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[1] In the paper “Sensitivity of distributions of climate
system properties to the surface temperature data set” by
A. G. Libardoni and C. E. Forest (Geophys. Res. Lett.,
38, L22705, doi:10.1029/2011GL049431), two errors were
made. First, there was an offset of 1 month when compar-
ing model data to observational data. Second, the likelihood
function that was used to relate model goodness-of-fit statis-
tics to a probability distribution, while derived from basic
understanding of probability distributions, is not acceptable
as a likelihood function to statisticians.

[2] In this correction, we fix the mismatch that existed
between model and observational annual averages. When
calculating annual averages from model output, seasonal
means were averaged, resulting in a given year being the
average from December through November. When calculat-
ing annual averages from observational data, monthly means
were averaged, resulting in a given year being the aver-
age from January through December. To correct for this
1 month mismatch, all annual mean temperatures derived
from observations are calculated as December to November
means, subject to the threshold criterion described in
Libardoni and Forest [2011]. Because decadal mean temper-
atures are used for the surface temperature diagnostic, the
1 month shift in the averaging window has minimal impact
on the resulting observational time series. Across all five
decades and four zonal bands, the temperature differences
due to the 1 month shift are at most 0.05ıC. The revised
time series are not shown.

[3] We also present revised results that implement a like-
lihood function proposed in Lewis [2013] that is more
statistically sound as applied to the Bayesian methodology
used in Libardoni and Forest [2011]. It will be shown below
that the updated likelihood function alters the posterior dis-
tributions. The changes to the likelihood function involve
changing the shape of the distributions used in statistical
tests, changing the test statistic, and taking into account
the necessary volumetric correction when making a change
of variable. In total, the following changes were made to
account for the likelihood estimate from Lewis [2013]:
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[4] 1. We estimate the likelihood from goodness-of-fit
statistics using the probability density function (PDF) of
an F distribution, as opposed to 1 minus the cumulative
distribution function (CDF) of an F distribution for the
surface and upper-air diagnostics.

[5] 2. We use a t distribution for �r, rather than an
F distribution for �r2, for the ocean diagnostic.

[6] 3. We change the degrees of freedom in the statistical
distributions to �, the number of EOFs retained in esti-
mates of the noise-covariance matrices, and �, the number
of control run segments available to make these estimates,
respectively. This results in a change from 3 and 24 to 16
and 49 degrees of freedom, respectively for the surface diag-
nostic, from 3 and 14 to 14 and 39 degrees of freedom
respectively for the upper-air diagnostic, and from 3 and
24 degrees of freedom in an F distribution to an effective
degrees of freedom of 4.1 in a t distribution for the ocean
diagnostic.

[7] 4. We change the test statistic in the F distribu-
tion for the surface and upper-air diagnostics from �r2

3 to
�r2

�
, where � are 16 and 14 for the surface and upper-air

diagnostics, respectively.
[8] 5. We multiply the likelihood from the F distribu-

tion by (�r2)–( �2 –1) to account for the transformation from
the data space (�r2 values) to the model parameter space.

[9] When calculating a likelihood function, a probability
density function should be used to calculate the likelihood
value for a given value of the test statistic. In previous work,
the corresponding cumulative density function was used and
the likelihood was estimated as the probability of obtain-
ing values greater than the test statistic as typically done
for hypothesis testing. Incorporating the five changes pre-
sented above corrects the error from previous work and, as
described in Lewis [2013], results in a likelihood function
that ensures that a probability density function is now used.
The changes, however, do not implement a switch from �r2

to r2 in the test statistic as proposed in Lewis [2013]. Making
this change would represent a change in the noise model
that is not necessarily justified. Similar to assumptions used
in linear regression, shifting from r2 to �r2 implies that the
noise model for the residual variability is appropriate in the
vicinity of�r2 = 0, rather than assuming it is appropriate for
all values of r2.

[10] The differences between the likelihood functions dis-
cussed above, as implemented by each study for the surface
diagnostic, indicate a stronger rejection of higher �r2 val-
ues using the Lewis [2013] likelihood function (Figure 1).
Similar results hold true in the likelihood functions for the
upper-air and deep ocean temperature diagnostics.
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Likelihood Distributions
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Figure 1. Likelihood functions for the surface diagnostic
statistic using the (1 minus CDF) method from Libardoni
and Forest [2011] and the method from Lewis [2013]. The
test statistic used in Libardoni and Forest [2011] is �r2

3 ,
while Lewis [2013] uses �r2

�
, where � = 16.

[11] We present a revised Figure 3 from Libardoni and
Forest [2011] to show the impact of using the likelihood
from Lewis [2013] (Figure 2). Marginal distributions for
each parameter are presented using both the original method
and the corrected method. Updated parameter distributions
have not been included for the results from Forest et al.
[2008] because the previous results were provided only for
comparison purposes in Libardoni and Forest [2011] and
not re-derived using the new methods in Libardoni and
Forest [2011]. The corrected method leads to shifts in cli-
mate sensitivity posteriors due to the likelihood function
change, however, the general shifts in the resulting cumu-
lative distribution functions are small compared with the
ranges due to other factors such as the observational data
source [Libardoni and Forest, 2011], confirming the origi-
nal results (Figure 3). In general, the distribution modes are
more pronounced under the new likelihood function, a com-
pensating narrowing of the distribution is present, and the
lower bounds of the distributions show small increases.

[12] When testing the sensitivity of the distributions to
individual changes in the likelihood function, it was found
that changing from 1 minus the CDF of the F distribution
to the PDFs of t and F distributions for the diagnostics led
to a narrowing of the distributions. Increasing the degrees
of freedom in the t and F distributions led to a broadening
of the distributions and a shift towards lower climate sen-
sitivity and aerosol forcing values. The net impact of the
changes results in the observed narrowing of the marginal
distributions when using the Lewis [2013] method. After all
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Figure 2. (a–d) Corrected Figure 3 from Libardoni and Forest [2011] which includes marginal probability distribution
functions for each parameter and cumulative distribution functions for transient climate response using the different data
sets. When two distributions are given for a particular data set, solid lines use the likelihood function from Lewis [2013] and
dashed lines use the likelihood function from Libardoni and Forest [2011]. An update for HadCRUT2 old [Forest et al.,
2008] is not provided as discussed in the text.
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Climate Sensitivity Cumulative Distribution Function
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Figure 3. Corrected Figure 9 of the Auxiliary Material
from Libardoni and Forest [2011] which shows cumula-
tive distribution functions for climate sensitivity using the
different data sets. When two distributions are given for
a particular data set, solid lines use the likelihood func-
tion from Lewis [2013] and dashed lines use the likelihood
function from Libardoni and Forest [2011]. An update for
HadCRUT2 old [Forest et al., 2008] is not provided as
discussed in the text.

contributions from the individual changes are incorporated,
the previously mentioned net narrowing of the distributions
is observed (Figure 2).

[13] Acknowledgments. We acknowledge Nicholas Lewis for bring-
ing the temporal mismatch between observation and model annual averages
and the statistical errors to our attention.
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[1] Surface temperature, upper‐air temperature, and ocean
heat content data are used to constrain the distributions of
the parameters that define three climate system properties
in the MIT Integrated Global Systems Model: effective cli-
mate sensitivity, the rate of ocean heat uptake into the deep
ocean, and net anthropogenic aerosol forcing. Five different
surface temperature data records are used to show that the
resulting parameter distribution functions are sensitive to
the dataset used to estimate the likelihood of model output
given the observed climate records. Estimates of effective
climate sensitivity mode and mean differ by as much as
1 K between the datasets, with an overall range of 1.2 to
5.3 K. Ocean effective diffusivity distributions are poorly
constrained by any dataset. The overall range of net aerosol
forcing values, −0.19 to −0.83 Wm−2, is small compared to
other uncertainties in climate forcings. Transient climate
response (TCR) estimates derived from these distributions
range between 0.87 and 2.41 K and the shapes of individual
TCR distributions depend on the surface dataset. Understand-
ing the differences in parameter distributions and climate sys-
tem properties derived from them is critical for understanding
the full range of uncertainty involved in climate model cal-
ibration and prediction results. Citation: Libardoni, A. G.,
and C. E. Forest (2011), Sensitivity of distributions of climate sys-
tem properties to the surface temperature dataset, Geophys. Res.
Lett., 38, L22705, doi:10.1029/2011GL049431.

1. Introduction

[2] Developing climate models that produce reliable pro-
jections of future climate change is a critical research goal.
To this end, models must be properly calibrated to have
values of climate system properties that yield behavior
similar to the true climate system. Uncertainties in the
physical processes and feedbacks that define the climate
system properties and resulting behavior introduce addi-
tional challenges into the calibration problem [Randall et al.,
2007]. Due to the multiple uncertainties, joint probability
distributions are derived for the parameters used in the model
rather than estimating individual values.
[3] Multiple studies have derived probability distribution

functions for uncertain model parameters [Andronova and
Schlesinger, 2001; Forest et al., 2002, 2008; Knutti et al.,
2003; Tomassini et al., 2007; Sansó and Forest, 2009;

Urban and Keller, 2010]. While the specific approaches
differ, the same general methodology is used for deriving the
distribution functions. Using the efficiency of simple climate
models and Earth Systems Models of Intermediate Com-
plexity, hundreds of model runs are used to calibrate model
parameters and resulting properties by comparing model
output to observational data. Equilibrium climate sensitivity
has been extensively studied. A synthesis of current work
provided in the IPCC AR4 [Hegerl et al., 2007] estimates
climate sensitivity to be between 2.0 and 4.5 °C with a greater
than 66‐percent probability. However, several studies have
shown that climate sensitivities can lie outside of the IPCC
upper bound [Andronova and Schlesinger, 2001; Forest
et al., 2002, 2008; Knutti et al., 2003; Tomassini et al.,
2007; Tanaka et al., 2009; Urban and Keller, 2010] and a
summary of sensitivity estimates are given by Knutti and
Hegerl [2008]. Given that climate sensitivity is a measure
of future warming, these uncertainties have a profound
impact on policy decisions [McInerney and Keller, 2008].
[4] Transient climate response (TCR) offers an alternative

metric of future climate behavior and is a function of both
climate sensitivity and the rate of ocean heat uptake [Sokolov
et al., 2003; Andrews and Allen, 2008]. The IPCC AR4
estimates TCR to lie between 1 and 3 K [Hegerl et al., 2007].
These bounds encompass TCR distributions derived in other
studies and TCRs from individual AOGCMs [Stott and
Forest, 2007; Forest et al., 2008; Knutti and Tomassini,
2008]. Defined as the change in global‐mean surface tem-
perature at the time of CO2 doubling in response to increasing
CO2 concentrations at 1% per year, TCR allows for all climate
processes to be active and contribute fully to climate change.
[5] This study explores the impact that the surface tem-

perature dataset used to compare model output to observed
values has on the parameter constraints. To date, few studies
have investigated how the surface temperature dataset used
to compare model output with observational data impacts
the parameter and TCR distributions. In total, five surface
temperature data records representing three well‐known
climate centers are used in this study. Estimates of TCR are
also investigated from the parameter distributions derived
from each dataset. The resulting distributions show that
model calibration is sensitive to the specific surface tem-
perature dataset. Section 2 describes the datasets used and
Section 3 describes the methods by which constraints are
placed on parameter values. Section 4 presents the results
with a discussion and summary in Section 5.

2. Data

[6] We use surface temperature data from five climate
data records. The first two data records are HadCRUT2
[Jones and Moberg, 2003] and HadCRUT3 [Brohan et al.,

1Department of Meteorology, Pennsylvania State University,
University Park, Pennsylvania, USA.

2Department of Meteorology, Earth and Environmental Systems
Institute, Pennsylvania State University, University Park, Pennsylvania,
USA.

Copyright 2011 by the American Geophysical Union.
0094‐8276/11/2011GL049431

GEOPHYSICAL RESEARCH LETTERS, VOL. 38, L22705, doi:10.1029/2011GL049431, 2011

L22705 1 of 6

http://dx.doi.org/10.1029/2011GL049431


2006]. The third is the NCDC merged land‐ocean dataset
[Smith et al., 2008]. The remaining two records are
GISTEMP 250 and GISTEMP 1200 [Hansen et al., 2010]
from NASA, with the distinctions reflecting the 250 km
and 1200 km radii of influence used in the interpolation
algorithm. All data are reported as monthly surface tem-
perature anomalies with respect to a given base period on a
5° × 5° grid. The data records differ from one another and
potential reasons for these differences are now discussed
briefly.
[7] One difference between the records is the land surface

data used in the analyses. All records obtain a majority of
their land surface data from the Global Historical Clima-
tology Network (GHCN) [Peterson and Vose, 1997], but
each utilizes the available data differently. For example, the
Hadley Centre requires stations to have sufficient data
between 1961 and 1990, their climate normal period, to be
used in the analysis [Jones and Moberg, 2003; Brohan
et al., 2006]. Alternatively, NASA requires that stations
have a period of overlap of at least 20 years with stations
inside of a 1200 km radius to be used in the analysis
[Hansen et al., 2010]. A second difference between the data
records is that each uses a different sea surface temperature
(SST) dataset. Because oceans cover 70% of the Earth’s
surface, these choices lead to differences between the tem-
perature data records [Smith et al., 2008]. In a test of the
sensitivity to ocean data choice, Hansen et al. [2010]
showed that the global mean temperature calculated from
GISTEMP data is affected by the choice of SST data. A last
difference between the data records is the method used for
filling regions with missing data and how the 5° × 5° grid
box anomalies are calculated. Specific details of infilling

and grid box averaging methods for each data record can be
found in corresponding references. At this stage, we have
five surface temperature data records and choose to treat
them each as equally plausible. We present the results
derived from each of them and do not attempt to merge the
results into a single posterior distribution.

3. Methods

[8] Following the work of Forest et al. [2008], this study
estimates the joint probability distribution of climate model
parameters for effective climate sensitivity (Seff), effective
ocean diffusivity of heat anomalies (Kv), and net anthropo-
genic aerosol forcing (Faer). Using the climate model com-
ponent of the MIT Integrated Global Systems Model
[Sokolov and Stone, 1998; Sokolov et al., 2005], the model
simulates historical temperature responses given choices of
the three model parameters. In this study, the parameter
space is sampled by varying Seff between 0 and 8 K,
Kv between 0 and 25 cm2s−1, and Faer between −1.5 and
0.5 Wm−2. The value of Faer sets the amplitude of the net
anthropogenic aerosol forcing in the 1980s in a spatially
prescribed forcing pattern and is scaled by historical emis-
sions to represent all unmodeled forcings in simulations
[Forest et al., 2001]. Each model run is forced by historical
records of greenhouse gas concentrations, sulfate aerosol
loadings, tropospheric and stratospheric ozone concentra-
tions, solar irradiance changes, and stratospheric aerosols
from volcanic eruptions [Forest et al., 2008]. Model per-
formance under a given set of parameter values is evaluated
through comparison of model output to historical data using
surface temperature, upper‐air temperature, and ocean heat
content diagnostics as described by Forest et al. [2008].

4. Results

[9] Time series of temperature for each zonal band used in
the surface temperature diagnostic have been derived using
the averaging techniques described in the auxiliary material
and are shown in Figure 1, along with the time series used
by Forest et al. [2008] from Allen et al. [2000].1 Although
also derived from HadCRUT2 data, it is important to note
that the time series from Allen et al. [2000] is different than
the time series derived in this study and is not used to allow
for identical treatment of each dataset. In general, the patterns
in each zonal band are similar, with the sign of the temper-
ature change consistent across a majority of the decades for
each dataset. However, the magnitudes of the changes differ.
In particular, agreement is weakest among trends in the
Southern Hemisphere, particularly for the 30–90 °S region.
This is not surprising given that SST datasets differ between
the records and a greater fraction of the Earth’s surface is
ocean in the Southern Hemisphere. Differences are also
related to the factors discussed in Section 2.
[10] Another significant difference is the linear tempera-

ture trend observed from beginning to end in the period used
in the surface diagnostic, 1946–1995. In all zonal bands,
GISTEMP datasets show either similar or weaker warming
trends than the other datasets. This is most evident in the
30–90 °S zonal band, where in the first decade of GISTEMP

Figure 1. Decadal mean temperature time series derived
from HadCRUT2 (black), HadCRUT3 (blue), NCDC
(green), GISTEMP 250 (orange), and GISTEMP 1200 (red)
surface data. Data used by Forest et al. [2008] is also
shown (cyan). Temperatures are reported as anomalies with
respect the 1906‐1995 base period.

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GL049431.
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data are the warmest, yet in the last decade GISTEMP data
are the coldest relative to other records. Similar, yet weaker,
patterns hold in the remaining zonal bands. In general, the
NCDC time series yields the next weakest warming trends,
followed by the HadCRUT2 and HadCRUT3 datasets.
However, the extent of the differences is much less pro-
nounced than with the GISTEMP datasets and the rank
order of the trends is not consistent across all zonal bands.
[11] Using the derived time series, new surface tempera-

ture diagnostics are calculated for each model run and used
to estimate of a goodness‐of‐fit statistic (r2) which evaluates
how well model output matches the observed temperature
trends. For a fixed Faer and Kv, the model is varied over ten
values of Seff. For fixed values of Faer and Kv, the r

2 values
are smoothed by fitting a sixth‐order polynomial to the ten
data points obtained when varying the values of Seff. After
the values have been smoothed, r2 values are interpolated
onto a finer grid scale (see auxiliary material) using least‐
squares quadratic interpolation of the smoothed data.
[12] Using an F‐test, each r2 value is then converted to the

likelihood that a given model produces output which
matches the observations [Forest et al., 2002]. Further details
of this process are provided in the auxiliary material. The
resulting r2 values at a net aerosol forcing of −0.25 Wm−2

indicate that the regions of the parameter space which are

rejected by the surface diagnostic are dependent on which
surface dataset is used (Figure 2). At this particular Faer

level, model results are consistent with HadCRUT data over
a much larger region of the parameter space. In particular,
regions that are not inconsistent with the surface data at
the 10‐percent level are only present when HadCRUT data
are used. Significant differences between the surface diag-
nostics are also evident at the −0.50 and −0.75 Wm−2 Faer

levels and tend to show larger acceptance regions for the
HadCRUT2 and HadCRUT3 datasets and strong rejection
of high Seff values for the GISTEMP datasets (see auxiliary
material). Upper‐air and ocean diagnostics were not changed
from Forest et al. [2008].
[13] Upon interpolation between Faer levels and repeated

application of Bayes’ Theorem for each diagnostic, the joint
probability distribution for the parameter space is derived.
The expert prior on Seff used by Forest et al. [2008] has been
applied along with uniform priors on Kv and Faer. The
resulting marginal distributions for each parameter are pre-
sented in Figures 3a–3c for each surface dataset, along with
the distributions derived by Forest et al. [2008]. From these
distributions, it is clear that the dataset used for the surface
diagnostic impacts the parameter distributions. For Seff, the
distributions derived from the GISTEMP datasets yield the
lowest values with 5–95% confidence intervals of 1.3 to

Figure 2. Goodness‐of‐fit statistics for surface diagnostics using (a) HadCRUT2, (b) HadCRUT3, (c) NCDC, (d) GISTEMP
250, and (e) GISTEMP 1200 surface data at an aerosol forcing of −0.25 Wm−2. 90‐ (white) and 99‐percent (light blue)
confidence regions are shown. Areas outside of the 99‐percent confidence region (dark blue) are rejected at the 1‐percent
significance level for being inconsistent with the observed data. All likelihoods are based off of an F‐test.
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3.6 K (GISTEMP 250) and 1.2 to 3.4 K (GISTEMP 1200).
This can be traced to the failure of the surface diagnostic in
constraining the lower bound of the distribution and can be
attributed to the weaker warming trends previously dis-
cussed (i.e., model runs with higher Seff values yield warm-
ing which is too strong to be consistent with the GISTEMP
datasets). The fifth percentiles fall outside of the lower
bound of 2.0 K given in the IPCC AR4. The remaining
datasets yield similar, yet still noticeably different results. Of
these, HadCRUT datasets yield wider 5–95% confidence
intervals of 2.0 to 5.3 K (HadCRUT2) and 1.9 to 5.1 K
(HadCRUT3) than the NCDC distributions 1.8 to 4.7 K
bounds. Each upper bound is greater than the upper bound
of 4.5 K in the IPCC AR4.
[14] Based on the wide confidence intervals regardless of

which surface dataset is used, Kv is poorly constrained by
the observations. With the exclusion of the GISTEMP
datasets, the mode in the distribution is found for low values
of ocean heat uptake. This results from the high Seff and high
Kv regions being rejected for positive values of net aerosol
forcing. GISTEMP datasets demonstrate a long right tail for
high values of Kv and show no pronounced mode. A major
difference between the distributions derived in this study
and those from Forest et al. [2008] is that an estimate of
natural variability has been included in the ocean heat
content diagnostic. This is analogous to the treatment of the
surface diagnostic and accounts for observational errors and
natural sources of variability by combining the variability of

both sources into a single estimate of the total variability.
This estimation results in a decrease in the significance of
the ocean heat content signal and leads to weaker constraints
on Kv. As a result, broad distributions for Kv are derived
when the natural variability estimate is included.
[15] Weaker Faer values are estimated when using Had-

CRUT data, with 5–95% intervals of −0.19 to −0.70 Wm−2

(HadCRUT2) and −0.22 to −0.74 Wm−2 (HadCRUT3). The
remaining datasets yield approximately 0.1 Wm−2 stronger
aerosol forcing, with 5–95% confidence intervals of −0.37
to −0.78 Wm−2 (NCDC), −0.32 to −0.83 Wm−2 (GISTEMP
250), and −0.33 to −0.80 Wm−2 (GISTEMP 1200). The
slightly weaker Faer values from the HadCRUT datasets
can be attributed to the larger acceptance regions at the
−0.25 Wm−2 aerosol level seen in Figure 2. However, the
overall range of Faer based off of the 5–95% confidence
intervals, −0.19 to −0.83 Wm−2, is smaller than errors in
other model forcing terms.
[16] TCR distributions are derived from the parameter

distributions. From each joint distribution, a 1000 member
Latin Hypercube sample [McKay et al., 1979] is estimated,
whereby Seff ‐Kv pairs are drawn. Using a functional fit
calibrated by prior runs of the model, the resulting TCR has
been calculated for each pair [Sokolov et al., 2003] and
cumulative density functions are estimated (Figure 3d).
[17] We note that the lower bound on TCR values for the

GISTEMP results are less than the lower bound of 1 K from
the IPCC AR4. Ranges of 0.87 to 1.32 K (GISTEMP 250)

Figure 3. Marginal probability distribution functions and TCR cumulative distribution functions derived from HadCRUT2
(black), HadCRUT3 (blue), NCDC (green), GISTEMP 250 (orange), and GISTEMP 1200 (red) surface data. (a) Seff, (b) Kv,
and (c) Faer marginal distributions are compared to those presented by Forest et al. [2008] (cyan). Whisker plots indicate
boundaries for the 2.5–97.5 (dots), 5–95 (vertical bar ends), 25–75 (box ends), and 50 (vertical bar in box) percentiles.
Distribution means are represented by diamonds and modes are the peaks in the distribution. (d) TCR CDFs are derived
from 1000 member Latin Hypercube samples from the joint parameter distributions.
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and 0.91 to 1.35 K (GISTEMP 1200) mark the 5–95%
confidence intervals. These lower TCRs can be attributed
to the low values of Seff and long right tails in the Kv

distributions derived using the GISTEMP datasets. With a
lower Seff, the equilibrium temperature change will be less
for a given forcing. Furthermore, more efficient mixing of
heat into the deep ocean acts to reduce surface temperatures
as well. The HadCRUT2, HadCRUT3, and NCDC 5–95%
intervals are bounded by 1.24 to 2.31 K, 1.13 to 2.41 K, and
1.10 to 1.96 K, respectively. All distributions fall within the
range of TCR values given in the IPCC AR4. Given that the
Kv distributions are similar for these datasets, similar values
are drawn in the Latin Hypercube sample and it follows that
the Seff distributions should dominate the TCR distributions
(Figure 3d). Given that the Faer distributions are nearly
identical across all datasets, these results show that TCR
follows shifts in the distributions of Seff and Kv rather than
those for Faer.
[18] As a surrogate for future warming, TCR distributions

measure the model response global mean temperature
change for idealized forcing scenarios. Similar to climate
sensitivity estimates, TCR has a profound impact on policy
decisions regarding climate change adaptation and mitiga-
tion strategies. If the information from TCR distributions are
properly included in policy decisions, effective strategies
can be potentially improved.

5. Conclusions

[19] The results presented here show that climate model
parameter constraints are sensitive to the surface dataset
used to compare with model output. In general, the ranges of
the effective climate sensitivity parameter distributions are
comparable, but are shifted relative to each other depending
on which surface dataset is used. The biggest shift in
effective climate sensitivity distributions is observed when
the GISTEMP datasets are used. Using the 95‐percent
confidence intervals and considering all datasets, climate
sensitivity is found to be between 1.2 and 5.3 K. Regardless
of the surface data used, effective ocean diffusivity is poorly
constrained by the data. Anthropogenic aerosol forcing is
found to be between −0.19 and −0.83 Wm−2 when consid-
ering all datasets.
[20] TCR estimates are also sensitive to the choice of

surface data. When all surface datasets are considered,
transient warming is found to lie between 0.87 and 2.31 K.
However, this range masks the differences that exist
between the individual distributions. The TCR distribution
derived from GISTEMP data is narrower and yields only
minimal warming. In contrast, distributions derived from
Hadley Centre datasets are wider and yield stronger warm-
ing. Given that both the parameter and TCR distributions
differ when using different datasets, additional uncertainty is
present in model calibration and climate projection studies.
Future studies using these datasets must account for these
differences to avoid overconfidence in predictions through
mistreatment of the uncertainty.
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