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ABSTRACT

Studying the uncertainty in computationally expensive models has required

the development of specialized methods, including alternative sampling tech-

niques and response surface approaches. However, existing techniques for

response surface development break down when the model being studied

exhibits discontinuities or bifurcations. One uncertain variable that exhibits

this behavior is the thermohaline circulation (THC) as modeled in three

dimensional general circulation models. This is a critical uncertainty for

climate change policy studies. We investigate the development of a response

surface for studying uncertainty in THC using the Deterministic Equivalent

Modeling Method, a stochastic technique using expansions in orthogonal

polynomials. We show that this approach is unable to reasonably approximate

the model response. We demonstrate an alternative representation that accu-

rately simulates the model’s response, using a basis function with properties

similar to the model’s response over the uncertain parameter space. This indi-

cates useful directions for future methodological improvements.
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INTRODUCTION

Estimating probability distributions of uncertain model outputs has long been a

challenge for models requiring large amounts of computation time. A variety of

methods have been developed for this problem, including specialized sampling

methods [1] and constructing response surface approximation methods [2, 3].

One obstacle to using most response surface methods occurs when the model

response exhibits discontinuities or bifurcations.

An example of bifurcating behavior is the change in the circulation of the

North Atlantic Ocean in long-term climate change projections. The thermohaline

circulation (THC), or more formally, the zonally averaged meridional overturning

circulation (MOC), refers to the circulation pattern of the North Atlantic Ocean

in which warm surface water from the tropics travels northward, considerably

warming mid and high latitudes in the Northem Hemisphere around the globe.

This circulation is driven by deep water formation in the northern North Atlantic

near Greenland, which is caused by the water becoming colder until it reaches

a critical density that causes it to sink. As a possible consequence of climate

change, it is hypothesized that warmer temperatures and increased freshwater

runoff could prevent the water from reaching its critical threshold density, thus

shutting off this circulation.

The possibility of a collapse of the North Atlantic thermohaline circulation is

one of the more severe potential impacts of climate change, and therefore is

relevant to policy discussions [4]. A critical question, therefore, is: What is the

probability of a THC collapse in the future?

One approach is to use simplified ocean models, which can reasonably be run

for a large number of parametric assumptions [5]. However, for a more realistic

representation of the ocean dynamics, one would ideally use a high-resolution

three-dimensional ocean general circulation (GCM) model, coupled with a 3-D

atmospheric GCM. A single simulation of several centuries with such models

generally requires weeks to months on a supercomputer. Thus, even the small

number of simulations (typically ~50 or more) required by methods such as

Latin Hypercube Sampling [1] is prohibitive. Moreover, to inform policy, we

need to know how the probability of a THC collapse will change with different

policies, in addition to the reference case with no climate policy, requiring

multiple sets of Monte Carlo simulations.

To obtain the desired information from the more detailed models, some kind

of reduced-form response surface model is needed that replicates the full 3-D

dynamic behavior of the ocean, yet is simple enough to perform Monte Carlo

on to obtain probability estimates. However, commonly used methods do not

apply to a system with a bifurcation, and ocean circulation models are well-known

to exhibit exactly this kind of behavior.

In this article, we apply a commonly-used method for constructing optimal

response-surface approximations for estimating the THC circulation from a 3-D
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ocean GCM. We will illustrate the challenges faced by this type of method, and

demonstrate an alternative approach that is successful. The subsequent discussion

frame directions for future research on more generalized approaches that can

be applied to situations such as this one.

COUPLED CLIMATE MODEL DESCRIPTION

Our coupled model of intermediate complexity consists of a three-dimensional

ocean GCM [6] coupled to a zonally-averaged, statistical-dynamical atmospheric

model [7], and a thermodynamic sea-ice model [8]. Further detail on the general

coupled model can be found in [9, 10].

Our model’s open passage through our idealized “Canadian Archipelago”

plays an important role in the increased CO2 simulations. Previous studies have

speculated on the sensitivity of the ocean circulation and climate to freshwater

discharge into the Arctic basin and subsequent flow into the Northern Atlantic

[11-14]. Our model employs a flexible river-routing scheme for anomalous runoff

(as calculated in the atmospheric sub-component). In the southern hemisphere, for

simplicity (and lacking a river network in this idealized topography) this runoff

is distributed evenly over all ocean points. In the northern hemisphere, however,

all anomalous runoff is diverted to the Arctic Ocean at 72-76°N between 96° and

260° in longitude. This diversion of anomalous runoff was necessary in order to

achieve a complete collapse of the THC across a sizeable portion of our parameter

phase space. Given this and other model idealizations, our model cannot be

expected to give realistic information about when a collapse will occur. Rather,

our goal is to study qualitatively how the collapse depends on the parameters.

Such a study has previously only been carried out with two-dimensional models

of the ocean basins [5].

For our climate change scenarios, the level of CO2 is increased in the atmo-

spheric model at a constant compounded rate for 100 years and then held constant

at this resulting level. Thus, the rate of increase is proportional to the final change

of forcing in the atmosphere. For the climate sensitivity parameter, different

sensitivities are obtained by varying the strength of cloud feedback [7]. Varying

the feedback allows the 2D atmospheric model to mimic the results of AGCMs

with different sensitivities when coupled to a mixed layer ocean model, with a

fixed ocean heat transport. Values of climate sensitivity shown throughout the

article represent an equilibrium sensitivity of the atmospheric model coupled to a

mixed layer ocean model for a doubling of CO2 concentration. However, defined

in this way, the climate sensitivity does not precisely match the climate sensitivity

of the coupled climate model because of the interaction between the atmosphere

and the dynamic ocean.

We explore the uncertainty in the maximum overturning in the North Atlantic

that is a consequence of uncertainty in two critical characteristics of climate
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system: the climate sensitivity and the rate of increase of CO2 forcing. These

uncertainties have previously been identified as primary determinants in ocean

circulation changes [4, 5]. The assumed distribution for climate sensitivity,

defined as the equilibrium warming resulting from a doubling of CO2 concen-

trations, comes from [15], and is derived by updating expert priors with constraints

from 20th-century observations. The probability density function (PDF) of the

rate of CO2 increase, driven primarily by anthropogenic emissions, is taken

from [16], and is calculated from a Monte Carlo analysis of a macroeconomic

model with uncertainty in economic growth rates and rates of energy efficiency

improvement. Both PDFs are shown in Figure 1. The CO2 forcing rate of increase

is applied for the first 100 years of the simulation, and then CO2 concentrations

are held constant for the remaining 900 years of the of the simulation.

ALTERNATIVE METHODS FOR ESTIMATING

PROBABILITIES

Overview of Methods

This section reviews the alternative methods for obtaining the uncertainty in

an outcome from a deterministic computational model. Most simulation models

are sufficiently complex that direct analytical solutions are not an option. The

standard approach for uncertainty propagation is Monte Carlo simulation [17,

18], in which random samples are drawn from probability distributions of input

parameters, the model is simulated for each random draw, and the frequency

distribution of model outcomes provide the estimate of the probability distri-

bution. The challenge to applying Monte Carlo comes when a model cannot be

simulated thousands or tens of thousands of times.

As discussed above, one approach is to use variance reduction methods for

sampling from parameter distributions, so that fewer samples are needed for the

estimated probability distribution of the outcome to converge. One popular and

effective approach is stratified sampling, as in the Latin Hypercube Sampling

(LHS) method [1, 19]. If the goal of the analysis is to estimate the probability of

an extreme event, an alternative is to use Importance Sampling [20], which

focuses on the low-probability region of interest. As mentioned previously,

3D ocean circulation models are likely to be too expensive for LHS, especially

when separate Monte Carlo simulations must be performed for several different

policy options.

The other broad approach to estimating uncertainty from a computationally-

intensive model is to construct a reduced-form model of the full model that

produces a good approximation of the original model response with signifi-

cantly less computation time. Reduced-form models can be further divided into

two classes: theory-based or structural models and response surface approxima-

tions. Theory-based reduced-form models [21, 22] are simpler mathematical
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representations where the variables and equations still correspond to conceptual

quantities and processes. This approach is primarily useful when transparency is

critical for the reduced-form models behavior. The primary drawback is the extra

time and effort required to develop a parsimonious closed-form model and the

large number of runs of the original model to produce statistically acceptable

parameter estimations.

he other subclass of reduced form models is response surface approximations.

In these methods, a mathematical representation of the full model’s response

surface is developed, focusing only on the uncertain parameters for the particular

analysis and their relationship to the model outcome(s) of interest. There is a

variety of methods for response surface approximation, ranging from simple

linear models to more sophisticated techniques. The choices that distinguish

between these methods are:

1. The choice of the basis function, the fundamental elements in the equation(s)

to be fitted to the model responses,

2. The choice of which parameter values to evaluate the full model at and use

to fit, and

3. The choice of solution method, given a set of data points from the model and

a set of coefficients to solve for in the fitted equation(s).

For example, standard linear approaches to response surface fitting [3] use first-

or second-order polynomials of the uncertain parameters as a basis function,

standard experimental design methods of choosing points for model evaluation,

and minimize least-squared errors as the solution method to find the coefficients.

An alternative method for response surface approximation is the Deterministic

Equivalent Modeling Method (DEMM) [23, 24]—this method is also sometimes

referred to as the Probabilistic Collocation method (PCM). It is equivalent to

the Stochastic Response Surface Method (SRSM) developed by [2]. DEMM seeks

to characterize the probabilistic response of the uncertain model output as an

expansion in orthogonal polynomials. We describe DEMM in more detail below.

There are several factors that determine which of the above methods is appro-

priate for any given situation, both the general class of approach (variance

reduction vs. reduced-form model) and the particular choice (LHS vs. importance

sampling). One important factor is the number of uncertain parameters under

investigation. The number of simulations to obtain an accurate fit grows slowly

for some methods (e.g., LHS) but expands rapidly for others (e.g., DEMM).

Another critical factor is whether any prior information on the shape of the

response within the range of uncertainty exists. Some methods are “black-box,”

no prior knowledge is required, while others (e.g., importance sampling) require

some knowledge. DEMM is a good choice of method for estimating the uncer-

tainty in the THC because: 1) it is black-box, requiring no prior knowledge of the

shape; 2) the number of uncertain parameters is small (two); and 3) independent

6 / WEBSTER ET AL.



estimations of uncertainty are required for many different policy cases, which

makes LHS infeasible.

The Deterministic Equivalent Modeling Method

Although any numerical computer model is itself deterministic, by positing

uncertainty in a model parameter, the model’s outputs become uncertain and thus

can be thought of as a random variable. One useful representation for a random

variable is an expansion of some family of orthogonal polynomials BN (x) with

weighting coefficients ai:

y = a0B0 + a1B1 (x) + a2B2 (x) + ... + aNBN(x)

where x is also a random variable of known distribution. Any family of orthogonal

polynomials can be used, including Legendre, Laguerre, or Hermite. This expan-

sion is sometimes referred to as a polynomial chaos expansion [25].

DEMM differs from the traditional approaches in all three steps that define a

response-surface method. We first address the choice of the basis functions. Since

a model output y is some function of its uncertain input parameter x, we can

use information about the probability density of x to choose basis functions for

the expansion. We can derive the set of orthogonal polynomials weighted by

the density function of the parameter, according to the definition of orthogonal

polynomials:

P x H x H x dx Ci j i ij( ) ( ) ( ) �� �

x

(1)

where �ij
i j

i j
�

�

�

�
�
�

1

0

Hi (x) and Hj(x) are orthogonal polynomial functions of x of order I and j, P(x) is

some weighting function, and Ci is some constant (this constant is usually 1, and

thus omitted, when the polynomials are normalized) in other words, the integral of

the product of two orthogonal polynomials of different order is always 0. By using

the probability density function of an input as the weighting function P(x), a set of

orthogonal polynomials can be derived recursively. (The zeroth order polynomial

is always assumed to equal one.)

We next approach the method for estimating the weighting coefficients, ai.

There is a class of methods designed for solving this problem known as the

methods of weighted residuals (MWR) [26]. The residual at any realization xj of

the random variable x, for some approximation �(x) of the function y(x) is simply

the difference:

R a x y x y a xN j j j(~, ) ( ) � (~, )� 	
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where RN (~a, xj) is the residual for an N-term expansion with weighting coefficients
~a = {a1, a2, ..., aN}.

In general, MWR solves for N coefficients by solving the N relations:

R a x W x dx j NN j(~, ) ( ) , ... ,� �� 0 12

0

1 (2)

Alternative schemes for MWR differ by the choice of the form of the weighting

function, Wj(x) . Commonly used schemes include the least squares method, which

chooses Wj(x) to be




R

a
N

j

, or Galerkin’s method, which chooses Wj(x) to be the

derivatives of the approximation




y

a
N

j

. The difficulty with these schemes is that they

require the explicit analytical form of the model in order to solve for the weighting

coefficients. Because our goal is to approximate the uncertainty in a model output

for any model, however complex, a method that allows the model to be treated

as a “black-box” is preferable. This leads us to choose the collocation method,

which uses the dirac delta function as the weighing function:

W x x x j Nj j( ) ( ), , ,... , .� 	 �� 12

Since the integral of a function multiplied by a delta function is just the function

evaluated at that point, solving (2) is equivalent to solving:

R a x j NN j(~, ) , , ,... ,� �0 12 (3)

In other words, we simply solve for the set of aj such that the approximation is

exactly equal to the model at N points, and thus only require the model solution at

N points and not the explicit model equations.

The final step in determining the polynomial chaos expansion to approximate

the random variable is to choose the points xj at which we evaluate the “true”

model y(x), in order to solve for the ai using equation (3). For this step, we borrow

from the technique of Gaussian Quadrature, which uses the summation of

orthogonal polynomials multiplied by weighting coefficients to approximate the

solution of an integral. In Gaussian Quadrature, the optimal choice of abscissas

at which to evaluate the function being integrated are the N roots of the Nth

order orthogonal polynomial BN(x) [27]. Similarly in DEMM, to solve for the N

coefficients in the expansion.

a a B x a B xN N0 1 1 1 1� � � 	 	( ) ... ( ),

we use the residual evaluated at the N roots of BN(x), the orthogonal polynomial

one order higher than the highest order term.

For multiple uncertain parameters, N roots are generated for each parameter to

use as possible sample values. However, not all possible permutations of the N

values for each parameter will necessarily be needed, depending on the number of
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terms in the expansion. Rather than combine sample values randomly, as in Latin

Hypercube, we can use the probability density functions of the parameters to order

the N possible values by likelihood. Then sample sets are formed by choosing

permutations in decreasing order of joint probability, until the required number

of sets has been formed.

DEMM cannot find a sufficiently accurate approximation in every case. In

particular, discontinuities in the response surface result in poor approximations.

The approximation must be checked against model results at values of the

uncertain inputs other than those used to solve for the coefficients. An optimal

choice of points to check the approximation against the model is based on the

roots of the next higher orthogonal polynomial than the one used to find points

to solve at. The roots of the next higher order polynomial will always interleave

the lower order roots [27], and so these will test the approximation at a maximal

distance from the fit values while still spanning the highest probability regions.

Moreover, if the expansion of order N results in an inaccurate fit, we already

have the model results needed to solve the fit of order N + 1. Once the expansion

for the probabilistic model response is solved and found to be reasonably accurate,

the approximate probability density function of the response can be derived by

applying Monte Carlo simulation to this expansion.

DEMM and similar methods have been used successfully to explore the uncer-

tainty in a variety of scientific, engineering, and economic modeling applications

[23, 24, 28-32]. For many models, DEMM estimates multiple characteristics of the

response distribution more efficiently than either modified sampling or traditional

response surface approximation methods. DEMM’s approach of representing the

PDF of the uncertain response as an expansion of underlying PDFs, and of using

probabilistic information in choosing the sample points for fitting the expansion,

enable more efficient approximation of the overall response distribution relative

to other methods.

RESULTS

Behavior of Ocean Model as Climate Sensitivity

and CO2 Forcing Changes

The behavior of the maximum overturning for eight different parameter

samples is shown in Figure 2. Note that for the first 100 years while CO2 is

increasing, the circulation slows in all cases, and does not collapse completely.

But after several centuries the bifurcating behavior is apparent. For samples of

either high climate sensitivity or rapid rate of CO2 increase, ocean overturning

continues to slow and shows no sign of rebounding within 1000 years. For samples

with relatively low sensitivity and slow rate of CO2 increase, the circulation

recovers to close to present-day levels within a few centuries.

PROBABILITY OF THC COLLAPSE / 9
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Note that the transient behavior of the circulation in a simulation that does not

recover (i.e., collapses) is continuous and smooth in the time dimension. The

discontinuity is in the description of the circulation at one given point in time, for

example in year 800, across all possible states of the world. The state of the

circulation at some future time is the relevant outcome for policy studies.

Response Surface Fits with Different Methods

We first explore the application of DEMM to this problem. As described above,

DEMM’s use of orthogonal polynomials derived from the input PDFs is often

superior to other response surface methods for non-linear surfaces, and has

produced accurate estimates of probability distributions for a variety of appli-

cations including climate models.

Figure 3 shows the sample points in parameter space used to fit and test,

respectively, a 3rd order DEMM approximation. This requires 8 simulations of

the coupled model used to solve for the coefficients (circles) and additional 10

PROBABILITY OF THC COLLAPSE / 11

Figure 3. Initial parameter choices for fitting and testing DEMM approximation.

The eight circles are parameter values used to fit the approximation, and the

ten “x” symbols are used to compare the approximation to the actual model.

Boxed symbols indicate parameter choices where the MOC recovers, and

symbols not boxed indicate parameter choices where the MOC does not recover.



simulations used to test the goodness of fit (crosses). Note that the sample points

are designed to optimally span the joint density function of the input parameters.

Before exploring response surfaces of ocean circulation strength, we first show

the results for DEMM expansions of global mean surface air temperature (SAT)

change. Third-order DEMM expansions for the parameter sets shown in Figure 3

result in approximations with sums of squared errors of less than 2% of the mean

response value, accurately representing the response of the full climate model.

Monte Carlo simulation is performed, drawing 10,000 random samples from the

distributions for climate sensitivity and rate of CO2 increase. The resulting PDFs

of SAT change after 100 years and 1000 years are given in Figure 4.

Unfortunately, unlike surface air temperature change, the DEMM expansions

for maximum North Atlantic overturning have unacceptably large errors for all

years beyond year 200 (Figure 5). This is not surprising, as the surfaces span the

discontinuity between the region where the overturning recovers and the region

where it does not (see Figure 3).

12 / WEBSTER ET AL.

Figure 4. Estimated probability density functions for global mean

surface air temperature after 100 years (dashed line) and

1000 years (dotted line).



A second approach is to still use DEMM, but to fit it piecewise on either side

of the discontinuity. This requires first that we identify the threshold between

the region in parameter space where circulation recovers and the region where

it does not. A total of 62 simulations were performed and used to calculate the

critical threshold for circulation recovery. We find that the threshold is best

identified by s*r, the product of the sensitivity and the rate of CO2 increase

(Figure 6). When s*r < 1.72, the circulation will recover, and when s*r > 1.89, the

circulation collapses and does not recover within 1000 years.

Attempts to fit low-order DEMM approximations piecewise in each region of

parameter space also fails to produce a reasonable representation of the ocean

model’s behavior. Figure 7 compares the best of the piecewise surfaces to the

interpolated surface of the 62 GCM simulations. Monte Carlo simulations

performed on DEMM approximations result in significant probability density

for physically unrealistic values of maximum overturning below 0 and above

15 Sv. Further, piecewise fitting defeats the original purpose of selecting DEMM

as a black-box method.

PROBABILITY OF THC COLLAPSE / 13

Figure 5. Errors in a 3rd-order DEMM expansion for the maximum

overturning by century, measured as the average squared

error relative to the mean value.
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A Successful Approximation Method

To understand why any polynomial-based approximation will fail to yield a

reasonable fit to the model, consider the shape of the model’s response surface in

Figure 7a. Note that the overturning strength, when fully recovered, levels out at

around 10-12 Sv. Similarly, overturning strength, once fully collapsed, levels out

at close to 0 Sv. Thus, the projection into either sensitivity or CO2 rate parameter

space, the maximum overturning function has the shape of a logistical S-curve.

A low-order polynomial is unable to replicate this kind of S-curve shape,

where function remains constant or approaches an asymptote above and below

some critical values. As a demonstration, we apply DEMM to approximate the

arctangent function, which exhibits this behavior. Treating arctan() as a black-box

function, DEMM approximations are calculated, truncating terms at 3rd, 4th, 5th,

and 7th order, respectively (Figure 8). Any low-order polynomial will have errors

increasing exponentially in both directions beginning a short distance beyond the

last model point used in the fit. A Monte Carlo with even low probability in these

regions may yield large errors in the estimated PDF. Note that while a sufficiently

16 / WEBSTER ET AL.

Figure 8. Arctan(x) (solid line) and DEMM expansions (dashed lines)

of four different orders.



large number of expansion terms in orthogonal polynomials could be found that

would reasonably approximate this kind of function, it would require even more

model simulations than one would need to directly simulate with Latin Hypercube

Sampling, and thus would yield no advantage.

The question becomes: is there an appropriate choice of basis function that

WILL accurately replicate the model response across the parameter space? As

described above, all response surface methods consist of a choice of basis func-

tion, a method of solving for coefficients, and a method of choosing points to

evaluate the model for fitting. The problem here appears to be with the basis

function choice. Having characterized the general shape of the response surface

of the model, the ideal choice of basis function is one with the same logistical

S-shaped curve. There are a number of functional forms with that shape from

which to choose. One choice, from the example above, is the arctangent function.

We use the 62 simulations of the ocean model to fit the function

ovt s r� 	 	� � � �2 (arctan[ (( * ) )]) (4)

where � is a shift parameter, � is an amplitude parameter, � is the inflection point

parameter, s is the climate sensitivity, and r is the rate of CO2 increase in % per

year. Thus, we need to solve for three free parameters, �, �, and �, given a set of

triplets (s, r, ovt). We solve for the parameters with ordinary least squares. The

parameter values are given in Table 1.

Fitting this equation produces a response surface that very closely resembles

Figure 7a, and has extremely small errors of at most a few percent (Table 1). We

then perform Monte Carlo simulation on this approximation, drawing 10,000

random samples from the distributions of climate sensitivity and forcing rate.

The resulting PDF of overturning for year 1000 is shown in Figure 9. To estimate

the probability of a collapse, we note that all parameter choices that recover

have maximum circulations of 9 Sv or greater, while parameter choices that do

not recover have maximum circulations of 8 Sv or less (Figure 7b). By calculating

the probability of a maximum overturning of 8 Sv or less, we estimate that the
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Table 1. Parameters, Errors, and Estimated Probability of Circulation

Collapse for Three Arctangent-Based Approximations of

Maximum N.A. Circulation in Year 1000

# points

used to fit � � �
Avg. squared

error (Sv)

Avg. Abs.

error (Sv)

Prob. of

THC collapse

8

18

62

5.85

6.13

6.47

5.32

2.59

2.30

2.35

2.21

2.12

1.42

0.69

0.60

0.83

0.62

0.60

6.3%

11.6%

13.9%



probability of a thermohaline circulation that collapses and does not recover

within 1000 years is 13.9%.

This estimate is conditional on the assumed parameter distributions, but also

importantly on the structural assumptions in the model. The true probability could

be either higher or lower than this. More detailed studies are required with

other coupled ocean-atmosphere GCMs for a range of assumptions to give better

information on this likelihood.

While the fit with 62 simulations achieves an acceptable level of accuracy, the

goal is to develop a method with far fewer simulations if possible. We develop two

more fits of equation 4 using the points chosen for a 3rd-order DEMM expansion.

The first uses only the 8 parameter sets used by DEMM to fit, and the second uses

all 18 parameter sets from Figure 3 which consist of the points used by DEMM to

fit and the points used to check the fit. The 8 point fit has larger errors, but the 18

point fit is nearly as accurate as the 62 point fit. The estimate of the probability of

THC collapse from the 18 point fit is 11.6%, very close to the estimate from the 62

point fit. The results of a Monte Carlo on all three versions are shown in Figure 9.
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Figure 9. Probability distribution of the maximum North Atlantic

overturning after 1000 years, based on approximation

with arctangent basis function.



DISCUSSION

In this study, we have attempted to find a way of approximating the response of

a coupled ocean-atmosphere general circulation model to changes in two critical

uncertainties: climate sensitivity and the rate of CO2 increase. In particular,

our interest is in describing the relationship between these parameters and the

likelihood of a collapse of the thermohaline circulation in the North Atlantic.

Because this response is discontinuous with a bifurcation, it poses a particular

challenge to developing an accurate reduced-form that is amenable to multiple

rounds of Monte Carlo simulation.

The solution to the methodological problem, while admittedly ad-hoc, points

the way to new generalized techniques of response surface approximation. In the

end, the obstacle to using existing methods was not so much the bifurcation, but

the appropriate shape of the underlying basis functions. Although we leave the

development of formal generalized methods to future work, needed improvements

will be in the area of developing efficient methods for l) identifying the response

surface shape characteristics; 2) choosing the appropriate basis functions for that

shape, where the basis functions are chosen from a menu of options that include

non-polynomial functions; and 3) identifying optimal points to sample the true

model, given the choice of basis functions.

This study also suggests a useful general approach for policy-focused studies

of uncertainty in climate change. There is a hierarchy of complexity for climate

models, ranging from simple box and 1-D models, to earth models of intermediate

complexity (EMICs) which are often 2-D or 3-D with limited resolution, to

full 3-D GCMs. One way to use this spectrum of available tools in studying

the uncertainty in any climate change process is to study the process with an

EMIC, develop an appropriate basis function for a response surface, and then

conduct limited simulations with a full GCM to fit the response surface. This

would be a hybrid approach between a theory-based and a response surface

reduced-form model.
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