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Climate policy decisions are necessarily sequential decisions over time under uncertainty, given the mag-
nitude of uncertainty in both economic and scientific processes, the decades-to-centuries time scale of the

phenomenon, and the ability to reduce uncertainty and revise decisions along the way. Thus, an appropriate
choice of analytical method is decision analysis. However, applying decision analysis in the context of ideal-
ized government decision makers over a century raises the question of how to deal with the fact that political
systems tend to exhibit path dependency, a force that makes large policy shifts difficult and rare, and limits
most decisions to small incremental changes. This paper explores the effect of considering path dependency
in an application of decision analysis to climate-change policy decisions, presenting two alternative methods
for modeling path dependency. I demonstrate that consideration of path dependence in the context of climate
policy justifies greater near-term emissions reductions. The more general result of path-dependency is to shift
the near-term strategy towards a more moderate hedging strategy, because drastic shifts later will be difficult.
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1. Introduction
Applications of decision analysis to public policy
decisions, especially policies that span long time hori-
zons, face an additional challenge as compared with
individual decision. The challenge is the tendency of
policies and government programs to be “sticky;” i.e.,
it is difficult to make more than small incremental
changes at any one decision point. This tendency of
policies to exhibit path dependency has long been
noted by political scientists in a variety of contexts.
In this paper, I present a methodology to account for
path dependency in political decisions in an example
application to climate-change policy and greenhouse
gas reductions.
Formulating a policy response to the threat of

global climate change is one of the most complex
public policy challenges of our time. One troubling
characteristic is the enormous uncertainty involved,
both in the magnitude of future climate change, and
therefore the value of avoiding it, and in the costs
of reducing emissions. The long time scales of the

climate system, decades to centuries, add another
dimension to the policy dilemma. Given the stock
nature of greenhouse gases, which build slowly over
time and have a long lifetime, should we delay mit-
igation activities until some of the uncertainties are
reduced?
Issues of uncertainty and whether to delay mitiga-

tion are central to the climate policy debate, partic-
ularly in the United States. The current U.S. policy
is one of strictly voluntary emissions targets; firms
who wish to reduce their greenhouse gas emissions
may do so. The literature on public goods prob-
lems predicts that in this type of situation, the level
of the good provided (emissions reductions) will be
far below the optimal level, perhaps zero (Weimer
and Vining 2005). The Bush administration argues
that legally mandated emissions reductions should
be delayed for at least the next decade (Bush 2002).
One of the reasons cited is the uncertainty in future
climate change; mandatory restrictions are too costly
given the incomplete state of scientific knowledge of
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the causes of, and solutions to, global climate change
(Bush 2001). Alternative regulatory proposals of vari-
ous levels of effort continue to be debated, including
the Liebermann-Warner (Liebermann 2007) and the
Bingaman-Specter (Bingaman 2007) proposals in the
U.S. Senate, and the National Commission on Energy
Policy recommendation (NCEP 2004). However, to
date, no consensus on any alternative has emerged.
The state of international climate policy is more

similar to that in the United States than it may first
appear. Although the Kyoto Protocol to the United
Nations Framework Convention on Climate Change
has entered into force with binding targets for many
developed nations, the United States and Australia,
as well as developing countries, are not bound by
targets. Further, it is not yet clear whether signifi-
cant reductions will result in the countries with Kyoto
commitments (Reilly and Paltsev 2005, The Economist
2006). Nor is it clear what further reductions, if
any, the international community is willing to under-
take post-2012 (Revkin 2005). Thus, the central ques-
tion for near-term climate policy, both in the United
States and abroad, is whether or not regulations of
greenhouse gas emissions can be delayed for another
decade or whether some level of mitigation effort is
required now.
When irreversibilities exist in the presence of uncer-

tainty, delay is not necessarily optimal. In the clas-
sic works of Arrow and Fisher (1974) and Henry
(1974), they demonstrated that there is an addi-
tional value, called the quasi-option value, to preserv-
ing some of a resource under uncertainty and irre-
versibility. However, in the climate-change problem,
there are irreversibilities in both directions: Changes
to the physical climate system are irreversible, but
so are changes in the capital stock to lower emis-
sions, as identified by previous studies (Kolstad 1996,
Ulph and Ulph 1997, Ha-Duong 1998, Webster 2002).
Numerous analyses have used dynamic optimization
models to examine the optimal levels of greenhouse
gas mitigation, both under conditions of certainty
and uncertainty (Hammitt et al. 1992, Manne and
Richels 1995, Nordhaus 1994a, Nordhaus and Popp
1996, Kolstad 1996, Ulph and Ulph 1997, Ha-Duong
1998, Valverde et al. 1999, Webster 2002). These stud-
ies have generally demonstrated an optimal near-term

climate policy of very little or no emissions reduc-
tions. This is because after resolution of uncertainty, if
it is revealed that climate change is very serious, then
more stringent policies can be pursued in later deci-
sion periods. Thus, quantitative climate policy studies
have appeared to lend support for delayed mitigation.
However, there is a critical element that is miss-

ing from both the policy debate and from the formal
models of climate policy: path dependency. Political
scientists have long noted the tendency of political
systems to exhibit path dependency, and have used
this feature to explain a number of political outcomes,
such as European party systems (Lipset and Rokkan
1967) and the comparative development of healthcare
systems (Hacker 1998). The idea of path dependency
is that once a particular course of action has been
chosen, it becomes increasingly difficult over time to
reverse that course (Pierson 2000, Sewell 1996, Levi
1997). Policies tend to exhibit lock-in, and although
a legislature might from time to time create a new
bureaucratic agency, it is exceedingly difficult to elim-
inate one. Path dependency not only affects the cre-
ation/elimination of programs, but may also account
for the difficulty in adjusting stringency of policies
such as tax rates (Kaplow and Shavell 2002) or sul-
fur emissions cap levels (Ellerman et al. 2000). Path
dependency has been recognized and modeled, either
as increasing returns to production or as transaction
costs, in a variety of economic policy applications
as well, including money supply adjustments (Dixit
1991), long-run growth equilibria of firms (Altman
2000), and optimal resource extraction (Gerlagh and
Keyzer 2004). Zhao and Kling (2003) modeled path
dependency as transaction costs to show that pol-
icy persistence may be a rational forward-looking
response.
A large-scale international policy issue such as cli-

mate change is especially vulnerable to path depen-
dencies. If significant global emissions reductions are
required in the long-run, this will be an extremely
difficult problem to coordinate across nations. One
analog that one might consider is the development
of the World Trade Organization (WTO). In 1947, the
General Agreement on Tariffs and Trade (GATT) was
signed with the goal of eliminating all barriers to
international trade. After 50 years, there has been
much progress in the development of the institutional
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capability, but complete free trade is still far from real-
ized. A global effort to reduce greenhouse gases on
the scale required to stabilize concentrations would
be at least as ambitious as the WTO. Further delay
in the development of the institutional capacity will
limit the ability to respond if climate change turns out
to be serious.
The problem of path dependency has been mod-

eled in some applications of dynamic programming
(e.g., Bertsima et al. 2001 using a jump-diffusion pro-
cess). However, in climate policy studies using these
techniques, and in most decision analysis applications
to policy, path dependency has been notably missing
from the models used. Climate policy optimization
models typically assume that some fraction of base-
line emissions can be reduced in each period, rang-
ing from none to nearly 100%. However, the range of
reductions considered in any period is independent
of any choices made in previous periods.
The question posed in this study is: Does account-

ing for the path dependency in political systems
change the first-period (today) optimal choice from a
sequential decision model of climate policy? If it does,
then this would argue for a more aggressive hedg-
ing strategy with greater emissions reductions for
near-term climate policy. This action would allow for
greater flexibility if significant reductions are required
later in the century. The primary contributions of
this study are conceptual and policy prescriptive.
I develop here a simple illustrative model of path
dependency to demonstrate its importance in near-
term policy considerations.
Section 2 describes the model that is used to project

climate outcomes and costs of policies, and to find
least-cost emissions paths over time under uncer-
tainty. I use this model as a context in which to
explore the implications of path dependency for cli-
mate policy. I will compare the results of decision
models with differing degrees of path dependency
in §3. The final section discusses the implications both
for climate policy and for research.

2. Experimental Design
There is a wide spectrum of models that can be
used to project the impacts of greenhouse gas emis-
sions and resulting climate change as well as the eco-
nomic costs of constraining those emissions. These

range from very simple approximations to very
large sophisticated models that require weeks on a
supercomputer to simulate. The advantage of the
more complex models is that they represent many
of the nonlinearities and complexities that make cli-
mate change a cause for concern. On the other hand,
the requirements of solving a dynamic optimiza-
tion under uncertainty require some simplification to
make the analysis feasible. The approach used here
is to obtain emissions and cost impacts from a rela-
tively detailed computable general equilibrium model
of the global economy, combined with the climate
impacts of the emissions obtained from a reduced-
form model calibrated to a climate model of inter-
mediate complexity. The resulting costs and climate
impacts are then embedded within a decision tree
framework, which is used to solve the intertemporal
decision problem under uncertainty.

2.1. The Decision Model
The decision model is a two-period model, with
uncertainty in several key parameters, and learning
between the first and second decisions. The objective
of the decision maker is to minimize the present value
of the stream of total costs (TC), which are the sum of
abatement costs (AC) from reducing emissions below
their baseline levels and damage costs (DC) from cli-
mate change,

TC=
2∑

t=1
�AC�t�+DC�t��� (1)

The climate damages are determined by �, which is
a function of temperature change �T �t� and a dam-
age valuation (DV) elasticity parameter , following
Nordhaus (1994a):

DC�t�= ���T �t��DV�� (2)

The function 	 gives the lost welfare in each period as
a function of the divergence between the carbon emis-
sions G�t� and the emissions with no policy G∗�t�.

AC�t�= 	�G�t��G∗�t��� (3)

The temperature change in Equation (2) is a function
of greenhouse gas emissions G and of three uncertain
climate parameters, CS, Kv, and Fa:

�T �t�= ��G�t��CS�Kv�Fa�� (4)
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The climate sensitivity CS is the equilibrium temper-
ature change resulting from a doubling of CO2 con-
centrations, and represents aggregate feedbacks in the
atmosphere; the deep ocean heat uptake Kv repre-
sents the mixing of heat between the surface layer and
deeper layers of the ocean; and the aerosol forcing
strength Fa represents the magnitude of the negative
radiative forcing of a unit loading of sulfate aerosol
in the atmosphere.
Carbon emissions G in Equations (3) and (4) are

determined by the function �, which is a function of
the emissions reduction rate that is chosen (the control
variables) in each period ERRi and by the uncertain
labor productivity growth (LPG) rate . Emissions in
period 1 depend on the policy choice in period 1, but
emissions in the second period depend on the policy
in both periods:

G1 = ��ERR1�LPG�

G2 = ��ERR1�ERR2�LPG��
(5)

Note that the no-policy emissions G∗ is simply:

G∗ = ��0�0�LPG�� (6)

We assume that the second-period decision is made
conditional upon information z, which the deci-
sion maker receives prior to the second decision.
Information z indicates the true value of the uncer-
tain parameters. Thus, the decision-maker’s problem
is to choose emission reduction rates in each period,
such that the expected present value of total costs is
minimized:

MIN
ERR1�ERR2

= E�TC � z� s.t. Equations (1)–(6), (7)

where E��� is the expectation with respect to uncertain
parameters LPG, CS, Kv, Fa, and DV.
We illustrate the model components in Figure 1.

The abatement cost function in Equation (3) and
the emissions function in Equations (5) and (6) are
implemented in the Emissions Projections and Pol-
icy Analysis (EPPA) model (Paltsev et al. 2005),
a recursive-dynamic computable general equilibrium
model, consisting (in the calculation applied here) of
12 geopolitical regions linked by international trade,
10 production sectors in each region, and 4 consump-
tion sectors. It has been used for numerous analyses

Figure 1 Schematic of Model Components
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of climate policy (e.g., Babiker et al. 2002, Jacoby et al.
1997, McFarland et al. 2004, Reilly et al. 2002). The
temperature-change function in Equation (4) is based
on the MIT climate model (Prinn et al. 1999, Sokolov
and Stone 1998), a two-dimensional (zonal averaged)
representation of the atmosphere, ocean, and terres-
trial biosphere. The climate model includes param-
eterizations of all the main physical atmospheric
processes, and is capable of reproducing many of
the nonlinear interactions simulated by atmospheric
general circulation models (GCMs). Because of the
computational cost of simulating the full climate
model for all possible policies and uncertainties in this
study, I use a reduced-form model fit to simulations
of the climate model using the method described in
Tatang et al. (1997) and described in detail in Web-
ster et al. (2003), and Webster and Sokolov (2000). The
damage function in Equation (2) is based on Nord-
haus (1994a) and is of the specific form:

��t�=DV��T �t��2 (8)

where ��t� is the fraction of world product lost due to
climate damages in year t, DV is the percentage loss
from a doubling of CO2 concentrations, and �T �t� is
the increase in global mean temperature from prein-
dustrial levels. Abatement and damage costs are dis-
counted sums over time, using a discount rate of 3%.

2.2. Decision Periods, Strategy Space, and
Distributions of Uncertain Parameters

To focus on the dynamics of optimal decision in the
presence of path dependency, I simplify the model to
two time periods: one from 2010–2030 and the sec-
ond from 2030–2100. The assumption of a two-period
model follows a long tradition of using simple two-
period models to develop intuition, including Arrow
and Fisher (1974), Manne and Richels (1995), Hammitt
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Table 1 Strategy Choices in Two-Period Model: Reduction Below
Unconstrained Emission Growth Rate

Decision Strategy Strategy choices available (reduction
period variable Years below unconstrained rate) (%)

1 Policy 2010 2010–2029 0, 2, 4, 6, 8, 10
2 Policy 2030 2030–2100 0, 1, 2, 3, 4, 5

et al. (1992), Yohe et al. (2004), and others. A model
with more than two time periods would not change
the fundamental intuition for the first-period optimal
strategy. To demonstrate this last point, in §3.4 I test
the sensitivity to the number of periods, using a three-
period version of the model presented here.
Another simplification is the focus on global out-

comes. In this paper, the goal is to explore the im-
plications of path dependency for overall level of
abatement, and avoid questions of relative burden
sharing among nations. I assume global trading of
emissions permits between all countries, and only
examine the total global losses. To add a sense of real-
ity, only half of the emissions reductions described
below are applied to developing (nonAnnex I) nations
between 2010 and 2040. After 2040, all policies apply
equally. Other assumptions about the relative partici-
pation of developing countries would not change the
qualitative results of this analysis.
Strategies in each period are defined as the reduc-

tion required in the rate of growth of carbon emis-
sions, relative to the unconstrained case. Thus, these
policies will vary with the (uncertain) rate of eco-
nomic growth. Thus, 0% means no emissions con-
straints at all, and 5% means a 5 percentage point
reduction in the CO2 growth rate over that five-year
period, relative to the reference rate of emissions
growth. For example, if a region’s emissions grow
at 5% under no policy, then the 5% policy would
result in emissions stabilization (0% growth allowed).

Table 2 Impacts of Period 1 Strategy Choice in 2030 (Median Growth Case)

Reduction Chg CO2 Carbon price Carbon price Consumption Chg
rate/5yrs (%) CO2 (GtC) (from BAU) (%) (2010) $/ton C (2030) $/ton C (billion $) Cons (%)

0 12�5 0 0�0 5�094�2
2 11�8 −5 5�0 19�3 5�091�8 −0�05
4 11�1 −11 12�0 45�1 5�087�9 −0�12
6 10�5 −16 20�0 79�7 5�082�1 −0�24
8 9�9 −20 27�0 125�1 5�073�3 −0�41

10 9�4 −25 36�0 181�6 5�060�8 −0�66

Smaller rates of reduction would result in slowed
growth of CO2 emissions, whereas larger rates would
actually reduce global emissions over time.
The set of available strategies for each decision

period are given below in Table 1. The emissions
from this strategy set define an envelope between
a no-policy case and stringent reductions over the
century that nearly stabilize carbon concentrations at
550 ppm. To put these policy choices in more famil-
iar terms, Table 2 lists the impacts of each possi-
ble first-period strategy by 2030 for the median pro-
ductivity growth case, and the initial carbon price in
2010. The numbers in Table 2 are the EPPA model
results under each of these policy constraints, and
indicate the values for the year 2030 as an example.
Values under these policies in other years during the
first period (2010–2030) would vary because the econ-
omy is growing, but the proportional effects will be
similar to those in 2030. The reason that the mag-
nitudes of period 1 reduction rates are larger than
those in period 2 is a function of the relative differ-
ence in the time horizon in each period (period 1 is
20 years, period 2 is 70 years) and of the range of
reductions needed to span emissions paths from no
policy to 550 ppm CO2 stabilization. In the presenta-
tion of results (§3), we describe the period 1 strategies
in terms of the 2010 carbon tax level, because this is
a more intuitive description for stakeholders in the
climate policy debate.
Based on previous work (Webster et al. 2003, 2002),

the model includes five uncertain parameters that
have the greatest impact on damage costs: LPG, CS,
Kv, Fa, and DV. The three uncertain climate param-
eters, CS, Kv, and Fa, are combined for each possi-
ble emissions path by performing a Monte Carlo sim-
ulation of 10,000 trials on the reduced-form climate
model. The total resulting uncertainty in temperature
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Table 3 Distributions for Uncertain Quantities

Branch 1 Branch 2 Branch 3
�P = 0�185� �P = 0�63� �P = 0�185�

Labor productivity growth rate 0�8 1�0 1�2
(relative to reference rates)

Temperature change 5th percentile Median 95th percentile
(degrees C)

Damage cost coefficient (%) 0�02 0�04 0�16

change is then summarized by a three-point Tukey-
Pearson approximation (Keefer and Bodily 1983)
using the 5th, 50th, and 95th percentiles. The joint
probability distributions of the climate parameters
were obtained from a climate detection study of
observations of 20th-century climate (Forest et al.
2002, Webster et al. 2003). The uncertainties in labor
productivity and damage valuation are also repre-
sented in the decision tree with three-point discrete
approximations, as described in Table 3. The distribu-
tion of labor productivity growth is based on Webster
et al. (2002). The distribution for the damage valua-
tion is taken from Roughgarden and Schneider (1999),
based on the assessment by Nordhaus (1994b).
The concern over the presence of path dependency

is most relevant in the case where uncertainty is
resolved. If uncertainty is known to be irresolvable,
the optimal path of emissions over the next century
is relatively smooth, and no large shifts in policy
are expected within any decade. However, if uncer-
tainty is expected to be reduced, one of the jus-
tifications for delaying mitigation policy, a sudden
increase or decrease in the stringency of policy may
be required. Thus, I focus on a polar case where
uncertainty is resolved completely in 2030, consistent
with the tradition of sequential climate policy deci-
sion models (Hammitt et al. 1992, Manne and Richels
1995, Nordhaus and Popp 1997, Ulph and Ulph 1997,
Ha-Duong 1998, Valverde et al. 1999, Webster 2002).
This two-period decision model is shown in Fig-

ure 2 as a fragment of a decision tree. In the first
decision period, the policy for 2010–2030 is chosen,
then climate uncertainties are resolved, and for every
possible resolution, the policy for 2030–2100 is then
chosen.

2.3. Modeling Path Dependency
A challenge in exploring this issue is how to repre-
sent path dependency in dynamic optimization mod-

Figure 2 Decision Tree Fragment for Standard Decision Model with No
Path Dependence
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No policy
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$36/ton (10%)

els of the type used here. Ideally, this feature would
be represented somehow in the underlying represen-
tations of the costs and benefits of each decision path,
as calculated by the economic and climate models.
Because path dependency is not embedded in the
models, however, the goal here is to add a relatively
simple adjustment to the decision model that has
the desired effect and that makes sensitivity analysis
straightforward.
There are several possible representations of path

dependency. One straightforward method is to model
an additional component of total cost that is an
increasing function of the distance between the cho-
sen policy and its previous level. A second alterna-
tive is to add constraints that prevent a policy choice
that is “too far” from the previous policy, essentially
limiting each decision point to a maximum incre-
mental shift of stringency in either direction. A third
approach is to model policy decisions in the future
not as a decision, but rather as an uncertainty that
the current decision maker cannot control. Finally,
one could model path dependency as a time lag
between a decision and the implementation. I discuss
the relative advantages of each approach briefly, and
then describe the methodology for two of the above
approaches that are modeled below.
The time lag approach is the least flexible in terms

of capturing the behavior that leads to small rather
than large changes at a point in time. Adding a time
delay does not by itself constrain the size of the
policy shift. A constraint on feasible options comes
closer. The disadvantages of the constraint approach
are (1) the arbitrariness in choosing which policies are
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not feasible given the previous period; and (2) the
discontinuous nature of allowing some shift with no
penalty, but making the penalty infinite beyond a
given magnitude. In this paper, we implement the
other two approaches: the cost function approach
and the probabilistic approach. Of the two, the cost
approach is simpler. The primary disadvantage is
the difficulty in assessing an appropriate magnitude
for the cost penalty. The probabilistic approach we
present is more complex, but it captures the fact that
the current decision makers are not the ones who will
make the future decisions.
To model path dependency as a cost function that

increases in the distance between the current and pre-
vious policies, we modify the calculation of total costs
(Equation (1)) to include the additional cost term:

TC=
2∑

t=1
�AC�t�+DC�t��+��ERR2−ERR1�

2� (9)

The parameter � represents the magnitude of the cost
penalty, where higher values will induce greater path
dependency.
In the second approach I assume that because the

relevant decision makers are choosing for the present
only and have no control over future decisions, those
future choices can be modeled as uncertainties rather
than decisions. Within this framework, path depen-
dency is modeled by assigning a probability to a
future decision that is proportional to its difference
from the earlier decision.
To begin, we can represent period 2 decisions with

a probability distribution by defining the probability
of choosing the optimal strategy as:

fo�ERR2 � z�=
{
1 if ERR2 = argmin�TC�
0 otherwise

� (10)

In words, this distribution defines the probability of a
period 2 strategy to be one if it is the optimal strategy
in the standard two-period model, and otherwise it is
zero. Using this distribution over period 2 strategies
produces an equivalent decision model to the original
two-period model described above.
Next, we introduce a probabilistic representation

of path dependency by letting the probability be
decreasing in the distance between the stringency of
the current policy and the stringency of the previous

Figure 3 Sample Path-Dependent Probability Distributions for
Period 2 Policies Given Period 1 Choice of ERR1 = 2%
($12/ton C in 2010)
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policy. Specifically, we define a probability distribu-
tion over the emissions reduction rate in period 2,
ERR2. We define the path dependent probability den-
sity function of the second-period policy as:

fp�ERR2�∝C − �ERR2−ERR1�
�� (11)

where C is an arbitrary constant and the distribution
is normalized to integrate to one. The parameter � is
the penalty for divergence from the previous period,
thus representing the severity of the path dependent
effect. I consider values of � from 1 to 10. Figure 3
graphically shows an example of the probability dis-
tributions over period 2 policies, assuming a period 1
choice of 4% or $12/ton carbon tax, for several possi-
ble values of �.
The overall probability distribution over future

policies is a weighted sum of these two influences:
the pull of the optimal1 policy and the inertia of pol-
itics and institutions. This is implemented as a linear
mixture of the two probability distributions defined
above:

Pr�ERR2�= �1−wp�fo�ERR2�+wpfp�ERR2�� (12)

1 In terms of minimizing the sum of abatement costs and climate
damage costs, but ignoring all other factors.
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Figure 4 Decision Tree Fragment for Standard Decision Model with Probabilistic Path Dependence
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Note. The second-period decision now becomes a chance node, and the probability is the weighted average of the being the purely optimal decision and
distance from the previous policy.

where wp is the relative weight on path dependency
in determining the period 2 strategy, and ranges from
0 to 1.
Path dependency is therefore represented by chang-

ing the second-period decision node to a chance node,
and the probability of every branch from that node
is defined as in Equation (12). This formulation gives
two parameters that can be varied to explore the full
range of path dependency in the system: wp, the rel-
ative influence of path dependency on the decision,
and �, the penalty for deviating from the previous
decision. Note that when wp is zero, the decision
model will produce identical results to the standard
two-period decision model without path dependency.
The intuition is that � represents how much more dif-
ficult it is to diverge from the current policy trajectory
the further the divergence, whereas wp represents the
relative balancing in future decision making between
purely climate-oriented cost effectiveness and the drag
of political inertia.
Figure 4 shows the path dependent version as a

fragment of the decision tree. Very simply, we convert
the period 2 decision node from Figure 2 to a chance
node. The probability of any branch emanating from
the period 2 policy chance node is determined by
Equations (10)–(12) above.

3. Results
3.1. Optimal Decision with No Path Dependency
Before showing the effect of incorporating path
dependency on the optimal sequential model, we
begin with the solution to the standard two-period
model, which we will refer to here as the no-path-
dependence version (see Figure 2). Figure 5 shows the
optimal global path of CO2 emissions for two vari-
ations on the model without path dependency: one
in which uncertainty is completely resolved between
the two decision periods and one in which the uncer-

Figure 5 Solution for Standard Model (No Path Dependence) and
Reference Probability Distributions
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Figure 6 Relative Influence of Uncertainties on Total Costs
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Notes. Each probability of the “high” case was varied from 0.0 to 1.0, and
remaining probability is split 80%/20% between the median and low cases,
respectively. Dark shading in bars indicates that the optimal decision is
No Policy ($0/ton CO2) and light shading indicates that optimal decision is
$5/ton CO2.

tainty is not resolved at all until after both decisions
have been made. The important feature to notice is
that the emissions between 2010 and 2030 (the first
decision period) do not diverge from the no-policy
emissions path. In other words, the optimal first-
period decision is to undertake no abatement. The
emissions paths from 2030 to 2100 demonstrate that
in the second decision period, it will almost always be
optimal to reduce emissions from the no-policy case;
how much of a reduction is optimal depends on what
one learns.
This result by itself is not convincing because of

disagreement over what the probability distribu-
tions of the uncertain parameters are. The distribu-
tion for climate-damage valuation is particularly con-
tentious (Nordhaus 1994b, Roughgarden and Schnei-
der 1999). The damage valuation uncertainty also has
the strongest impact on the optimal policy choice.
Figure 6 shows a tornado diagram for this decision
model, which ranks the relative impact of the three
uncertainties in this model: economic productivity
growth, physical climate uncertainties, and damage
valuation.
To further explore the conditions under which first-

period emissions reductions would be optimal, we
subject the three-point discrete approximations of
the probability distributions to sensitivity testing, by
varying the probability of the high value, while fixing
the probability ratio of median to low damage value.
Figure 7 shows the optimal period 1 strategy, in terms

Figure 7 Sensitivity Analysis for the Optimal First-Period Decision for
the Standard Model (No Path Dependence) as the Probability
of High Damage Valuation Varies from 0.0 to 1.0
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Note. Solid line shows optimal strategy if uncertainty is never resolved, and
dashed lines show optimal strategy is uncertainty is resolved in 2030.

of the carbon tax in 2010,2 as a function of the prob-
ability of the high climate-damage value. If the prob-
ability that climate damage has significant economic
impacts is below 0.2, it is optimal to have no emis-
sions reductions. For probabilities of high damage
between 0.2 and 0.7, the optimal carbon tax is $5/ton,
and the optimal tax is increasing in the probability of
high climate damage. However, these higher proba-
bilities (>0.4) that justify higher carbon taxes are sig-
nificantly higher than the assessments of most experts
(Nordhaus 1994b). Note that for different assumptions
about the value of climate damage, the ability to learn
in 2030 may result in a more or a less stringent pol-
icy than one with no learning. As demonstrated else-
where (Webster 2002), this is the result of opposing
irreversibility effects: the capital stock in the econ-
omy and change to the climate system. Depending
on the shape of the distribution over uncertain net
costs change, the regret over one irreversible effect
will dominate regret over the other, leading to hedg-
ing against the worse outcome.
One useful quantity for a decision problem under

uncertainty is the expected value of perfect informa-
tion (EVPI). For the standard model with resolution

2 The results for optimal period 1 strategies will be given in terms
of the equivalent carbon tax in 2010, as listed in Table 2, in order to
frame the results in terms of quantities that may be more familiar
to the reader. Carbon taxes listed here are in dollars per ton of
carbon; an alternative commonly used is per ton of CO2, which can
be converted to $/ton carbon by multiplying by 12/44.
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of uncertainty in 2030 and reference probability distri-
butions, the EVPI is 0.19%, or $79 billion discounted
to 2000 at 5%. However, the EVPI is a comparison
between the decision in which we choose the near-
term policy under uncertainty and one in which we
choose near-term policy under perfect knowledge.
Thus, although EVPI indicates that the value of reduc-
ing uncertainty is substantial, it does not give us any
guidance into whether further delay of mitigation is
good policy or not.
As discussed in the introduction, this result is con-

sistent with other studies in the literature. Several
characteristics of this problem cause the economically
efficient solution to delay the bulk of abatement activ-
ities for several decades, including the long lifetime of
CO2 and the inertia in the climate system, the techno-
logical improvements that occur over time, and dis-
counting over time. What we wish to explore here is
whether there is an additional effect from the very
structure of the decision model itself.

3.2. Optimal Decision with Path Dependency
Influenced by Period 1 Decision
(Cost Approach)

Next, I present results from the modified version with
path dependency, as described in §2.3. First I will
compare the behavior of the cost function approach
to path dependency with the results above. In the
following section, I will present the results from the
probabilistic approach to path dependency. In the cost
function approach, the strength of the path dependent
effect will increase with the cost penalty parameter �.
We are primarily interested in whether including the
effect of path dependency in the model alters the opti-
mal first-period strategy, and if so, how strong the
effect is.
Figure 8 reproduces the sensitivity of optimal first-

period strategy from Figure 7 (for the case with reso-
lution of uncertainty in 2030), and includes the results
for three different levels of cost penalty. If the opti-
mal decision in period 2 is further from the previous
decision, the costs are increased, thereby constraining
large shifts in stringency. In general, the presence of
path dependency results in the optimal period 1 pol-
icy becoming more stringent, justifying a higher car-
bon price in the near term. However, a greater cost
penalty does not necessarily increase the shift towards

Figure 8 Optimal First-Period Strategy as a Function of the Probability
of High Climate Damages
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higher carbon taxes; it depends on the probability of
high climate damages.
A more complete picture of the effect of path

dependency is shown in Figure 9. This graph displays
a two-way sensitivity of varying both the probabil-
ity of high damage and the cost penalty on pol-
icy shifts; the shading pattern indicates the optimal
period 1 policy choice. The block dot indicates the
standard version of the model, with no path depen-
dency and a probability of high damage of 0.185.
Under the assumptions of the standard model with-
out path dependency, a zero carbon price was justi-

Figure 9 Sensitivity of Optimal Period 1 Decision to the Probability of
High Damage and to the Cost Penalty of Divergent Policy
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fied in the near term. However, if even a very slight
influence of path dependence exists, the optimal pol-
icy shifts to a carbon price of $5/ton in 2010.

3.3. Optimal Decision with Path Dependency
Influenced by Period 1 Decision
(Probabilistic Approach)

As described in §2.3, an alternative approach to mod-
eling path dependency is to represent the period 2
decision as an uncertainty. This alternative approach
might be more appropriate for very long time hori-
zons, such as in this application to climate-change
policy. In this approach, two parameters together
define the strength of the path dependent effect:
• The penalty for divergence � defines how likely

a second-period strategy is, given its distance from
the first-period strategy
• The relative weight on path dependency wp

determines the probability of any second-period strat-
egy as the combination of the optimal probability
distribution (one if optimal in reference model, zero
otherwise) and the pure path dependent distribution
defined by �.
The results of the probabilistic path dependent

model are shown in Figures 10 and 11. Figure 10
shows the sensitivity of optimal period 1 policy to
the probability of high damages for three different
levels of path dependency. These results assume a
moderately stringent penalty for divergence � of 7.
Note that the range of assumptions with a higher
initial carbon tax is monotonically increasing in the
weight on path dependency, unlike the cost approach
in Figure 8. As the relative weight on path depen-
dency decreases, the future decision is more highly
constrained by the previous decision and is less likely
to override that effect even if a strategy is optimal.
The precise effect varies as a function of the proba-
bility of high damage, and within some ranges may
be unchanged, but this is mainly an effect of the dis-
cretization of policy choices required to simulate the
numerical models.
Figure 11 again displays the two-way sensitivity of

varying both the probability of high damage and the
relative weight on path dependency in period 2; the
shading pattern indicates the optimal period 1 policy
choice. Here again I assume a moderately stringent
penalty for divergence � of 7. As in Figure 12, the

Figure 10 Optimal First-Period Strategy as the Probability of High
Damage Is Varied, for Different Degrees of Path
Dependency
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block dot indicates the standard version of the model,
with no path dependency and a probability of high
damage of 0.185.
The effects of both parameters in the path-

dependent model are shown in the two-way sensi-
tivity analysis in Figure 12, assuming a probability
of high climate-damage value of 0.185. This graph
again shows that a small decrease in the weight on
path dependency is enough to increase the optimal
period 1 decision for almost any penalty for diver-

Figure 11 Sensitivity of Optimal Period 1 Decision on the Probability
of High Damage and on the Weight of Path Dependency
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Figure 12 Sensitivity of Optimal Period 1 Decision on the Weight on
Path Dependency
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gence, unless this is very weak (� ≤ 3 has a nearly
uniform distribution across all possible period 2 deci-
sions—see Figure 3).
One effect of the reduced flexibility of future deci-

sions from the path dependency is that the EVPI will
be reduced. The EVPI measures the added gain if the
uncertain parameters were known with certainty in
period 1. However, with the decreased flexibility, the
value of that knowledge is also decreased. We give
the EVPI for several different strengths of the path
dependent effect in Table 4.
Notice that although the qualitative behavior is the

same under either a cost-based approach or a prob-
abilistic approach to modeling path dependency, the
probabilistic approach results in a higher range of
carbon prices being optimal. The intuition for this
is that under a cost-based approach, extreme reduc-

Table 4 Expected Value of Perfect Information as a
Function of the Weight on Path Dependency
in the Probabilistic Version

Weight on path dep. EVPI (%)

0 0.19
0.2 0.16
0.4 0.14
0.6 0.12
0.8 0.11
1 0.09

tions in period 2 may be expensive but are still fea-
sible, whereas under the probabilistic approach, there
is some probability, even if it is small, that stringent
future reductions are not an available option. Higher
carbon prices in period 1 increase the options avail-
able in the future, and thus have greater value under
the probabilistic model of path dependency.

3.4. Sensitivity to Assumptions
To further test the significance of the path dependency
effect on near-term policy, we explore the sensitivity
of the results above to several variations. We present
here variations to the probabilistic implementation of
path dependency. One potential criticism to the prob-
abilistic approach is that it may result in a bimodal
distribution with a peak around the previous period’s
stringency and another peak around the optimal deci-
sion. To explore the sensitivity to the shape, we test
two alternative versions of the model in which the
probability distribution has been smoothed. The two
versions smooth either by nearest-neighbor averaging
or by nearest-two-neighbors averaging. An example
probability distribution for a future decision is given
in Table 5, along with the two smoothed versions.
Note that the general behavior of higher initial carbon
taxes still holds (Figure 13) and is in fact increased
relative to the original path-dependent version.
A second question that may arise about the results

from the previous section is how the results depend
on the fact that the optimal policy in the nonpath-
dependent version was to undertake no emissions
reductions ($0 carbon tax). To explore the effect of
this assumption in the base model, we artificially
lower the costs of emissions reductions everywhere
proportionally to 50% of the original model val-
ues. This change will make more emissions reduc-
tions attractive even in the absence of path depen-
dency, because the costs of climate damages have not

Table 5 Example Probability Distribution of Period 2 Policy and Two
Increasingly Smoothed Alternatives

Strategy ($/ton C) Original Smoothed Smoothed more

0 0�00 0�20 0�14
5 0�60 0�21 0�17

12 0�04 0�32 0�19
20 0�32 0�13 0�15
27 0�04 0�12 0�11
36 0�00 0�01 0�05
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Figure 13 Sensitivity of Optimal Period 1 Decision on the Relative
Weight on Path Dependency (Higher Weight=More Path
Dependence)
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damage valuation is 0.185.

changed. We compare the optimal first-period deci-
sion in the model without path dependency to one
with path dependency in Figure 14. Note that now,
in the absence of path dependency, higher carbon
taxes are optimal in the first period for almost any
assumption about damages. In this model, adding
path dependency has the opposite effect, resulting in
a lower carbon tax in the first period. The general

Figure 14 Effect of Path Dependency on Optimal First-Period
Strategy as the Probability of High Damage Is Varied,
Low Abatement Cost Version
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Table 6 Strategy Choices in Three-Period Model: Reduction Below
Unconstrained Emission Growth Rate

Decision Strategy Strategy choices available (reduction
period variable Years below unconstrained rate) (%)

1 Policy 2010 2010–2029 0, 2.0, 2.5, 3, 3.5, 4.0
2 Policy 2030 2030–2049 0, 2, 4, 6, 8, 10
3 Policy 2050 2050–2100 0, 1, 2, 3, 4, 5

effect of path dependency is to induce greater hedging
in the first period, with neither a very weak nor a very
stringent policy, even if it is economically optimal.
As a final sensitivity test, we explore the effect in

a three-period model. The periods now consist of one
from 2010 to 2030, another from 2030 to 2050, and
a third from 2050 to 2100. The strategy space is as
shown in Table 6, where the interpretation as before
is as percentage point reductions in the emissions
growth rate. In this version, I also assume that the
uncertainty regarding the climate-damage valuation
is revealed gradually. Between periods 1 and 2 (in
2030), a signal is received that makes low, medium, or
high climate damage more likely, and the other values
correspondingly less likely. Between periods 2 and 3
(in 2050), all remaining uncertainty is then resolved
and the period 3 strategy is chosen under perfect cer-
tainty. The probability of receiving any signal in 2030
is the same as the original probability. If the signal
is received for one damage level, the posterior prob-
abilities of the other two levels decrease 50% from
their prior, and the probability that the predicted level
is revealed is increased by that same amount. The
numerical values for the reference distribution are
given in Table 7.
The optimal first-period policy in the new three-

period decision model is shown in Figure 15(a) for
the full range of possible priors for climate damage.
Unlike the two-period model, the optimal policy in

Table 7 Prior And Posterior Probabilities for Damage Valuation
Uncertainty in Three-Period Model

Posterior probability that Probability that signal in 2030
damage is revealed to be: indicates that damage is

Low Med High Low Med High

0.5925 0.315 0.0925 0�185 0�63 0�185
0.0925 0.815 0.0925
0.0925 0.315 0.5925
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Figure 15 Sensitivity Analysis of Optimal Period 1 Policy In
Three-Period Model
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Notes. Graph (a) shows the sensitivity of the nonpath-dependent version to
the probability of high damage valuation, and graph (b) shows the sensitivity
of the path-dependent version to the penalty for divergence, with the weight
of path dependency �wp� fixed at 0.5 and the probability of high damage
at 0.2.

2010 is never higher than $9/ton, and is zero when
the prior probability of high damage is less than 0.5.
With the increased flexibility over later decades, near-
term policy is even less justified.
I now add path dependency, as before, to this

model to see whether consideration of this effect jus-
tifies a nonzero carbon price with lower probabilities
of high damage. The decision nodes in periods 2 and
3 are converted to chance nodes, and the probability
of each branch is calculated as in the previous model.
In this three-period model with path dependence, the
first period decision influences not only the policy

Figure 16 Sensitivity of First Period Decision to the Weight of Path
Dependency, for Different Probabilities of High Damage,
and Penalty � = 7
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chosen in 2030, but also indirectly influences the pol-
icy chosen in 2050. For lower probabilities of high
damage (e.g., 0.2), stronger path dependent effects are
required to influence the period 1 policy. Figure 15(b)
shows the optimal policy for different levels of the
divergence penalty �. For values below � = 5, no car-
bon price is justified.
Fixing the divergence penalty � at 7, the relation-

ship between optimal first-period policy and the rela-
tive weight on path dependency is given in Figure 16
for several prior probabilities of high climate damage.
If path dependent constraints have even a moderate
effect on future decisions, a carbon tax in the range of
$6–$8 is justified for the next decade.

4. Discussion
Regardless of the implementation of the Kyoto Pro-
tocol in Europe and other participating developed
nations, the current policy debate in both the United
States and internationally is focused on what, if any-
thing, should be done to restrict carbon dioxide and
other greenhouse gases in the next decade or two.
Some argue that mandatory regulations are not nec-
essary yet, until we learn more and reduce the uncer-
tainty about future climate effects. Formal analysis
using models of decision under uncertainty have
appeared to lend credence to this prescription.
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The analysis presented above has modified a stan-
dard sequential decision model to include path
dependency, a factor that has been ignored in for-
mal climate policy models but is well recognized as
an attribute of political systems. By representing path
dependency either as a cost of departing from previ-
ous policies or as an influence over the probability of
future policy shifts, I find that path dependence gen-
erally increases the optimal level of policy. In partic-
ular, where the standard model without path depen-
dence has an optimal carbon price of zero, very slight
path dependency using either method justifies a car-
bon price of at least on the order of $5/ton C. Given
the predominance of inertia and path dependency in
political systems, the results of models that ignore
path dependency are likely to be biased.
In developing decision-analytic models for pol-

icy applications, especially those occurring over long
time horizons, ignoring the path dependent tendency
in government decisions may well lead to near-term
decisions that do not hedge sufficiently. Given the
difficulty of enacting radical policy shifts, a near
term strategy that assumes that a drastic change can
be made later if needed is likely to be suboptimal.
I have presented two alternative methods for includ-
ing path dependency in decision-analytic models. The
cost function approach is simpler and may be pre-
ferred for many applications, although there is little
intuitive guidance for selecting the magnitude of the
cost penalty. The probabilistic approach is a reason-
able alternative, especially when the time horizons are
so long that the future decision makers are not the
same as the current generation, and the relative influ-
ence of optimality versus status quo on decisions may
be a conceptually easier quantity on which to elicit
expert judgments.
The general result of including path dependency

in a decision model is much like the quasi-option
value of Arrow and Fisher. The reason is that path
dependency acts like another type of irreversibility.
Just as the earth’s climate system and capital stocks in
the economy have irreversibilities, so too do national
and international political institutions. Considering
this additional irreversibility will cause a rational
forward-looking agent to increase the hedging strat-
egy against the possibility of required future policy

action. Note that this effect can work in either direc-
tion; if the optimal level of effort without path depen-
dence is very large, path dependence will indicate
that initial policy should be slightly more moderate.
The conclusion of this study for the climate policy

modeling community is that applications of sequen-
tial decision models over very long time horizons
should consider path dependencies in the political
systems modeled. Otherwise, if policies at each time
point can be reconsidered without regard to past deci-
sions, we may place an unrealistic expectation on
future generations and eliminate future options by not
laying the groundwork with minimal policies today.
Ignoring path dependencies risks giving qualitatively
biased advice to policymakers as to whether it is yet
time to begin mandatory emissions regulations.
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