity essentially scales the temperature changes. Meanwhile the
contributions of natural variability and of the choice of model display little spatial hetero-
geneity and very small magnitudes (less than 1.0◦C over the entire US). For precipitation,
the range of changes for each source of uncertainty is more heterogeneous than for tem-
perature. At the same time, the contributions of the choice of policy and climate sensitivity
display patterns corresponding to the distribution of the largest changes in precipitation,
regardless of the sign of these changes, in the IGSM-CAM and in the multi-model mean,
just like for temperature. While the analysis of each ensemble does not show perfect agree-
ment, it reveals two hot spot regions that seem particularly affected by the choice of policy
and climate sensitivity: the Pacific Northwest and the Northeastern US. The large range
of precipitation changes in the Central US displayed in the IGSM-CAM ensemble (the
main difference from the IGSM-pattern scaling ensemble) is likely due to the contamina-
tion of natural variability previously discussed. The role of natural variability and the choice
of model display similar spatial distributions, with the largest contributions in the Pacific
Northwest and the Southern US. In addition, the models considered in this study tend to
disagree the most over the Southeastern US. This analysis demonstrates that the range of
precipitation changes associated with each source of uncertainty generally displays differ-
ent spatial distribution and different magnitude. Finally, a noticeable feature is the small
range over the southwest region covering southern California, Arizona, Utah and southern
Nevada in all sources of uncertainty, indicating that this region shows the least amount of
uncertainty in precipitation changes. This is likely because that region also displays the least
amount of absolute precipitation and thus displays little absolute changes in precipitation.

4 Summary and Conclusion

As part of a multi-model project to achieve consistent evaluation of climate change impacts
in the US (Waldhoff et al. 2013), we use a series of 12 core simulations with the MIT
IGSM with three different emissions scenarios and four values of climate sensitivity
(Paltsev et al. 2013). We obtain regional climate change over the US using a two-pronged
approach. On the one hand, we use the MIT IGSM-CAM framework, which links the
IGSM to the CAM model, and run each of the 12 core simulations with five different
initial conditions to account for uncertainty in natural variability. On the other hand, we
apply a pattern scaling method to extend the latitudinal projections of the IGSM 2D zonal-
mean atmosphere by applying longitudinally resolved patterns from 3 IPCC AR4 climate
models and the multi-model mean based on 17 IPCC AR4 models. The three models
chosen are the NCAR CCSM3.0, which shares the same atmospheric model as the IGSM-
CAM, BCCR BCM2.0, which projects the largest increases in precipitation over the US,
and MIROC3.2 medres, which predicts the least amount of precipitation increases over
the US. This new framework for modeling uncertainty in regional climate change covers
four dimensions of uncertainty: projected emissions, the global climate system response
to changes in greenhouse gases and aerosols concentrations, natural variability and model
structural uncertainty. Altogether, these simulations provide an efficient matrix of future
climate projections to study climate impacts under uncertainty.

The simulations display a large range of US mean temperature and precipitation changes,
and different regional patterns of change. In addition, the two different methods have very
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different treatments of natural variability. The IGSM-CAM physically simulates changes
in both mean climate and extreme events (Monier and Gao 2013), but relies on one par-
ticular model. The pattern scaling approach allows the spatial patterns of regional climate
change of different climate models to be considered, but significantly underestimates year-
to-year variability and cannot simulate extreme events or their potential changes under
climate change. Together, these two methods provide complementary skills and an effi-
cient framework to investigate uncertainty in future projections of regional climate change.
The limitations of each methodology should be carefully accounted for when using this
framework to drive impact models. In particular, researchers using climate simulations
to drive impact models should always use individual model simulations and not ensem-
ble mean simulations in order to account for natural variability. That is because natural
variability is a driver for extreme climate and weather events, which can dominate
impacts, and would not be accounted in ensemble mean simulations, as illustrated in
Mills et al. 2014.

Finally, an analysis of the contribution of the four different sources of uncertainty reveals
that the choice of policy and the value of the climate sensitivity have the largest impact on
surface air temperature changes (the choice of policy being the dominant contributor), while
the contributions from natural variability and structural uncertainty are small. On the other
hand, the contributions of the four sources of uncertainty are more equal for changes in pre-
cipitation over the US but show large spatial heterogeneity. The role of natural variability on
precipitation changes is substantial, in particular until 2050 when it dominates. This result
is consistent with previous studies highlighting the important role of natural variability on
regional climate projections (Deser et al. 2012; Monier et al. 2013a; Monier et al. 2013b).
Between 2050 and 2080, the four sources of uncertainty contribute equally to changes in
precipitation over the US. After that, the choice of policy dominates similarly to previous
studies (Hawkins and Sutton 2009; 2011). Since the pattern scaling method is based on a
single realization of a climate model, the differences between models likely include con-
tribution from natural variability associated with using different initial conditions. This is
supported by the work of Deser et al. (2014) and reinforces the important role that natural
variability plays in regional climate projections.

In light of these new results, it appears clear that the largest source of uncertainty in end-
of-the-century projections of climate change over the US is also the only source that society
has a control over: the emissions scenario. This should reflect the need to seriously consider
implementing a global climate policy aiming at stabilizing greenhouse gases concentrations
in the atmosphere.

While this study considers major sources of uncertainty in regional climate projec-
tions, it does not consider all possible sources. For example, Li et al. (2012) investigate
the uncertainty in high-resolution temperature scenarios for North America from dynam-
ical downscaling using different regional climate models and statistical downscaling. In
addition, the contribution of each source of uncertainty depends strongly on the particular
samples and choices made in this study. The implementation of only moderate policies or
the choice of only low values of climate sensitivity would certainly decrease the estimates
of their contribution to the overall changes. It should be reemphasized that we exclude
the 6◦C climate sensitivity scenario, because of its low probability, when estimating the
range of temperature and precipitation changes for each source of uncertainty considered
in this study. In addition, sampling the ocean heat uptake rate would likely change the
regional projections and the estimates of the impact of the uncertainty in the global climate
response on changes in temperature and precipitation over the US. Nonetheless, this analysis
demonstrates the relevance of modeling each source of uncertainty. It further demonstrates
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the need of new and more complete frameworks for modeling uncertainty in regional
climate change.
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