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Abstract

Water supply infrastructure planning faces many uncertainties. Uncertainty in short-term
in rainfall and runoff, groundwater storage, and long-term climate change impacts water
supply forecasts. Population and economic growth drive urban water demand growth at
rapid but uncertain rates. Overbuilding infrastructure can lead to expensive stranded assets
and unnecessary environmental impacts, while under building can cause reliability outages
with impacts on the economy, ecosystems, and human health. This dissertation assesses the
potential for Bayesian learning about uncertainty to enable flexible, adaptive approaches in
which infrastructure can be changed over time to reduce cost risk while achieving reliability
targets. It develops a novel planning framework that: 1) classifies uncertainties and ap-
plies appropriate, differentiated uncertainty analysis tools, 2) applies Bayesian inference to
physical models of hydrology and climate to develop dynamic uncertainty estimates, and 3)
uses stochastic dynamic programming and engineering options analysis to assess the value
of flexibility in mitigating cost and reliability risk. This framework is applied to three ap-
plications. Chapter 3 evaluates the potential for modular desalination design to manage
multiple, diverse uncertainties — streamflow, demand growth, and the cost of water short-
ages — in Melbourne, Australia. Chapter 4 addresses uncertainty in groundwater resources
in desalination planning in Riyadh, Saudi Arabia, and Chapter 5 addresses model uncer-
tainty in climate change projections in a dam design problem in Mombasa, Kenya. Across all
three applications, we find value in flexible infrastructure planning with a 9–28% reduction
in expected cost. However, the performance of flexible approaches compared to traditional
robust approaches varies considerably and is influenced by technology choice, economies of
scale, discounting, the presence of irreducible stochastic variability, and the value society
places on water reliability.
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Chapter 1

Introduction

1.1 Motivation and background

Australia faced its driest decade in recorded history from 1997 to 2009. Known as the "Mil-

lennium Drought," this period had severe impacts on Australia’s economy, environment, and

citizens. The agriculture sector was especially damaged, with low crop yields forcing small

farms out of production and mid-size farms into financial distress [4]. Salinity in the River

Murray reached record levels, impacting water supplies for human and livestock consump-

tion and damaging ecosystems [38]. The city of Melbourne was among the hardest hit. The

utility Melbourne Water and the Victorian government implemented a host of measures to

increase supply and reduce demand in the city, including increased water tariffs, wastewater

recycling, water use restrictions, and rainwater harvesting installations [97]. Despite these

measures, reservoir levels in 2007 reached below 30%, or less than one year’s worth of supply

[105]. This prompted Melbourne Water to contract the Wonthaggi desalination plant, a 150

million cubic meters (MCM) per year reverse osmosis (RO) plant with a capital cost of $5

billion [58]. However, the drought ended in 2009, and intense rains filled the reservoir system

before the Wonthaggi plant was completed in 2012 [97]. This left the $5 billion asset com-

pletely idle for the next five years, sparking substantial public controversy. The Wonthaggi

plant has been called "the most criticized desalination investment to have occurred in the

last decade certainly in Australia, if not the world" [126].

However, the situation facing water planners in 2007 was dire. It is impossible to know

how long a drought will last, and the El Niño–Southern Oscillation (ENSO) cycle commonly

causes prolonged dry periods in the region. Similar cases of large desalination investments
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laying idle for years after completion have occurred in London [13], California [64], and

Spain [22]. However, there are also plentiful examples of cities relying on desalination

investments to weather droughts — or wishing they had made those investments earlier. In

Perth, which was also severely impacted by the Millennium Drought, planners invested in a

smaller (45 MCM/y) RO plant that was completed in 2006 at the peak of the drought and

heralded as a success [126]. Perspectives are shifting in Melbourne, where a new dry period

led Melbourne Water to use the Wonthaggi plant for the first time last year [1]. A long-

mothballed desalination plant from the 1990s in Santa Barbara, California was retrofitted

during the recent drought in 2015 [64]. Finally, as ongoing drought in Cape Town, South

Africa fuels debate on whether 2018 will bring "Day Zero" when water supplies in the city

completely run out, water managers are scrambling to bring desalination capacity online

quickly [27]. Researchers at the University of Melbourne predict that the controversial

Wonthaggi plant could save Melbourne from a "Day Zero" of its own [155].

These examples highlight the challenge of planning water supply infrastructure for an

uncertain future. Water planners must ensure reliable, high-quality access to freshwater

for domestic, agricultural, and industrial end-users while meeting financial and institutional

constraints and preserving the sustainability of natural resources. Over-investment in in-

frastructure can lead to stranded assets worth hundreds of millions or billions of dollars

and unnecessary environmental impacts. Under-investment can lead to supply restrictions

or outages with consequences for the economy, environment, and human health. This chal-

lenge is exacerbated in many regions of the world by the confluence of growing populations

and economies with a changing climate.

Water planners rely on forecasts of supply and demand that are inherently uncertain.

Variability in the hydrological cycle at varying scales — daily, monthly, annual, decadal

— leads to uncertainty in surface water availability. Groundwater storage is also often

affected by hydrological variability, often with greater lag times than surface water. Further,

the substantial heterogeneity of groundwater aquifers in combination with the difficulty

in measuring groundwater flow leads to additional uncertainty in groundwater resources.

Over long time scales, climate change is expected to alter the hydrological cycle, rendering

inappropriate the use of stationary stochastic processes to characterize uncertainty — and

making water resources planning and management all the more difficult. [108]

Social and economic factors also present uncertainty. In addition to uncertainty in how
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the climate system will respond to greenhouse gas emissions, political and institutional

decision-making at regional, national, and international scales drives uncertainty in the

magnitude and timing of greenhouse gas emissions. However, in many regions of the world,

population growth, economic growth, and urbanization are expected to have a greater im-

pact on water scarcity than climate change [164]. Finally, uncertainty is compounded by

ambiguity [20], also known as evaluative complexity [43], or differing preference across stake-

holders about the relative importance of water reliability, ecological preservation, cost, and

sustainable resource use for future generations.

Water managers have a number of tools for managing uncertainty and variability in

water resource systems. Demand policies, incentives, and restrictions can reduce end-user

demand during times of low supply. Existing infrastructure, such as reservoir systems,

pipelines, desalination plants, and wastewater treatment for reuse can be managed and op-

erated to smooth variability in supply and hedge against future uncertainty. Coordination

with neighboring water suppliers can be used to import additional supplies when reserves

are low. New infrastructure can be added to address immediate drought conditions or meet

long-term needs. However, new water infrastructure faces additional challenges from uncer-

tainty. New infrastructure requires large capital investments often on the order of hundreds

of millions or billions of dollars. These investments have long lifetimes: desalination plants

and dams have lifetimes on the order of 30 years and 100 years respectively. Infrastruc-

ture projects are typically fixed, static investments that are difficult to change once built.

However, they interact with complex and evolving human and natural systems over their

lifetimes [35]. The confluence of these factors heightens the risk that water supply infras-

tructure investments will fail to meet performance goals in the face of uncertainty — and

necessitates the development of new approaches to reduce and manage risk.

1.2 Recent methods for water supply planning under uncer-

tainty

Historically, uncertainty in water infrastructure planning has been managed by adding a

safety factor to a single best forecast [149]. Dams were sized using historical streamflow data,

without accounting for the possibility that the future could bring more or different variability

than the past. Since the 1980s, risk-based metrics such as reliability and vulnerability have
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been promoted for managing water supply systems [67]. Scenario-based planning, in which

planners develop a few alternate visions of the future and choose a set of strategies that

address the potential for each scenario to occur, is now widely used in water infrastructure

planning. Climate change has also driven the use of adaptive management, in which planners

prepare to adapt as uncertainties unfold over time, over the past two decades [115].

In the past 15 years, more sophisticated approaches for water supply planning under

uncertainty have developed. Three critical insights in this literature include: 1) explicit

recognition of the limitations of forecasts and therefore the need to develop strategies that

are relatively insensitive to forecasts; 2) the need for bottom-up vulnerability analysis, in

which the conditions that lead to system failure are identified and evaluated, and 3) the

potential for flexible or adaptive approaches to manage uncertainty.

The first insight is addressed by robust decision making (RDM), developed by Lempert

et al. (2006) [93] with early applications in water planning [60, 92]. RDM uses a scenario-

based approach to identify robust strategies that meet performance criteria across many

possible futures. This approach is motivated by the concept of "deep" uncertainty in which

there is so much uncertainty that probabilities cannot or should not be assigned to the

various potential outcomes [166]. This is distinct from "recognized ignorance" or Knightian

uncertainty [88], in which not even all the possible outcomes can be identified [166]. Groves

and Lempert (2007) argue that climate change is a deep uncertainty and therefore that

traditional probabilistic decision-analytic methods are inappropriate [60]. Many-objective

robust decision making (MORDM) has extended RDM to include many performance criteria

relevant for water planners and uses multi-objective evolutionary algorithms to efficiently

identify Pareto optimal strategies in large scale systems [86].

Second, bottom-up vulnerability analysis has played an important role in water supply

planning under uncertainty. In the info-gap approach developed by Ben-Haim (2001), the

analysis develops increasingly large multidimensional uncertainty sets and identifies the so-

lutions that meet threshold performance criteria for each uncertainty set [14]. This allows

planners to identify uncertainty thresholds beyond which a certain planning strategy fails.

More recently, decision scaling, developed to address climate change uncertainty specifically,

links bottom-up vulnerability analysis with climate change projections [19]. Decision and

performance thresholds are identified first and then combined with ensembles of general cir-

culation model (GCM) projections, allowing planners to both make use of GCM projections
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and also understand their limitations.

Finally, a number of approaches have built on early calls for adaptive management as

a strategy to manage climate change uncertainty. Adaptive management can enable re-

liability at reduced cost by developing plans to ensure short-term water needs are met

without investing in permanent solutions before the long-term future is well understood.

Recent methods such as adaptation tipping points [62] and dynamic adaptive policy path-

ways (DAPP) [61, 89] enable policymakers to identify tipping points or thresholds beyond

which new polices will be needed. Identifying these thresholds in advance — and the policies

to be implemented if they are reached — enables a planned adaptation approach in which

adaptive policies are fully developed and can be nimbly executed when needed, reducing

short-term transition risks [102]. Defining "dynamic robustness" as flexibility enabling a

plan to change in response to changing conditions over time, Walker et al. (2013) raises

the limitations of RDM in developing dynamic robust solutions and highlights the value of

DAPP in achieving dynamic robustness [165].

A different approach to adaptive or flexible planning is used in engineering options anal-

ysis (EOA). EOA is an approach related to real options analysis, which applies financial

valuation of options to capital investment decisions [33]. EOA focuses on assessing engi-

neering options, or flexibility in engineering design and planning, using related methods.

Flexible options can be identified using screening models, stochastic optimization, or sim-

ple decision rules [11]. In contrast to real options analysis, EOA focuses on exploring and

weighing the various benefits and costs using uncertainty analysis rather than developing

precise estimates of the value of flexible options [34]. Therefore, while it uses probabilis-

tic approaches to assess uncertainty, the interpretation of the probabilistic results can be

adapted to address deep uncertainties. This method has been applied to infrastructure

domains ranging from satellite systems [35] to liquefied natural gas production [23]. In wa-

ter resources, early applications have applied EOA to infrastructure planning problems in

desalination [51], dams [80], and hydropower [153].

Research questions

This thesis addresses three main gaps in the above literature and develops a novel framework

for planning under uncertainty to address them. First, while the recent methods address-
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ing deep uncertainty, such as RDM, have played an important role in acknowledging the

limitations of probabilistic forecasts and developing planning approaches that are relatively

insensitive to these limitations, many of the common uncertainties that impact water sup-

ply infrastructure planning can be treated probabilistically. RDM typically addresses all

the uncertainties using scenario analysis. However, uncertainties can be addressed in the

same analysis using different methods. Previous work in dimensions of uncertainty — which

differentiate deep uncertainty from statistical uncertainty, for example — can serve as a

basis to classify uncertainties and map them to appropriate analysis tools.

Second, another limitation in existing approaches is a focus on static rather than dy-

namic approaches to characterizing climate and hydrological uncertainty in infrastructure

planning. The scenario approach in RDM, for example, assesses the performance of a plan-

ning alternative within a single scenario, assuming the conditions of that scenario extend

over the entire planning horizon; the uncertainty is addressed by comparing many different

scenarios. This approach does not allow for updated assessment of uncertainty within a

single scenario to drive adaptive strategies in which infrastructure plans or designs can be

changed. Other approaches described above, such as DAPP and EOA, do take a dynamic

approach to uncertainty that enables flexible or adaptive approaches. However, DAPP is

focused on policy rather than infrastructure planning; it does not provide a framework to

develop and assess the performance of flexible infrastructure planning and design, which

face additional challenges due to the large capital investments required and long lifetimes.

EOA does provide the necessary framework to evaluate flexible infrastructure planning and

performance. However, it does not currently integrate models of the natural environment

to characterize hydrological or climate uncertainty. The research gap, therefore, lays in de-

veloping a planning approach that integrates all three characteristics: a dynamic approach

to uncertainty, infrastructure planning and performance, and appropriate physical models.

Finally, existing approaches do not provide a framework for evaluating the value of

flexibility in managing hydrological uncertainty. While some recent approaches to water

supply infrastructure sequencing include flexibility as an objective in a multi-criteria decision

problem [12], these approaches do not provide a basis for assessing whether flexibility is a

worthwhile objective. Flexibility is a life-cycle system property of an engineering system

that can be useful in achieving performance goals, not a performance metric itself [35].

Flexibility has a cost: either physical infrastructure investments that must be made in order
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to enable flexible options in the future and/or institutional preparations to enable timely and

efficient transitions once a decision is made to exercise an option. Comparing these costs

to the potential benefits of flexibility is necessary in order to determine whether flexible

approaches are worth implementing.

This leads to the three overarching research questions addressed in this dissertation:

1. How do multiple, diverse uncertainties impact water supply infrastructure planning?

2. How can Bayesian updating of hydrological uncertainty be used to develop dynamic

uncertainty estimates for flexible planning?

3. How valuable is flexibility in managing diverse uncertainties?

This dissertation addresses these questions through the development of a new frame-

work for water supply infrastructure planning under uncertainty and its application to three

contrasting planning problems. The planning framework addresses question 1) by using

existing dimensions of uncertainty as well as a new dimension in order to classify uncertain-

ties and connect them to appropriate uncertainty analysis tools so that multiple, diverse

uncertainties can be addressed in a differentiated approach in a single analysis. Question

2) is addressed using Bayesian inference applied to climate and hydrological models to de-

velop dynamic assessments of uncertainty, which are embedded in a multi-stage stochastic

planning approach to develop policies for exercising flexible infrastructure options. Statis-

tical surrogate models are used as needed to enable computational tractability. Finally, the

planning framework draws on engineering options analysis to assess the value of flexibility

in mitigating hydrological uncertainty and address question 3).

The remainder of this dissertation is organized as follows. Chapter 2 introduces the

framework for flexible water supply infrastructure planning under multiple uncertainties.

Chapter 3 applies the framework to a retrospective desalination planning problem based on

the Millennium Drought in Melbourne, Australia. The focus of this application is in ad-

dressing question 1) by integrating three different uncertainties with different classifications

into a single analysis. Chapters 4 and 5, in contrast, focus on addressing question 2) by

developing approaches for applying Bayesian inference to hydrological and climate models in

order to characterize the transition probabilities in a stochastic dynamic program. Chapter

4 addresses parameter uncertainty in groundwater availability in a desalination planning

problem in Riyadh, Saudi Arabia, and Chapter 5 addresses model uncertainty in climate

21



Framework Development

Contribution 1:

Multiple, diverse 
uncertainties with 

differentiated 
analysis

Contribution 2:

Evaluating flexibility 
for uncertainty 
management 

Contribution 3:

Bayesian inference 
with physical model 

to assess future 
learning

Framework Applications

Melbourne, Australia

Reservoir inflows, 
demand growth,
cost of shortages

Riyadh, Saudi Arabia

Parameter uncertainty 
in groundwater 

availability 

Mombasa, Kenya

Model uncertainty in 
climate change

Flexible water supply infrastructure planning under diverse uncertainties

Water 
and 

climate

Infrastructure 
planning

Risk
analysis

Prior work:
de Weck, Roos, and Magee 2011; 
de Neufville and Scholtes 2011; 

Zhang and Babovic 2012;  
Jeuland and Whittington 2014;   

Baker et al. 2014;  

Prior work: Morgan and Henrion 1990; Puterman 1994; Huang and Loucks 1999; 
Ben Haim 2001; Walker et al. 2003; Lempert et al 2006; Kwakkel et al. 2010

Prior work: 
Tebaldi et al. 2005; 

Milly et al. 2008; Hawkins and 
Sutton 2009; Lempert and 
Groves 2010;  Brown et al. 
2012; Neuman et al 2012; 

Kasprsyk et al. 2013; 

Gap: Connecting 
dynamic assessment of 
climate uncertainty to 
infrastructure planning 

and performance

Gap:
Linking multi-stage 
stochastic planning 

with high-fidelity 
physical models 

Gap: Differentiated modeling and 
management approach for multiple 

uncertainties

a) 

b) 

Figure 1-1: a) Key literature areas with prior work and gaps addressed in this dissertation
and b) novel planning framework with key contributions (top) and applications to demon-
strate those contributions (bottom).
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change projections in a dam design problem in Mombasa, Kenya. All three applications

address question 3) by assessing the value of flexible planning and design in comparison to

static, robust approaches. Finally, Chapter 6 concludes with discussion of insights across

the individual applications and potential for future development of the planning framework.

Chapters 3, 4, and 5 are presented as stand-alone papers; while there is some overlap in

literature review and methods across the chapters, this approach allows them to be read

and used in isolation without reviewing the dissertation as a whole.

23



24



Chapter 2

Water supply infrastructure planning

under multiple, diverse uncertainties:

A differentiated approach

The previous chapter provided an introduction to the uncertainties that commonly impact

water supply infrastructure systems and the tools available to manage those uncertainties

in planning decisions. Research over the past 15 years has made important advances in

1) developing approaches that enable infrastructure planning strategies that are relatively

insensitive to long-term uncertainty and 2) emphasizing the necessity of bottom-up vul-

nerability assessments as a complement to top-down planning approaches. Both of these

advancements are important in addressing uncertainties that are poorly characterized or

otherwise difficult to predict. However, they have also led to a tendency to address all

uncertainties in a problem using the same approach. A variety of modeling tools and man-

agement strategies exist to address uncertainties; different approaches may be more effective

for one specific uncertainty than another.

Here we present a framework for modeling and managing multiple, diverse uncertainties

within a single analysis. The goal of this framework is to address three key limitations in

current approaches for water supply planning under uncertainty. First, we take a differenti-

ated approach to uncertainty analysis in which different types of uncertainty are addressed

with unique, appropriate methods. There are many existing dimensions of uncertainty and

uncertainty analysis methods. However, less attention has been paid to matching specific
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Figure 2-1: Framework for classifying, modeling, and managing multiple diverse uncertain-
ties in water supply infrastructure planning.

types of uncertainty to analysis or management tools. The methods that have developed to

address deep uncertainty in water resource system planning, for example, tend to treat all

uncertainties in the analysis as deep rather than separating out the deep uncertainties from

the statistical ones. Second, when necessary we take a dynamic approach to uncertainty in

which probabilistic estimates are updated in a Bayesian manner over time. Our planning

model uses hypothetical future observations to update forecasts, allowing us to account for

the potential to learn in the future in planning decisions today. Finally, we assess the value

of flexibility in water supply infrastructure planning and design; current approaches either

do not consider flexibility or include it as a planning objective without knowing whether it

will be worthwhile in achieving performance goals.

Our framework for water supply infrastructure planning under multiple uncertainties

comprises three main steps, illustrated in Figure 2-1. First, uncertainties are classified

according to two dimensions: the level of uncertainty and learning potential. Analysis

methods are then chosen based on this classification. Second, a modeling approach is applied

in which infrastructure plans or designs are developed and integrated into a water resource

system model that comprises a hydrological model of the region of interest and the impact of

infrastructure on that system. This model is embedded in a multi-stage stochastic planning

model, such as a stochastic dynamic programming (SDP). Finally, the result of this is

to develop risk profiles for the different infrastructure alternatives that highlight areas of

vulnerability and strength against key performance metrics. These three steps are discussed
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in more detail below.

2.1 Uncertainty classification and analysis method

The first step in the framework is to 1) classify uncertainties into three categories, and 2)

apply a differentiated uncertainty analysis method appropriate for that category.

Uncertainty classification

Existing uncertainty dimensions. A diverse range of uncertainties impact water supply

planning decisions. These include: short-term variability in rainfall and runoff, long-term

climate change, uncertainty in groundwater availability, population growth and urbanization

at uncertain rates, and the value of water during times of scarcity. Each of these uncertainties

has unique characteristics and can be classified according to different dimensions. Several

existing dimensions of uncertainty are presented in the "uncertainty matrix" developed by

Walker et al. (2003) [166], updated by Kwakkel et al. (2010) [90], and illustrated in Figure

2-2. Here we summarize and extend the uncertainty matrix to use in our classification

system.

The level of uncertainty as coined by Walker et al. (2003) [166] describes the magnitude

of uncertainty ranging from determinism to recognized ignorance. These authors develop

three levels: statistical uncertainty in which the full range of outcomes is known and proba-

bilities can be reliably placed on these outcomes; scenario uncertainty in which the possible

outcomes can be identified but they can not be characterized probabilistically; and recog-

nized ignorance in which the full range of possible outcomes is unknown. This refines a

much earlier distinction between risk, which can be defined probabilistically, and Knightian

uncertainty, which is immeasurable [88]. Similar distinctions have been drawn more recently,

such as Luce and Raiffa (1957) [99] who distinguish between decision making under risk and

decision making under uncertainty and Morgan and Henrion (1990) [112] who distinguish

between uncertainties that can be described probabilistically and those that cannot. Most

recently, Kwakkel et al. (2010) [90] further refine this dimension of uncertainty to improve

clear operationalization with four categories.

One of the four categories defined by Kwakkel et al. (2010) is "deep uncertainty", defined

as "being able to enumerate multiple alternatives without being able to rank order the alter-
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natives in terms of how likely or plausible they are judged to be" [90]. The concept of deep

uncertainty has indeed motivated many of the approaches for decision-making under uncer-

tainty described in the previous chapter such as RDM or decision scaling. However, there is

disagreement about how to conceptually define and operationalize this concept. Groves and

Lempert (2007) [60] alternatively define deep uncertainty as "the situation where decision

makers do not know nor cannot agree upon the system model that relates action to conse-

quences, the prior probabilities on the inputs to the system model(s), or the value function

that ranks the desirability of the consequences". Despite definitional disagreements, in prac-

tice most researchers have argued that deep uncertainty requires 1) the use of scenario-based

or otherwise non-probabilistic approaches to uncertainty and/or 2) bottom-up approaches

that focus on identifying areas of vulnerability rather estimating the probability of reaching

them [93, 19, 14]. However, a different school of thought used in engineering options analy-

sis uses probabilistic approaches as a means to sample from a wide distribution of possible

outcomes; the interpretation of the results is therefore not focused on precise calculations of

expected value but rather on highlighting trade-offs between alternatives [34].

The location of uncertainty refers to where in the analysis or modeling process the un-

certainty occurs including the input data, parameters, model, or interpretation of the results

[166]. Uncertainty in input data, for example, recognizes the limitations and inherent error in

the way measurements of hydrological processes like evaporation, streamflow, and hydraulic

head are made. The distinction between model and parameter uncertainty is increasingly

common in practice, with the use of multi-model comparison tools such as Bayesian model

averaging (BMA) applied to estimate uncertainty across models [74]. This distinction can,

however, be blurry when it is unclear what aspects of the analysis are "parameters" and

which are components of the "model". For example, groundwater withdrawals and recharge

are typically formulated as boundary conditions in numerical groundwater models, and

boundary conditions are typically considered part of the model structure. However, with-

drawals and recharge rates are also often treated as parameter uncertainty. In practice, this

distinction is becoming less important as methods such as Bayesian hierarchical modeling

are increasingly used to integrate parameter uncertainty into estimates of model uncertainty

[140]. The context or interpretation of the results can also be viewed as an uncertainty. Some

researchers describe this as "ambiguity" [20] or "evaluative complexity" [43]. While the un-

certainty matrix addresses it as a location of uncertainty [166], others have suggested it as a
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Figure 2-2: Uncertainty matrix reproduced from Walker et al. 2003 [166]

different nature of uncertainty (see next paragraph) in comparison to epistemic or aleatory

[20].

The nature of uncertainty refers to whether the uncertainty arises from natural stochastic

variability or from a lack of information [166]. These two categories are often called aleatory

and epistemic uncertainty, respectively. Natural variability arises through some kind of

stochastic process: a random variables takes on different values in time or in space. Rainfall

is a classical example of natural variability in hydrology. Many parametric processes, such

as auto-regressive lag-1 processes or other Markov processes [138], as well as nonparametric

processes, for example using re-sampling of historical observations [176] or bootstrapping

methods [91], have been proposed as models of the stochastic process governing daily or

monthly precipitation. Soil properties such as hydraulic conductivity or porosity exhibit

natural variability in space rather than time; random fields are often used to represent this

variability [175]. In contrast, epistemic uncertainty arises from a lack of information: there

is a single value that we can know in principle but do not because of a lack of information.

For example, the population of the city of Melbourne at the start of 2050 will have a single

value, but we do not have access to that information and therefore epistemic uncertainty

arises.

While the difference between aleatory and epistemic uncertainty has a long history of use,

the distinction between them is not always clearly defined and indeed many uncertainties

have characteristics of both. For example, rainfall, as described above, clearly exhibits
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variability due to a stochastic process. However, precipitation in Cambridge, MA on May 1,

2020 will take on a single value, but we do not currently have the information to identify it

precisely, only a statistical description of the underlying process. It therefore has properties

of epistemic uncertainty as well. This dual interpretation of uncertainty has a long history in

water resources. Dettinger and Wilson (1981) [40] present a statistical description of aquifer

hydraulic conductivity using a mean and spatial covariance with two interpretations. In

the first, the statistical description represents the underlying stochastic process that leads

to spatial variability in the aquifer. In the second, it represents an estimation of the true

field and the modeler’s degree of belief in that estimate. These interpretations reflect the

aleatory and epistemic aspects of uncertainty, respectively. Dettinger and Wilson (1981)

[40] highlight an important distinction, however: aleatory uncertainty is irreducible while

epistemic uncertainty can be reduced. An aquifer’s hydraulic conductivity will always have

a pattern of spatial variability, while our description of it can be more and more precise.

In practice, however, probability theory is widely applied to both types of uncertainty even

though the interpretation is quite different.

Our uncertainty classification approach. We classify uncertainties according to two

dimensions; the "level" dimension above and a new dimension we call "learning potential".

The dimensions of uncertainty can be understood as continua. For example, the level of

uncertainty ranges from determinism at one end to recognized ignorance at the other. How-

ever, mapping uncertainties to uncertainty analysis methods requires discrete categories as

the analysis methods (e.g. scenario analysis or Monte Carlo simulation) are themselves dis-

crete. We therefore split the dimensions into discrete categories with operational definitions

to reliably code the uncertainties.

The first dimension we use is the level of uncertainty. We address two discrete categories

in this dimension: statistical uncertainties and deep uncertainties. We define statistical

uncertainties as those that can be appropriately characterized probabilistically and validated

using historical data. We define deep uncertainties as those for which the possible outcomes

can be identified but probabilities cannot reliably be placed on them; or those probabilities

cannot be validated. Recognized ignorance, in which the outcomes cannot be identified, is

not addressed. This classification is important for choosing an uncertainty analysis method

because it determines whether it is appropriate to use probabilistic uncertainty methods or

30



not.

The second dimension of uncertainty used for classification is a new dimension herein

termed learning potential. It is related to the idea of information or epistemic uncertainty,

but it reflects pragmatically whether information uncertainty can be reduced. We define

two categories along this dimension: high and low learning potential. Uncertainties with

high learning potential are defined as those for which new observations can be collected,

either presently or in the future as new observations become available, to reduce or update

uncertainty in a way that meaningful impacts forecasts for decision-making. Low learning

potential uncertainties are those which cannot be meaningfully updated, either because new

information cannot be feasible collected or because the new information does not mean-

ingfully change previous forecasts. This dimension has two advantages over the traditional

epistemic vs. aleatory definition. First, it does not suffer from the problem that, as de-

scribed above, epistemic and aleatory are not mutual exclusive categories and in fact most

uncertainties can likely be considered as having elements of both. For this new dimension,

there are either opportunities to reduce or update the uncertainty, or not. Second, it is

connected to an important choice in how we model uncertainty: whether we assess uncer-

tainty statically or dynamically in which estimates of uncertainty can change over time.

The distinction between epistemic and aleatory uncertainty often does not inform a choice

of uncertainty analysis tool; probabilistic approaches are widely applied for both.

Together, these dimensions define three categories: deep uncertainties (which includes

both high and low learning potential uncertainties), high learning-potential statistical uncer-

tainties, and low learning-potential uncertainties. Common uncertainties impacting water

supply infrastructure planning are listed in Table 2.1 along with their classification and

analysis tool used.
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Uncertainty analysis methods

Next, we map the three uncertainty categories to uncertainty analysis methods. We apply

probabilistic approaches for statistical uncertainties and scenario-based approaches for deep

uncertainties. This allows us to take advantage of the full information available for sta-

tistical uncertainties without presenting deep uncertainties with over confidence. For deep

uncertainties, a variety of scenario-based methods could be used. For example, the Latin-

hypercube simulation approach to scenario generation developed in RDM could be applied.

In our framework, this approach would only be used for deep uncertainties, in contrast to

RDM which applies this approach to all uncertainties. In our applications, we simply repeat

the analysis under different input assumptions or scenarios to assess the impact of uncertain

assumptions on the risk profiles of different alternatives.

For statistical uncertainties, we apply two different uncertainty analysis approaches for

high and low learning potential uncertainties. Low learning potential statistical uncertainties

are addressed using Monte Carlo simulation. This takes advantage of available statistical

information in a computationally efficient manner.

High learning potential uncertainties, however, require a dynamic approach to uncer-

tainty in which estimates of future uncertainty can be updated over time. Existing methods,

for example the risk of failure (ROF) method developed by [123], allow uncertainty estimates

to vary as a function of the state of the system but not as a function of time independent of

the state of the system. For example, predictions of reliability outages may be higher in time

period 5 than in time period 2 because reservoir storage levels are lower in time period 5;

this is addressed under the ROF approach. However, the probability of reliability outages in

time period 5 could be different than in time period 2 even if the reservoir storage level is the

same because the planner’s understanding of the hydrological system has changed; this is

not addressed in the ROF approach. This is an important limitation. We therefore develop

a dynamic approach to characterizing uncertainty so that it can be updated to reflect new

or improved information.

We use Bayesian inference applied to a physical hydrological or climate model to charac-

terize dynamic uncertainty estimates and embed these in a multi-stage stochastic dynamic

program. SDP is a multi-stage stochastic optimization approach used to develop optimal

policies as a function of the system state and time period [128]. It takes into account future
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uncertainty using transition probabilities 𝑝(𝑆𝑡+1|𝑆𝑡) which describe the 1-step transition

from a state in time period 𝑡 to a new state in 𝑡+ 1. Non-stationary transition probabilities,

in which 𝑝(𝑆𝑡+1|𝑆𝑡 = 𝑜) does not necessarily equal 𝑝(𝑆𝑦+1|𝑆𝑦 = 𝑜) ∀ 𝑡 ̸= 𝑦, are used to

reflect learning about the system over time. The optimal policies are derived by solving the

Bellman equation, shown in Equation 2.1, using recursion.

𝑉 (𝑠, 𝑡) = argmin
𝑎∈𝐴

𝐶
(︀
𝑠(𝑡), 𝑎(𝑡), 𝑡

)︀
+ 𝛾

∑︁
𝑠∈𝑆

𝑝
(︀
𝑠(𝑡 + 1) | 𝑠(𝑡), 𝑎(𝑡)

)︀
* 𝑉

(︀
𝑡 + 1, 𝑠(𝑡 + 1)

)︀
(2.1)

where 𝑉 is the optimal policy; 𝑠 is the state of the system from the state space 𝑆; 𝑡 is

the time period or stage; 𝑎 is an action from a set of possible actions 𝐴; 𝐶 is the single-

period cost as a function of the current state, action, and time; 𝛾 is the discount rate; and

𝑝
(︀
𝑠(𝑡+1) | 𝑠(𝑡), 𝑎(𝑡)

)︀
are the transition probabilities as a function of the current state, action,

and time.

The challenge in addressing hydrological uncertainties using SDP lies in using high-

fidelity physical models to characterize the transition probabilities. An overview of our

approach is shown in Figure 2-3. First, the state space 𝑆 is defined and discretized to

represent the uncertain hydrological variable(s) of interest. The groundwater application in

Chapter 4 uses hydraulic head in a groundwater aquifer as the uncertain state variable; the

climate change application in Chapter 5 uses decadal mean temperature and precipitation

as the uncertain state variables. A planning horizon is also defined and discretized into time

steps; the length is chosen to reflect the approximate lifetime of the relevant infrastructure.

Second, a physical model that forecasts the uncertain state variable is developed or se-

lected. Chapter 4 uses the groundwater model MODFLOW, and Chapter 5 uses an ensemble

of GCM projections. Optionally, a statistical surrogate model can be developed based on the

physical model to enable or improve computational tractability. In Chapter 4, an artificial

neural network is trained on MODFLOW output to serve as a surrogate. The physical model

is used to develop a prior distribution 𝑝(𝑆𝑡). This is operationalized differently depending on

the location of uncertainty (e.g. parameter vs. model uncertainty: see description in Section

2.1). For parameter uncertainty, Monte Carlo simulation on the uncertainty parameter can

be applied; this is done in Chapter 4 for parameter uncertainty in hydraulic conductivity

and storativity. Bayesian model averaging [74] can be applied to address model uncertainty;
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Figure 2-3: Schematic demonstrating the method for integrating probabilistic forecasts for
uncertain hydrological variables into an SDP using Bayesian inference on a physical model
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this is used in Chapter 5 to address model uncertainty, or disagreement across models with

different structures, in climate change projections.

Third, Bayes’ Theorem, shown in equation 2.2, is applied to update the prior distribu-

tions developed in step 2 with a new observation. The new observation corresponds to a

specific state in the hydrological state space defined in step 1. The reasoning is if the system

reaches a state 𝑠 at time 𝑡, then 𝑠 will be an observation about the system state that can

be used to update future predictions. For example, say mean decadal temperature is 26°C

at the beginning of the planning period with an expected value of 1.5 °C increase after 40

years. If after 40 years, 2.5 °C of warming are observed, this suggests a higher than expected

rate of warming. Bayesian updating allows us to use this observation to update the original

forecast to reflect faster warming. As with the prior, the specific implementation varies

depending on whether parameter or model uncertainty is addressed; see details in Chapters

4 and 5 respectively. The updating is performed for each feasible state in each time period,

with the state corresponding to a hypothetical, future observation.

𝑝(𝑆𝑡+1|𝑂) =
𝑝(𝑂|𝑆𝑡+1)𝑝(𝑆𝑡+1)

𝑝(𝑂)
𝑂 ∈ 𝑆 (2.2)

Finally, the posteriors are embedded into the SDP as the transition probabilities, with

each transition probability 𝑝(𝑆𝑡+1|𝑆𝑡) equal to the corresponding posterior 𝑝(𝑆𝑡+1|𝑂) where

𝑂 = 𝑆𝑡. The Bellman equation is then solved using recursion. This process can be under-

stood as a decision tree, as depicted in Figure 2-3. In each time period, a new observation is

made, the transition probabilities updated to reflect an updated forecast, and then an action

chosen for that time period. Although the transition probabilities reflect 1-step transitions

from one time period to the next, the recursion enables optimal policies to be developed

that take into account uncertainty over the entire planning horizon. Further, the use of

the Bayesian updated posteriors as transition probabilities enables the optimal policies to

account for the potential for learning as new observations are collected over time.

2.2 Integrated modeling and risk profiles

Once the uncertainties are classified and the corresponding analysis tool selected, they are

incorporated into an integrated modeling approach depicted in Figure 2-4. This analysis is

completed in four main steps. First, a hydrological or climate model is used to characterize
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Figure 2-4: Schematic demonstrating the method for integrating probabilistic forecasts for
uncertain hydrological variables into an SDP using Bayesian inference on a physical model.

non-stationary transition probabilities in an SDP; this step is described in detail in the pre-

vious section. Second, flexible infrastructure plans or designs are developed as alternatives

to traditional static, robust approaches. Third, the impacts of different infrastructure alter-

natives on a water resource system are evaluated to characterize the SDP costs and actions.

Finally, the optimal policies developed by the SDP are used to simulate and compare the

performance of the different alternatives against key performance metrics. These steps are

described below.

Flexible infrastructure alternatives

Flexible infrastructure plans or designs are developed as alternatives to traditional static

plans; these are tailored to the planning problem at hand. Flexibility in infrastructure can

take a variety of forms. Flexibility in planning can include flexibility in the timing, location,

or type of infrastructure brought online. For example, a staged development approach in
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which capacity is added modularly in stages rather than all at once can trade off cost savings

due to economies of scale in large infrastructure projects to prevent over building capacity.

Flexibility can also be designed into physical infrastructure itself so that it can be more easily

retrofitted in the future. For example, designing a dam that can be increased in height in

the future enables flexibility in reservoir storage volume; this is assessed in Chapter 5. A

RO desalination plant can be designed modularly so that extra RO modules can be added

to increase capacity in the future; this is assessed in Chapter 3. In the applications in this

dissertation, we consider flexibility in volume of capacity and in timing of capacity. In the

surface water applications in Chapters 3 and 5, the planning question is focused on volume

of capacity is needed in order to meet demand given uncertainty in supply; therefore, the

designed flexibility is in the volume of capacity. In the groundwater application in Chapter

4, it is known that new capacity will be needed in the future and the question is when the

investment will be needed in order to prevent reliability outages; in this case the flexibility

is in the timing of capacity. For all of the applications, the flexible option to add additional

infrastructure capacity is identified and designed up front. Then, the policy for if and when

to exercise the option is determined by the SDP.

Water resource system model

In addition to the transition probabilities and state space definition, the SDP formulation

requires definitions of the actions and costs. The actions can include both 1) which in-

frastructure alternative is chosen in the first time period and 2) at what point the flexible

option is exercised if available. The SDP also requires estimates for the costs associated with

a particular action in a certain state of the system. The costs can be broadly defined to

include a variety of performance metrics of interest to the water planner. In the applications

in this dissertation, we have included the capital and operating costs of the infrastructure

itself, as well as damages incurred if water supply reliability targets are not met. Water

shortages are estimated using a water resource system model, which combines hydrological

models with infrastructure operation models. For example, in the climate change example

in Mombasa in Chapter 5, a rainfall-runoff model is used to estimate monthly streamflow

time series. Then, a dam operation model with operating rules for releasing flows depending

on reservoir storage is used to assess whether supply meets demand in each time period and

if not, what volume of shortages are incurred. We do not attempt to optimize the operating
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rules. This analysis is repeated for each possible climate state. The shortage volumes are

multiplied by a shortage penalty value, estimated using economic models of the damages

caused to society by water shortages. These costs are summarized in equation 2.3

𝐶(𝑠, 𝑎, 𝑡) = 𝐶𝑎𝑝𝑒𝑥(𝑎) + 𝑂𝑝𝑒𝑥(𝑎, 𝑠) + 𝐷 * 𝑈(𝑎, 𝑠, 𝑡) (2.3)

where 𝐶 is the single-period cost, 𝑠 is the state of the system including the uncertain hy-

drological state variables as well as available and planned infrastructure capacity, 𝑎 is the

action which includes building or expanding infrastructure capacity, 𝑡 is the time period,

𝐶𝑎𝑝𝑒𝑥 is the capital costs associated with infrastructure action 𝑎, 𝑂𝑝𝑒𝑥 is the operating

costs associated with existing and new infrastructure, 𝐷 is the water shortage penalty rep-

resenting economic damages for water shortages, and 𝑈 is unmet demand as a function of

the hydrological state and existing and new infrastructure as measured by the water resource

system model.

Forward simulation and risk profiles

Finally, after solving the SDP to develop the optimal polices for exercising the flexible

infrastructure alternatives, we assess their performance. Monte Carlo simulation is applied to

1) the transition probabilities in the SDP to create time series for the uncertain hydrological

state variable(s) and 2) any statistical, low-learning potential uncertainties. The optimal

policy is then applied to determine if and when the flexible expansion option is exercised in

each simulated time series. The costs and water shortages of the expansion are estimated

using the water resource system model. This generates distributions of cost and shortages

for each infrastructure alternative that are used to assess the strengths, weaknesses, and

trade-offs of different infrastructure planning approaches. For deep uncertainties that rely

on scenarios, the simulation analysis is repeated to assess how the performance distributions

change under different scenarios. Developing distributions for performance rather than a

single estimate enables us to assess upside and downside risk, regret, and other decision

criteria. These measures are used to assess the value of flexibility, enabling planners to

decide if upfront investments in flexible are worth the cost.
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Chapter 3

Desalination planning under multiple,

diverse uncertainties during

Melbourne’s Millenium Drought

This chapter has been adapted from a previously published paper: Sarah M. Fletcher, Marco

Miotti, Jaichander Swaminathan, Magdalena M. Klemun, Kenneth Strzepek, and Afreen

Siddiqi. "Water Supply Infrastructure Planning: Decision-Making Framework to Classify

Multiple Uncertainties and Evaluate Flexible Design." Journal of Water Resources Planning

and Management 143 (10), 2017.

Abstract: Urban planners face challenges in water infrastructure development deci-

sions due to short-term variation in water availability and demand; long-term uncertainty

in climate and population growth; and differing perspectives on the value of water. We

classify these multiple uncertainties and develop a decision framework that combines sim-

ulation for probabilistic uncertainty, scenario analysis for deep uncertainty, and multistage

decision analysis for uncertainties reduced over time with additional information. We apply

this framework to a case from Melbourne, Australia where a drought from 1997 to 2009

prompted investment in a $5 billion desalination plant completed in 2012 after the drought

ended. Our results show opportunities for significant reduction in capital investment using

flexible design. Building no infrastructure is best in most simulations. However, in 10% of

simulations building no infrastructure leads to regret of greater than $10 billion compared
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to a small, flexible desalination plant. Scenario analysis for deep uncertainties underlines

the significant impact of assumptions about the future and also on value judgments about

the cost of water scarcity in evaluating infrastructure performance.

3.1 Introduction

Urban water planners face the decision of how much water infrastructure to build in or-

der to reliably meet demand for high-quality water while minimizing cost to meet budget

constraints. The challenge of balancing the tradeoff between shortage risk, cost, and environ-

mental protection is compounded by several critical uncertainties. Urbanization is driving

population growth in many cities at rapid but uncertain rates; natural variation in annual

runoff is high and expected to increase due to climate change in many regions [78]; energy

price volatility and variable maintenance requirements drive cost risk for desalination and

other energy-intense infrastructure options. Additionally, numerous water supply systems

in many industrialized countries are reaching the end of their planned lifetimes, prompting

further need for infrastructure investment.

Most urban water supply infrastructure (such as distribution pipelines, treatment plants,

and reservoirs) in Australia, the US, and other industrialized countries was built between the

1930s and 1980s, before sophisticated risk and decision analysis methods had been developed

for practical use [149, 49, 52]. Traditionally, planners developed a long-term demand forecast

and long-term supply forecast, and added a safety factor to account for uncertainty [149].

This approach can lead to overdesign when demand ends up being lower than forecasted. If

demand exceeds the forecast, society can face economic impacts due to unserved demand,

environmental degradation, and expensive measures for building additional infrastructure

in short time frames.

Since the 1980s, reliability, or outage frequency, has been emphasized as a risk-based

metric for assessing water supply system performance [67]. More recently, researchers and

planners have developed strategies to improve resilience and robustness under uncertainty.

Early work focused on the use of adaptive management to operate water supply systems more

flexibly to ensure resilience under extreme operating conditions [115, 47]. Adaptive manage-

ment requires planners to change from a predict-then-act approach to a learn-then-adjust

approach [121]. A related strategy is flexible infrastructure design, which allows planners
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to respond to future uncertainties. The use of engineering options, in which infrastructure

is designed so that it can be modified or expanded in the future depending on how supply

and demand evolve, provides flexibility that can reduce reliability and cost tradeoffs in water

supply systems [168, 33]. The application of an EOA, including staged deployment, has been

demonstrated in several recent studies on design of water distribution systems [101], urban

water systems [37, 53, 162], water treatment investments [178], and dam investments [80].

Engineering options can be compared and evaluated using multi-objective decision analysis

to incorporate multiple planning goals and evaluate flexible design options as uncertainties

unfold over multiple planning stages [33].

Recent methods have also been developed for new infrastructure planning that is robust

to "deep uncertainties" such as climate change. The likelihoods of deep uncertainties cannot

be accurately quantified using historical data, rendering probability-based risk assessment

challenging or inappropriate [60, 108]. The goal is to generate and evaluate planning strate-

gies that are robust to a range of future outcomes. For example, RDM uses Latin hypercube

sampling to generate many possible futures scenarios across multiple uncertainties, assumes

equal likelihood of each scenario, and selects strategies that meet threshold performance

criteria across a large percentage of scenarios [93, 92]. Info-Gap theory, in contrast, devel-

ops increasingly large multi-dimensional uncertainty sets and identifies the solutions that

meet threshold performance criteria for each uncertainty set [14]. Decision scaling links

decision analysis with bottom-up climate vulnerability analysis, identifying climate-driven

action thresholds without relying on general circulation models to generate climate scenarios

[19]. Such approaches have been widely applied to problems in water resources planning in

various countries [122, 39, 87, 110]. Climate change and other deep uncertainties should be

integrated into a water resources modeling framework that accounts for the full range of

uncertainty planners face [135].

While scenario analysis has been demonstrated to be a powerful planning tool for urban

water managers facing deep uncertainties and varying stakeholder concerns [94], this does not

preclude the use of probabilistic approaches for different, more easily modeled uncertainties.

Population growth, which is more easily modeled statistically, is expected to have a larger

impact on water resource systems to mid-century than climate change [164, 144, 142, 48].

The stationary statistical variation in rainfall, which can be modeled stochastically, often

drives uncertainty in the short- to medium-term more than climate change [95, 42].
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In this paper, we build on traditional decision analysis and deep uncertainty methods for

water supply planning by developing a framework to classify and model multiple uncertain-

ties of different natures. It enables water supply planners to quantify statistical uncertainties

that can be appropriately quantified and to assess the impacts of different, deep uncertain-

ties on a risk profile using scenario analysis. It also identifies which uncertainties enable

learning over time and incorporates them into a multistage decision analysis model. This

model enables the evaluation of real options such as staged deployment where planners learn

as uncertainties unfold and utilize flexible options if and when they are needed.

We apply the method to a case of urban water supply planning in Melbourne, Australia.

The Millennium Drought in Southeast Australia from 1997 to 2009 motivated our work.

Melbourne’s water supply system comprises a network of 10 storage reservoirs with a total

of 1,812 million cubic meters (MCM) of storage. Net average annual inflows (evaporation

and losses subtracted) were 571 MCM between 1926 and 2014 and demand was 401 MCM

in 2014/2015 [104]. This results in a storage-to-annual-runoff ratio of 3.2, which indicates a

highly managed system. Catchment-level stream flow management plans require minimum

environmental flows to be met [104]; environmental flows ranged from 100 to 410 MCM

between 1995 and 2011 [97]. Minimal groundwater is used [97]. A single bulk wholesaler,

Melbourne Water, is responsible for harvesting, storage, and treatment.

After more than a decade of below average rainfall, reservoir storage for the city reached

a record low of 25.6% of capacity in 2009 [97]. This led to a range of demand manage-

ment efforts including efficient appliance installations, reduced environmental flows, water

restrictions for outdoor uses, a domestic rainwater tank installation program, and treated

wastewater recycling. There were also two large infrastructure investments: the 150 MCM

per year Wonthaggi RO desalination plant and the 100 MCM/year maximum capacity Sug-

arloaf pipeline at capital costs of $5 billion and $550 million, respectively, able to provide

up to about 40% of the city’s demand [58]. However, the drought ended before the desali-

nation plant was completed, leaving the plant unused for years. Several studies discuss the

political pressure on Melbourne Water and the Victorian government, a detailed timeline of

actions taken, and the institutional decision-making process in responding to the drought

[49, 58, 126, 97]. Melbourne’s reservoir system and Wonthaggi plant are illustrated in Figure

3-1.

This work addresses the question: given similarly uncertain and dire situations like those
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Figure 3-1: Melbourne study area map showing locations of reservoirs, streams, Wonthaggi
plant, and city center.

Melbourne faced in 2007 and the inherent tradeoff between cost, supply risk, and environ-

mental protection, what approach can water planners use in evaluating infrastructure invest-

ments when facing multiple uncertainties of different natures? A decision framework using

classification and incorporation of multiple uncertainties is applied in order to 1) evaluate

and communicate the cost and water supply risk of proposed infrastructure alternatives, and

2) identify the best infrastructure alternative based on a planner’s risk preferences across

simulated water supply futures. We do not present a single best solution, as that would re-

quire value judgments and preferences from stakeholders and planners. Rather, we present

results for a range of sample preferences to demonstrate the usefulness of the framework.

The remainder of the paper is organized as follows. Section 3.2 describes the methods used:

the uncertainty framework is presented first, followed by a description of its application to

Melbourne. Key results and conclusions are presented in Section 3.3 and Section 3.4, re-

spectively. More detailed descriptions of the methods and additional results are shown in

Appendix A.
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3.2 Modeling approach

Decision Framework for Multiple Uncertainties

Many uncertainties simultaneously impact water supply infrastructure planning including

annual reservoir inflows, population growth, energy prices, the cost of water supply short-

ages, and climate change. We develop a framework for decision making under multiple

uncertainties, illustrated in Figure 2-1 in Chapter 2.

The first step in the framework is to classify uncertainties along two dimensions: whether

they are deep or statistical, and whether there is high or low potential for learning over time.

Deep uncertainties are those for which the likelihood of the outcomes cannot be determined;

they are modeled using scenarios analysis in order to avoid estimating likelihood. In this

context, scenario analysis refers to varying the value of uncertain parameters in order to

understand the impact of their uncertainty on the results. Note that while scenarios are

not explicitly probabilistic, the choice of values does assign some implicit probability to

those outcomes; this is important to recognize in all deep uncertainty methods. Statistical

uncertainties are those that can be estimated using data-driven probability distributions.

Statistical uncertainties are modeled using Monte Carlo simulation in order to obtain the

most precise risk profile. The high vs. low learning potential indicates whether, as the

uncertainty is realized over time, additional observations meaningfully update the planner’s

expectations of the future. Based on updated expectations, planners decide to exercise

or ignore flexible options. These uncertainties are therefore incorporated directly into a

multistage decision analysis model [33], in which flexible options are optimally exercised or

ignored. This allows the full value of flexible options to be modeled. Uncertainties that do

not yield meaningful updates on expected payoffs as observations are made over time can

be analyzed more efficiently by varying the inputs across model runs.

This uncertainty classification addresses the level of uncertainty [166] and the poten-

tial for learning over time. Note that the level dimension can also incorporate ambiguity,

or uncertainties that arise through differences in stakeholder perspectives [20, 90], such as

value judgments about the cost of water shortages. Uncertainties arising from ambiguity

are similar to deep uncertainties in that they are not appropriate for probabilistic analysis,

so scenario analysis is used instead. Different objective functions can be used to represent

different preferences or risk profiles. For instance, a risk-averse planner may prefer to invest
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in water supply infrastructure that often sits idle as an insurance policy against drought

that minimizes shortage risk. While there is a large literature on eliciting and incorporat-

ing stakeholder values into decision analysis [137, 59, 63], such analysis is not included in

this paper. Rather, a sample objective function and a few scenarios comparing alternative

objective weights are used to demonstrate the method. Additionally, other dimensions of

uncertainty, such as the location of uncertainty within a decision-making process, structural

uncertainty, and observational uncertainty, are not addressed here.

In the second step, a model of the water system is combined with the decision model

to evaluate and compare infrastructure alternatives. These infrastructure alternatives can

be generated through a screening model or planner input. The water system model is sim-

ulated to generate the distribution of cost and water supply risk for each infrastructure

alternative over all statistical uncertainties. Statistical uncertainties with high learning po-

tential are incorporated into the decision analysis model explicitly so that flexible options

can be exercised in response to new information. The decision model ranks the infrastructure

alternatives according to an objective function for each simulation run, resulting in a distri-

bution of "best" infrastructure alternatives across simulated variables. Scenario analysis is

then used to repeat the simulation process for different sets of input variables representing

deep uncertainties to assess the impact of scenarios on the risk profile.

3.3 Application to urban water supply planning in Melbourne,

Australia

This analysis framework is applied to an illustrative example from Melbourne, Australia,

where planners in 2007 decide what, if any, additional supply investments should be made

over a 30-year planning period (the approximate lifetime of an RO plant). Key uncertainties

are identified and classified. Infrastructure alternatives are chosen based on those consid-

ered by Melbourne’s water planners in 2007, with additional flexible alternatives designed

for comparison. A model of Melbourne’s water system is developed using a simple hydro-

logical model and demand forecasts. A decision analysis model is then used to evaluate

the infrastructure alternatives, including some with flexible expansion options, based on an

objective function that considers lifetime costs and water shortages.
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Table 3.1: Methods used for key uncertainties in analysis based on uncertainty classification
framework

Uncertainty Classification Justification

Short-term variability
in streamflow

Statistical;
low learning
potential

Well-characterized by historical data;
stationarity assumption appropriate
over short time scales

Population growth rate
Statistical;
high learning
potential

Well-characterized by existing
demographic forecasts;
early changes in growth rate
highly predictive of future growth

Electricity price Deep
uncertainty

Influenced by deeply uncertain
factors such as national and
international policy and markets.

Water shortage
penalty value

Deep
uncertainty

This is an ambiguity, or uncertainty
arising from differences in
stakeholder perspective

Demand per capita Deep
uncertainty

Influenced by deeply uncertain factors
such as policy, citizen behavior, and
technology adoption

Uncertainty classification

Five uncertainties, listed in Table 3.1, are included in this analysis. They were chosen be-

cause of their high degree of uncertainty and potential for impact on Melbourne’s planning

decisions; however, they are not comprehensive. Certain uncertainties were excluded, such

as the potential for desalination technology costs to decline over time, because initial analy-

sis of historical data suggested they were unlikely to impact planning decisions on a 30-year

timeline. Other uncertainties, such as climate change, future agricultural production, pol-

icy changes, structural and observation uncertainty, could be included in future work. The

included uncertainties are classified as indicated in Table 3.1 with brief justifications. De-

cisions to classify uncertainties using the framework developed in Chapter 2 ultimately rely

on analyst judgment but are informed by analyses of available historical data and forecasts.

We base the analysis on historical inflow data [104], historical and forecasted population

growth [10], and historical and forecasted electricity price [2]. Further details are available

in Appendix A.
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Table 3.2: Definitions for the six infrastructure alternatives evaluated and compared in the
decision-modeling framework. S3 and S5 were developed to compare a staged deployment
approach to the full, upfront deployment approach used in S4 and S6.

Infrastructure
Alternatives

Capital
Expenditure
(M$)

Capacity
(MCM/year)

S1: No Build 0 0

S2: Pipeline and irrigation upgrade 1,002 Variable: Max 100

S3: Small RO plant with expansion option 2,045
[+1,095] Firm: 75 [+ 75]

S4: Large RO plant 2,900 Firm: 150

S5: Small RO plant with expansion option;
Pipeline and irrigation upgrade

3047
[+1,095]

Firm: 75 [+ 75]
Variable: Max 80

S6: Large RO plant;
Pipeline and irrigation upgrade 3902 Firm: 150

Variable: Max 80

Infrastructure alternatives

We design and evaluate six infrastructure alternatives comprised of combinations of three

projects: a 150 MCM/year RO plant based on the Wonthaggi plant, a 100 MCM/year ca-

pacity pipeline and accompanying irrigation system upgrade based on the Sugarloaf pipeline

and accompanying upgrades, and a 75 MCM/year RO plant designed with a flexible option

to expand to 150 MCM/year if desired. The smaller (75 MCM/year) desalination plant

was not considered by Melbourne Water in 2007; it was included here as an alternative

to assess the value of staged deployment. The flexible design requires the plant site to be

sized to fit twice as many membrane modules as needed before the expansion, incurring

additional capital costs upfront in exchange for the option to expand cheaply and quickly

later. The no-build alternative (S1 in Table 3.2) is included as a baseline option where no

new infrastructure is developed.

The desalination plants incur both high capital costs and high operating costs. The

operating costs are high due to the energy intensity of seawater desalination and membrane

replacement requirements. In addition to substantially lower capital costs, the pipeline and

irrigation upgrade also incurs much lower operating costs; pumping is the largest compo-

nent. The desalination plants, however, provide firm capacity; they can reliably provide the

maximum design capacity during a dry year. The pipeline system is market-based: farmers
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whose irrigation systems have been upgraded to be more efficient sell excess water to the

utility at their discretion. Farmers are less likely to provide water during dry years, so it

is unlikely that the full 100 MCM/year is available each year. This dynamic is approxi-

mated by assuming a correlation between inflows to Melbourne’s reservoir system and water

available from the pipeline, with 80 MCM available during average wet years and no water

available during dry years. Cost estimates (capital expenditures, fixed operating costs, and

variable operating costs) are developed for each infrastructure alternative using cost data

from the Sugarloaf pipeline project, cost information on the Wonthaggi plant, cost data

from comparable RO plants, and input from desalination experts. Details are available in

section B of the Supporting Information.

Water System Model

A water system model is developed using a water balance approach to model reservoir storage

and water supplied to end users from both the existing reservoir system and new supply

infrastructure. This model estimates the annual cost and water shortages (i.e. unserved

demand) over a 30-year period starting in 2007 for each infrastructure alternative. Monte

Carlo simulation is used to develop distributions for these estimates based on uncertainty

in inflows and population growth.

The main components of the water balance are: net reservoir inflows (inflows minus

evaporation), demand from end users, water imported from new infrastructure, and envi-

ronmental outflows. To model future inflows, 100,000 synthetic annual 30-year inflows are

generated using anauto-regressive moving average (ARMA) time-series model fit to histori-

cal inflow data dating back to 1926. This approach captures the year-to-year autocorrelation

observed in runoff. It assumes inflows to be a stationary stochastic process over the 30-year

planning period. Scenario analysis is used to vary the mean and variance of this process

based on estimates of climate change impacts on runoff in Australia [150]. This is a simple

approach; climate change is not a focus of this paper. Future work evaluating longer plan-

ning periods could use more sophisticated statistical approaches such as downscaling from

general circulation models. Annual water demand is modeled as the product of population

and demand per capita. Population projections from the Australian Bureau of Statistics

for the city of Melbourne are used, ranging from 50,000 to 150,000 people per year [10].

The base case demand per capita of 100 kiloliters (kL)/person/year is based on historical
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demand data and is varied using scenario analysis to assess the impact of demand reduction

measures; future work could assess and compare demand-side alternatives directly. Water is

imported from any new infrastructure capacity if reservoir storage levels go below one of two

thresholds. Pipeline water is imported below an intervention threshold of 980 MCM and

desalination water is imported below an emergency threshold of 580 MCM, the maximum

allowable drawdown. These thresholds are set by Melbourne Water [106] and used in other

studies of Melbourne’s water system [161]. In this paper, water shortage is defined as water

demand that cannot be met without reducing demand or withdrawing below the emergency

threshold. The water system model aggregates the individual reservoirs and uses an annual

time step. This approach is appropriate to demonstrate the new method developed in this

paper and given the capacity-expansion focus of the decision model [11] and the high in-

tra annual storage in the system. More details on the water system model, including the

assumed operational rules, are available in Appendix A.

Decision Analysis Model

The decision model uses the estimates for cost and water shortages from the water system

model to evaluate the six infrastructure alternatives (Table 3.2) over a 30-year planning

period. For each synthetic 30-year inflow series, the model ranks the six infrastructure

alternatives using multi-stage decision analysis, which is frequently used to evaluate real

options [33]. The model can be understood as a decision tree, in which the population

growth rate has a probability of going up or down in each 10-year planning stage. In the

two infrastructure alternatives with flexible desalination design, S3 and S5 (Table 3.2), the

planner can react to change in population growth by deciding to exercise the real option

of expanding a small desalination plant. The model chooses the infrastructure alternative

and desalination plant expansion timing, where applicable, that minimizes the following

objective function:

𝐸[𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑖] = 𝐸𝑁𝑃𝑉 [𝐶𝑜𝑠𝑡𝑖 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 *𝑊𝑎𝑡𝑒𝑟𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑖] (3.1)

where 𝐸 denotes expected value; 𝑖 is the choice of infrastructure alternative and expan-

sion strategy; 𝐶𝑜𝑠𝑡 is the total of capital costs and operational expenditures incurred from

the infrastructure alternative over the planning period; 𝑊𝑎𝑡𝑒𝑟𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 is the total volume
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of water shortages from years where water demand without conservation or environmental

flow reductions exceeds available water supply, also interpreted as water supply vulnerability

[67]; 𝐸𝑁𝑃𝑉 is expected net present value; and 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 is a cost incurred by the decision-

maker for each MCM of water shortage during the year of the shortage. A monetary penalty

for shortages does not exist in reality in Melbourne or most municipal water utilities. In-

stead, the cost of water shortages is borne by society as economic damages. The penalty

value can therefore be interpreted as the planner’s degree of risk aversion to water supply

vulnerability. A base case value of million US dollars (M$) 25 /MCM is chosen to be about

50 times higher than the bulk usage price of desalinated water ($ 0.55 /m3) in Melbourne

[106] and consistent with previous work [79, 133]. Using scenario analysis, different penalty

values up to M$ 250 /MCM are evaluated, consistent with prices in other previous work

[96]. 𝐸𝑁𝑃𝑉 is calculated using a discount rate of 7%, which is in the middle of the range

typically used by government agencies to evaluate projects [66]. Note that this represen-

tative objective function is intended to demonstrate the method and does not reflect real

stakeholder preferences. Use of this method in future planning could incorporate stakeholder

input on the value of the penalty through a collaborative stakeholder engagement process.

Finally, after the decision model ranks the infrastructure alternatives based on the ex-

pected value of total cost, Monte Carlo simulation is used to randomly choose a single

population growth path for each model run. This allows us to see, across many synthetic

inflow and population growth time series, how the infrastructure alternative chosen based

on expected value performs against simulated actual conditions. For example, the decision

model might choose to build no additional infrastructure because the expected shortages are

low; however, there is a small probability that high population growth could lead the actual

shortages to be high. Using this approach, results that show the performance of each infras-

tructure alternative across many realizations of the simulated uncertain variables, reservoir

inflows and population growth, are presented. Further details on the decision analysis model

are available in section C of the Supporting Information.

3.4 Results

First we present results showing the impact of the statistical uncertainties, reservoir inflows

and population growth. This includes results from the water system model showing the
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cost and water shortage risk of each infrastructure option (Figures 3-2 and 3-4) as well

as results of the decision model (Figure 3-3). These results are shown as distributions,

since Monte Carlo simulation is used for statistical uncertainties. Then, results showing the

impact of deep uncertainties using scenario analysis are presented. Figure 3-5 shows how the

distribution-based results obtained from addressing the statistical uncertainties are shifted

when scenario-based deep uncertainties are also addressed.

Statistical uncertainties

Figure 3-2 summarizes the model results for cumulative water shortages and infrastructure

cost for each of the infrastructure alternatives across 100,000 water supply simulations using

bagplots [141]. The bagplot is an analog to the boxplot for bivariate data [141]. For each

infrastructure alternative except no-build, the center point marked with an asterisk is the

Tukey median [45]; the inner, dark-colored shape is the "bag" which contains 50% of the

data, similar to the inner section of a boxplot; and the outer, light-colored shape is the

convex hull that encompasses the rest of the data excluding outliers. These plots show the

distribution of cost and water supply risk faced as a result of the statistical uncertainties

addressed, reservoir inflows and population growth. The no-build alternative costs nothing

but incurs the greatest shortage risk, with the median total shortage spanning the 30-year

period at 260 MCM. Cumulative shortages greater than 2,000 MCM (over the 30-year period)

occur in 20% of simulation runs. The pipeline alternative (S2) consistently imposes a cost

of close to $1 billion, and decreases the shortage risk. The four infrastructure alternatives

that include a desalination plant all increase the average cost and cost variability while

decreasing the shortage risk further. Interestingly, the median water shortage for all four

alternatives with desalination is 0, with 90th percentile shortages all on the order of 1,000

MCM over the 30-year analysis period. Within these four, the alternatives that have more

built infrastructure capacity see modest reductions in water shortage risk for more significant

cost increases. Most notably, the alternative of the small plant with expansion option (S3)

has a very similar water shortage risk profile to the large plant (S4), as shown by the

width of the inner bag, with median cost about $1 billion lower, again demonstrating the

value of staged deployment under uncertain demand. The same relationship is true of the

infrastructure alternatives with desalination and pipeline. This value is also demonstrated

by the variation in utilization of the expansion option: the option is exercised in about
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Figure 3-2: ’Bagplots’ visualize the distribution of infrastructure cost and total water short-
age across a random sample of 1,000 total water supply simulations for each infrastructure
alternative. Because the no-build alternative always incurs zero cost and is therefore uni-
variate, the plot shows the median shortage and a line that spans the range of shortage
between the 0th and 99th percentiles, which is analogous to the convex hull in the bag-
plots. Building desalination capacity increases cost while mitigating risk of high magnitude
shortages. Flexible design can mitigate shortage risk at lower cost.

45% of simulations in the small plant without pipeline alternative (S3) and about 40% of

simulations in the small plant with pipeline alternative (S5).

Across all of the infrastructure alternatives, more than 80% of the years simulated in-

curred no water shortage at all. Large annual water shortages of >100 MCM were more

common than smaller shortages. These large annual shortages are concentrated in the sec-

ond half of the 30-year period, as the population growth leads to higher demand in later

years. This has important implications for the capacity factor of the built infrastructure as

well as timing the decision to build new infrastructure. The median number of years that

the built infrastructure is used is between 4 years and 6 years across all the infrastructure
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alternatives. This means that any infrastructure that is built is likely to be used for 20%

or less of its lifetime. This is because the total water shortage incurred over the 30-year

planning period is typically concentrated in a small number of years that incurred extreme

lows in runoff coupled with high demand.

The decision model evaluates the six infrastructure alternatives based on the overall

cost, which includes both infrastructure cost and penalties for water shortages over a 30-

year period. In addition to choosing a best alternative based on expected values, it also

calculates the simulated payoff for each alternative in each model run, and ranks the alter-

natives according to this simulated payoff. A simple way to communicate and compare the

infrastructure alternatives is to compare the rankings, shown in Figure 3-3 for 100,000 simu-

lations of the base case. The no-build alternative (S1) is the best performing infrastructure

alternative in more than 50% of cases; however, it is the worst performing alternative in

more than 30% of cases. This underlines the risk of planning based on a single forecast.

At the other extreme, the large plant plus pipeline alternative (S6) performs the worst in

more than 60% of cases and rarely performs within the top half of rankings. Notably, an

interesting result is the flexible small desalination plant (S3): despite performing the best

in only about 20% of simulations, this alternative performs in the top half of rankings in

nearly 90% of simulations and never ends up as worst or second to last. This demonstrates

the ability of paying a small premium for flexibility to mitigate downside risk significantly.

The total cost including shortage penalties incurred by each infrastructure alternative

across the 100,000 inflow simulations were also analyzed and shown in Figure 3-4. The

no-build alternative is the lowest cost in 50% of runs, with more than 40% of runs incurring

zero total cost, indicating no water shortages over 30 years. However, the downside risk

is significant; in 1% of runs the total cost of the no-build alternative is over $10 billion

greater than the cheapest alternative. Interestingly, the pipeline alternative (S2) performs

similarly to the no-build alternative, with about $1 billion higher cost in the low-cost half

of simulations and lower cost in the high-cost half of simulations. This is due to the impact

of the market-based system for water sales through the pipeline, demonstrating the limits

of water markets to provide firm capacity when there is high correlation between drought

in the two interconnected regions. The four alternatives that include desalination have high

capital costs, but in more than 30% of simulations they incur cheaper overall costs than the

no-build or pipeline alternatives. The small plant (S3) provides a mid-range capital cost
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Figure 3-3: For each of 100,000 simulations, the simulated total payoff for each of the six
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simulations.
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Figure 3-4: Cumulative density function (CDF) of the total cost including water shortage
penalties by infrastructure alternative. In the median case, the no-build and irrigation
alternatives perform best. However, they pose significant downside risk, with total costs
about $10 billion higher at the 90th percentile. The small plant with option has the lowest
cost of the alternatives with desalination in the lower cost half of runs and has a similar
downside risk.

alternative that significantly mitigates downside risk through the use of a flexible option.

Deep uncertainties

So far, results have incorporated uncertainties arising from inflow variability and population

growth, the two statistical uncertainties addressed. Now, scenario analysis is used to show

the impacts of the deep uncertainties addressed: demand per capita, the shortage penalty

value, and electricity price growth (see Table 3.1. Each bar in Figure 3-5 shows the frequency

that the decision model selected each infrastructure alternative as the best across a set of

100,000 simulations. In the base case, indicated using an asterisk, the model chooses both

the no-build alternative and the small plant (S3) about 40% of the time each. The results

are highly sensitive to the penalty factor, shown in Figure 3-5 (a). The no-build alternative

performs best in more than 95% of simulations when the penalty is reduced to M$ 5/MCM.

Likewise, increasing the penalty makes alternatives with greater capacity more favorable.
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Increasing the penalty to M$ 50/MCM makes the no-build alternative best in about 25%

of simulations down from 40% and the small plant with option plus pipeline best in 20% of

simulations up from about 5%. Increasing the penalty by a full order of magnitude to M$

250/ MCM, consistent with the values in [96], increases the magnitude of this shift. The

no-build alternative is chosen as best in less than 5% of simulations and the small plant with

option plus pipeline (S5) is chosen in about 60%. It is interesting that the small plant with

option plus pipeline dominates the distribution of best options over the large plant (S4).

Both alternatives have 150 MCM of capacity without the expansion in (S5); however, half

that capacity in S5 is variable rather than firm. This suggests that the value of flexibility

from the expansion option outweighs the variability in some of the capacity in S5.

The model results are also highly sensitive to the demand per capita, shown in Figure

3-5 (b). Lowering the demand to 80 kL per capita per year substantially reduces the need

for additional infrastructure, with the no-build alternative performing best in more than

95% of simulations. The high sensitivity to demand per capita suggests that demand-side

conservation measures may be able to significantly reduce the need for supply infrastructure

investments, especially if demand reductions are firmly available during dry years. This

demonstrates the profound potential of demand management, and points to the need for

more rigorous analysis of infrastructure expansion decisions in conjunction with demand

management options. Results are relatively insensitive to the electricity price growth rate,

shown in Figure 3-5 (c).

3.5 Discussion

The primary contribution of this paper is the development of a method that can be used

to inform decision-makers making water supply infrastructure plans under multiple uncer-

tainties. We develop a classification framework for uncertainties that enables the use of

probability-based risk quantification and information gathering where appropriate, while

leaving deep uncertainties to be addressed using scenario analysis. This approach allows

us to evaluate and compare infrastructure alternatives, including those with flexible design,

as well as demand-reduction strategies in a way that takes into account the diverse and

multifaceted uncertainties water planners face. The use of simple yet information-dense

visualizations of risk profiles can provide decision-support for policy makers.
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Figure 3-5: Scenario analysis on the distribution of the best infrastructure alternative chosen
by the decision model across 100,000 model runs. In each model run, the best alternative is
chosen based on the expected payoff. Base cases are indicated with an asterisk. In the base
case, no build (S1) and small plant with option (S3) are each chosen in about 40% of runs.
Results are highly sensitivity to demand per capita and the penalty value and relatively
insensitive to electricity growth rate.
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The results demonstrate that moderate investment increases, together with flexible in-

frastructure design, can mitigate water shortage risk significantly. Using a staged deployment

strategy to expand if necessary when more information is available reduces shortage risk at

lower cost compared to other, less flexible infrastructure options. The value of this flexibil-

ity is dependent on the nature and magnitude of uncertainties in the system. Furthermore,

demand reduction strategies may reduce the need for additional capacity. These results also

suggest that supply infrastructure can be regarded as an insurance policy against drought.

Although the investments may be used infrequently over their lifetime, they mitigate the risk

of severe economic consequences due to water shortages. This view can allow for improved

risk assessment along with appropriate valuation and expectations of its utility. However,

there are tradeoffs between infrastructure cost and water shortage risk.

The Victorian government’s decision to build a 150 MCM/year desalination plant, one

of the world’s largest, has been the subject of heated debate and political backlash given the

wealth of reservoir water available for years after plant came online in 2012 [126, 49]. How-

ever, as drought impacts the region again and the population continues to growth rapidly,

the plant delivered its first water order in March 2017 [57], demonstrating that desalina-

tion capacity can play a role in mitigating supply and demand uncertainty even if it used

infrequently.

These insights are relevant to other places facing infrastructure decisions driven by multi-

year droughts. For example, several municipalities in California are considering desalination

investments [54]. Although drought in California is often framed as "the new normal"

because of climate change, it is important for both planners and the public to remember that

high variability and extended periods of low rainfall are normal even in the absence of climate

change. Using a learning-driven staged deployment approach or increasing demand reduction

efforts may reduce the need for capital investment. Alternatively, framing any investments

as drought insurance that may be used infrequently may increase public acceptance. This

strategy was successfully employed in the UK, where Thames Water built a large desalination

plant in east London in 2010 citing risks of severe water shortages [82].

Our analysis of the Melbourne case shows that much of the choice of the "best" answer is

predicated not only on assumptions about the city’s future but also value judgments about

the value of water during times of scarcity and society’s appetite for risk. The sensitivity

to the penalty value suggests that working with stakeholders to choose a value that reflects
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society’s tolerance to risk will be important in applying this method to prospective planning

decisions. Future work could also incorporate economic methods to value the impacts of

water shortages on society as a way to inform the choice of penalty. Modeling separate end

uses — agriculture, municipal, industrial, and environmental — could be used to assess the

impact of risk sharing across multiple end-use sectors. Alternatively, the water provider

may invest in a water fund (at a much lower cost than committing capital for new infras-

tructure development) that allows the provider to subsidize costs incurred by users in years

of drought. Additionally, the use of financial risk mitigation options, such as the private-

public-partnership that Melbourne Water used when contracting the Wonthaggi plant, may

further reduce the need for capital-intensive projects.

Future work can extend this study by incorporating additional uncertainties, and com-

paring the nature of key uncertainties in different regions. For example, while population

growth provides significant learning opportunities for planners in Melbourne, there may be

different uncertainties that drive staged deployment decisions in other regions. Future work

could also explore the impact of different water conservation strategies on the necessity for

water supply capacity expansion or sustainability goals and objectives [16]. Some demand

reduction strategies such as fines or public education yield uncertain and variable reductions

rather than the firm capacity provided by desalination. Future work could also include more

detailed models of operational reservoir management to assess the impact of improved oper-

ations as an alternative to or in conjunction with infrastructure additions. Additionally, new

strategies such as ’fit-for-purpose’ water supply, in which water of different quality is used

for applications for which the quality level is adequate [113], can be evaluated for impacts

on infrastructure scale and design decisions.
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Chapter 4

Managing predictive groundwater

uncertainty in Riyadh, Saudi Arabia

using Bayesian updating and flexible

planning

This chapter has been adapted from a working paper: Sarah Fletcher, Kenneth Strzepek,

Adnan Alsaati, and Olivier de Weck, "Managing Predictive Groundwater Uncertainty in

Riyadh, Saudi Arabia using Bayesian updating and Flexible Design", 2018.

Abstract: Water supply infrastructure planning in groundwater-dependent regions re-

quires predictions of the impact of pumping on the groundwater system in order to ensure

that withdrawals can be used to reliably and sustainably meet demand. However, ground-

water models often have high predictive uncertainty due to the heterogeneity of groundwater

aquifers in combination with typically limited data availability. Previous work has assessed

the impact of uncertainty in aquifer hydraulic conductivity (𝐾) and storativity (𝑆) on hy-

draulic head predictions and the potential for new head observations to reduce uncertainty.

Here we extend this work to assess the impact of additional head observations not only

on predictive uncertainty but also on infrastructure planning from a systems perspective.

Further, we assess the potential for flexible infrastructure planning to manage predictive

groundwater uncertainty. To do this, we develop an integrated modeling approach that uses

Bayesian inference on a groundwater model to characterize a multi-stage stochastic program.
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An artificial neural network serves as a statistical surrogate of a numerical groundwater in

order to make the problem computationally tractable. This allows us to derive and assess

flexible planning strategies using engineering options analysis. We apply this approach to a

desalination planning case in Riyadh, Saudi Arabia, where poor characterization of a fossil

aquifer creates uncertainty in how long current groundwater resources can reliably supply

demand. We find that a flexible planning approach has large value in mitigating the risk of

over-building infrastructure with minimal reliability risk.

4.1 Introduction

Water planners face the challenge of developing policies, infrastructure, and management

strategies to ensure that high-quality reliable water supply is available to meet societal de-

mand in the future. This requires predictions about future water availability and demand.

However, predictions face uncertainty due to limited information to characterize water sys-

tems today and how they will evolve in the future. Groundwater resources in particular

often face substantial predictive uncertainty. The high degree of spatial heterogeneity in

groundwater aquifers combined with data limitations often makes it difficult to accurately

estimate key parameters such as hydraulic conductivity. However, filling in knowledge gaps

with additional observations can reduce predictive uncertainty [31, 117]. This in turn en-

ables more reliable and efficient planning. Therefore, if poor aquifer characterization makes

it difficult to know when current withdrawals will become unsustainable, a flexible infras-

tructure development plan that can adapt as more information is collected may maintain

reliable, sustainable water supply without over investment.

Assessing uncertainty in hydrological modeling, and in groundwater in particular, has

a long history [40]. Recently, much attention has been paid to the value of the calibration

process in reducing predictive uncertainty in groundwater modeling [111]. Bayesian calibra-

tion methods, in which observations are used to update a prior distribution of parameters,

are increasingly applied to groundwater inverse problems. Approaches can use either formal

likelihood methods [100] or a generalized likelihood uncertainty estimation approach, which

takes a broader view of the likelihood function that incorporates analyst judgment [15].

Prior work has also assessed the value of new data in reducing predictive uncertainty. Tar-

geted investment in specific types of data, strategic locations of data, or additional volume
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of data and incorporating it into the calibration process can reduce predictive uncertainty

[31, 50, 117, 173]. Bayesian calibration is typically computationally expensive due to the

need to use Monte Carlo approaches to numerically calculate the posterior; however, algo-

rithmic advances and approximate approaches are reducing this barrier [21]. Kalman filters,

a form of recursive Bayesian inference, have been applied in groundwater applications such

as hydraulic head prediction using multiple conceptual models [172] and joint inference of

head and recharge [46].

Recent work has also highlighted the importance of predictive uncertainty in ground-

water management decisions [36]. Groundwater management models typically combine a

simulation model, such as a numerical groundwater model, with an optimization model; a

wide variety of techniques exist [125]. Stochastic and robust optimization methods for in-

corporating uncertainty into groundwater management models have existed since the 1980s

[160]. However, embedding a groundwater simulation model into an optimization model

is computationally expensive; the optimization may require many thousands or millions of

calls of a simulation model that is already time consuming. Past approaches have used

simplified groundwater simulation models, such as a response matrix/unit impulse approach

[71, 160], analytical models [120], or statistical surrogate models [9]. Only a limited number

of groundwater management models use a multistage stochastic decision approach, in which

a decision in an early stage must be made in the face of uncertainty that will be realized

in a later stage. Two-stage stochastic linear programming models typically use a simple

groundwater planning formulation and/or an inexact solution approach [76, 81].

Multistage stochastic optimization models are powerful, despite their computational ex-

pense. These models, such as stochastic dynamic programming SDP, allow the user to iden-

tify an optimal action for each possible state of the system, accounting for uncertainty across

all possible future states. Non-stationary formulations can be used to represent how uncer-

tainty can change over time. These approaches are therefore widely used in other domains

in the evaluation of flexible infrastructure planning, in which infrastructure is designed to be

able to change in the future [167]. The performance of flexible planning strategies can be be

evaluated using engineering options analysis (EOA), in which simulation models are used to

evaluate the tradeoffs between flexible and static approaches [33]. Fletcher et al. (2017) [51]

use decision analysis to evaluate flexible desalination plant design for drought resilience in

the face of both uncertain runoff and demand growth. EOA has also been applied to water
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distribution network design [101], and adapting water supply systems to climate change [53].

Multi-stage flexible pumping strategies for groundwater remediation have been developed

using dynamic programming and other multistage optimization approaches [124, 139, 29].

This study applies a multistage stochastic optimization model to water supply infrastruc-

ture planning under predictive groundwater uncertainty. We combine SDP with Bayesian

inference to develop a planning model that assesses the potential for future observations to

reduce uncertainty over time. Additional groundwater data can not only reduce uncertainty

in the predictions from a groundwater model, but also mitigate the uncertainty impacting

groundwater management decisions. We therefore link potential reductions in predictive un-

certainty to a planning model that evaluates new water supply infrastructure alternatives.

This demonstrates the value of additional information in both predictive power and in key

planning metrics like reliability and cost. Finally, we use the planning model to develop

flexible infrastructure strategies and use EOA to assess their potential to mitigate risk. As

uncertainty is updated over time using the Bayesian inference approach, flexible options can

be exercised in response. Our approach addresses computational constraints by training an

artificial neural network (ANN) on a numerical groundwater model to serve as a statistical

surrogate model that can be efficiently embedded in an SDP.

We apply this approach to a case from Riyadh, Saudi Arabia where non-renewable fossil

aquifers comprise half of the city’s water supply. Large withdrawals from these aquifers over

the past 30 years have led to substantial decline in hydraulic head; eventually, maintaining

current withdrawal rates with existing pumping infrastructure will no longer be possible.

However, these aquifers are poorly characterized, leading to substantial uncertainty in how

quickly hydraulic head will decline and therefore when a transition to alternative supply will

be necessary. As Riyadh considers expensive investments in desalination and new ground-

water development to replace current groundwater supply, planners can ensure reliability

without over investment by monitoring head decline over time, updating predictions, and

adapting as needed. We evaluate a flexible planning approach in which, rather than deciding

upfront whether or not to develop new infrastructure over a 30-year planning period, the

decision to develop infrastructure is deferred. However, a small upfront investment is made

to enable new infrastructure to be developed quickly if and when it is needed.

The remainder of this paper is organized as follows. Section 4.2 presents the method in

a generalized form. Section 4.3 applies this method to a case from Riyadh, Saudi Arabia,
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and Section 4.4 presents results. Section 4.5 concludes with summary and discussion.

4.2 Modeling approach

The primary contribution of this paper is to integrate existing tools to develop a method to

assess the value of groundwater information and the value of adaptive, flexible planning in

mitigating the risk of predictive uncertainty in groundwater management. We use Bayesian

inference with a numerical groundwater model to update prior distributions of key aquifer

parameters and therefore predictions about head in the future. These predictions are em-

bedded in a SDP where each state of the model in future time periods serves as a potential

hypothetical future observation. The SDP model is then used to evaluate flexible planning

options, which are evaluated using EOA.

This method is implemented using the following steps, illustrated in Figure 4-1:

1. Use a groundwater model to characterize predictive uncertainty in hydraulic head.

This generates a prior distribution for hydraulic head over time that reflects the best

available information at the beginning of the planning period.

2. Apply Bayes’ theorem to develop posterior distributions for hydraulic head that up-

date uncertainty to reflect possible future observations. The state space of the SDP

comprises possible future values of hydraulic head. Each state value is applied as

an observation in Bayes’ theorem to assess how our understanding of uncertainty will

change if that future state of hydraulic head is reached. A surrogate model, in which an

ANN is trained on the groundwater model output, is used to enable efficient numerical

integration to calculate the posteriors.

3. Develop a multistage SDP in which the transition probabilities (the probability of going

from a certain head level in time t to a different head in time t+1) are characterized

using the posterior distributions from step 2. Use the SDP results to develop flexible

water infrastructure strategies that take into account the potential to learn in the

future.

4. Evaluate flexible infrastructure strategies and compare to traditional static planning

approaches using EOA.

67



1

1
Stochastic 
Dynamic 

Programming

Groundwater model  
with 

Bayesian Inference

MODFLOW Transition 
probabilities

Costs, 
Actions

Flexible 
infrastructure

expansion 
policy

Artificial Neural 
Network

Flexible vs. Static 
planning alternatives

Performance 
of flexible 
planning

Engineering 
Options Analysis

Figure 4-1: Schematic of method used to develop and evaluate flexible infrastructure ex-
pansion policies that account for the potential to learn about uncertainty over time. The
method integrates a numerical groundwater model and its ANN-based statistical surrogate
into a multi-stage stochastic dynamic program. Bayesian inference is used to characterize
the transition probabilities; each state of the SDP is treated as a hypothetical future obser-
vation and used to update the prior parameter distribution using Bayes’ theorem. EOA is
used to assess the performance of the flexible alternative and compare to traditional static
planning alternatives.

Characterizing predictive uncertainty using a groundwater model

A groundwater simulation model is used to predict hydraulic head ℎ in the future as a

function of an uncertain input parameter vector 𝜃. In our application, ℎ is the hydraulic

head in a single representative well, and 𝜃 comprises the 𝐾 and 𝑆 of a confined aquifer. We

use the finite difference groundwater model MODFLOW [65]. This model can be interpreted

as an operator 𝑔 mapping parameter values 𝜃 to predicted state variable values ℎ.

ℎ(𝑡) = 𝑔[𝜃, 𝑡] + 𝜖 (4.1)

Predictive uncertainty arises from uncertainty in the model parameters 𝜃 and the mea-

surement 𝜖 error. A prior parameter distribution 𝑝(𝜃) and error distribution 𝑝(𝜖) is devel-

oped. In our application where historical head data is limited, we use parameter estimates

from a government hydrogeological study to characterize 𝑝(𝜃) and assume a normal error dis-

tribution with variance of 5m; future applications could use Bayesian calibration approaches.

We assume that the pumping rate is fixed over time.
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Because our approach requires numerical calculation of many posterior distributions us-

ing the groundwater model, we develop a surrogate model 𝑔′ that captures the key dynamics

of 𝑔 with greater computational efficiency. Our application uses an ANN, trained on 400

runs of the MODFLOW model with a variety of parameter inputs. This provides an in-

stantaneous mapping from any realization of 𝜃 to the corresponding value of ℎ(𝑡). This

surrogate approach, rather than an analytical alternative like a response matrix, enables

generalization to unconfined nonlinear groundwater models in future applications.

Monte Carlo simulation is used to sample from 𝑝(𝜃) and 𝑝(𝜖), and run a forward simula-

tion of head over time for each sample. We use this simulations to develop a 99% confidence

interval for head over time; this is used as the feasible range in the SDP. This feasible range

is then discretized to create ℎ𝑑𝑖𝑠(𝑡). The values in the set ℎ𝑑𝑖𝑠(𝑡) will serve as potential

hypothetical future observations in the Bayesian inference. The discretization granularity

should be informed by the range of the set and the SDP formulation; our application uses

1m resolution in hydraulic head.

Bayesian inference to characterize SDP transition probabilities

The objective of a SDP is to minimize the sum of the current costs plus the expected future

costs over a set of possible actions 𝑎(𝑡). The expected future costs are calculated using the

transition probabilities 𝑝(ℎ(𝑡 + 1) |ℎ(𝑡), 𝑎(𝑡)) which describe the probability of being in a

certain state in the next time period given the current state and action. In our application,

the transition probabilities describe the probability distribution of drawdown in head in the

next time period given the head today and pumping rate. By using non-stationary transition

probabilities, in which the distribution for head in the next time period can change over time,

we take into account the potential to learn about predictive uncertainty in the future.

The transition probabilities are characterized using Bayesian inference. 𝑝(𝜃) serves as

the prior parameter distribution. The observation used to update the prior is taken from

ℎ𝑑𝑖𝑠(𝑡); all values in ℎ𝑑𝑖𝑠(𝑡), which correspond to the state values for head in the SDP,

are used in turn to calculate posterior distributions and therefore transition probabilities

for each possible state in the SDP. The likelihood function 𝑝(𝑜 | 𝜃) is characterized using

equation 4.1.
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𝑝(𝜃 | 𝑜) = 𝑝(𝑜 | 𝜃) * 𝑝(𝜃)/𝑝(𝑜)

𝑜 ∈ ℎ𝑑𝑖𝑠(𝑡)
(4.2)

Because no analytical form of the posterior exists, numerical integration is used to esti-

mate the posterior; Markov chain Monte Carlo (MCMC) methods could also be applied.

Deriving and evaluating flexible groundwater management strategies

With the transition probabilities now characterized, the SDP can be formulated. The ob-

jective is given by the Bellman equation:

𝑉 (𝑠, 𝑡) = argmin
𝑎∈𝐴

𝐶(𝑠(𝑡), 𝑎(𝑡), 𝑡) + 𝛾
∑︁
𝑠∈𝑆

𝑝(𝑠(𝑡 + 1) | 𝑠(𝑡), 𝑎(𝑡)) * 𝑉 (𝑡 + 1, 𝑠(𝑡 + 1)) (4.3)

where 𝑉 (𝑠, 𝑡) is the optimal action for state 𝑠 at time 𝑡, 𝐶 is the cost of the current

time period, 𝛾 is the discount rate, 𝑎 and is an action taken from the set 𝐴 of possible

actions. The actions here are planning or management decisions undertaken by the water

planner. They could include pumping volumes, demand management policies, and building

new infrastructure. Costs are a function of the current state, time period, and action; they

can include capital and operating costs of infrastructure as well as penalties for failing to

meet demand or other performance metrics. The sum in the above formulation calculates

the expected future cost; this can be extended to other decision criteria. For example, a risk

averse planner may prefer to minimize the 5th percentile of future cost.

Flexibility in groundwater management can take many forms. Adaptive pumping policies

can enable the resilience of groundwater resources by limiting withdrawals when aquifers

are most vulnerable. Demand reduction policies can be triggered during times of scarcity.

Infrastructure can be designed to change operations or expand capacity when needed. In

our application, we focus on flexible infrastructure planning, in which the development of

new infrastructure is conditional on the future state of the groundwater system. Planners

can make design and siting decisions upfront, enabling timely development in the future

if needed. In this method, flexibility is evaluated through the use of an action space that

varies as a function of the state of the system and time. This enables modeling of the

management or planning policies described above that are dependent on, for example, the

level of hydraulic head and water demand.
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The key value of using a multi-stage stochastic programming approach in combination

with Bayesian inference, as opposed to deterministic or robust optimization approaches, is

that it explicitly allows for assessing how uncertainty can change over time as new informa-

tion is collected and develop strategies that can anticipate this change in advance.

4.3 Application to Minjur aquifer in Riyadh, Saudi Arabia

The region of Riyadh had a population of 7.7 million in 2014 up from 5.5 million in 2004.

[143]. Growing at an average of 3.5 % a year between 2004 and 2014 [143], Riyadh is both

the most populous and fastest growing region in Saudi Arabia. Demand per capita including

losses is currently about 300 liters per person per day (l/p/d), totaling an average of 1.86

MCM/d supplied in 2016 [6]. A highly arid region, receiving on average only 24 millimeters

(mm) of rainfall per year [30], Riyadh’s water needs are supplied by seawater desalination

piped from the Arabian Gulf and groundwater extraction. In 2016, desalination supplied an

average of 1.4 million cubic meters per day (MCM/d) of water to Riyadh and groundwater

supplied 1.07 MCM/d, over 90% of which came from deep fossil aquifers [30]. The Minjur

aquifer comprises the largest share of these aquifers, supplying about 300,000 cubic meters

per day (m3/d).

The Minjur aquifer, which is the focus of our study, has faced substantial drawdown

of hydraulic head due to the combination of large withdrawals and minimal recharge. The

government has announced plans to promote efficient water use using tariff reform and reduce

leakage in the distribution system, aiming to reduce net demand per capita to 170 l/p/d by

2030 [6]. Additional desalination capacity serving Riyadh is planned to be added in the next

few years. About 370,000 m3/d of treated wastewater is currently reused in agriculture,

landscape irrigation, and industrial applications, with goals to increase wastewater reuse

in additional applications. [30]. However, Riyadh’s water supply plans assume continued

withdrawals from the Minjur at the current rate, or perhaps adding additional groundwater

development. As the aquifer continues to drawdown, the current rate of withdrawals will

eventually become uneconomical, even with substantial subsidies, or technically infeasible

for existing pumping infrastructure.

A key challenge in planning for depletion of the aquifer is the substantial uncertainty in

predicting how quickly hydraulic head in the aquifer will drawdown, even if pumping rates
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remain constant. Estimates for 𝐾 and 𝑆 range from 1.39 × 10−5 m/s to 5.31 × 10−4 m/s and

1.00 × 10−4 to 1.12 × 10−3 respectively [41]. Calibrating a numerical groundwater model to

more precisely characterize the transmissivity and storativity of the Minjur in the Riyadh

region, as well as the spatial heterogeneity of those parameters, requires large volumes of

water monitoring data. In Riyadh as in many regions, this type of data is limited.

We apply our planning framework with uncertainty updating to assess 1) how predictive

uncertainty in aquifer depletion rates can be updated over time and 2) how flexible, adaptive

infrastructure planning can be used to mitigate risk from this uncertainty. In particular, we

model the development of new desalination infrastructure to replace withdrawals from the

Minjur. We contrast a traditional, static planning approach in which water planners decide

at the beginning of a 30-year planning period whether or not to build new infrastructure

with a flexible approach. In the flexible approach, planners observe hydraulic head over time

and decide if and when to build additional capacity based on updated depletion prediction.

To facilitate this approach, planners take advance preparations in the form of design, siting,

permitting, initial contracting, etc. so that infrastructure can be developed quickly to avoid

reliability outages if and when it becomes clear that it is needed.

Groundwater model

The Minjur is a Triassic aquifer composed primarily of sandstone and shale, extending over

800 km across the central Arabian peninsula. There is an outcrop area approximately 100

km west of Riyadh. The aquifer is estimated to be 315 m thick in the Riyadh area. Recharge

in the outcrop area is small, estimated between 3 and 25 mm per year [5, 169].

We model the Minjur aquifer in the Riyadh area using the numerical groundwater mod-

eling software MODFLOW [65]. The model is based on that of [169], which is a study

by the United States Geological Survey (USGS) that was used in the Saudi government’s

1984 Water Atlas [109]. While numerical groundwater modeling techniques have progressed

substantially since the 1980s, the USGS report is the most recent publicly available study of

the Minjur, and it provides a simple model appropriate for demonstrating our framework.

Following the USGS study, we use a 423 kilometer (km) by 288 km two-dimensional rect-

angular grid with 315 meter (m) thickness. The lower left corner of the grid is positioned

at latitude 22.5° and longitude 45.79°, putting Riyadh and the major pumping well fields

in the center of the study area. The left side of the grid is bounded by an irregular no-flow
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boundary representing the outcrop of the aquifer. The rest of the grid is also bounded by

no-flow boundaries; these boundaries are far enough away that they have negligible impact

on the main study area in and surrounding Riyadh. The grid cells are 1 km x 1 km in the

main study area and gradually increases to as large as 15 km. While the large grid spacing

may underestimate drawdown in individual wells, it allows us to keep the computational

cost of the model small and is appropriate for assessing long-term regional impacts on head

[8]. The study area, including groundwater pumping and desalination infrastructure, and a

sample simulation of the groundwater model are shown in 4-2. A hydrostratigraphic cross

section is shown in Figure 4-3.

To characterize the predictive uncertainty in head, we fit prior densities for 𝐾 and

𝑆 using the ranges described above; 𝐾 is assumed lognormal and 𝑆 uniform. Because

of data limitations and for simplicity, we assume these parameters are uncorrelated and

homogeneous throughout the aquifer and do not calibrate to monitoring targets. Future

work could include MCMC [68, 98] or null-space Monte Carlo [159] methods to generate

random fields of parameters consistent with calibration targets.

We model the impact of 120 pumping wells in the Riyadh area. The locations and

historical pumping rates of these wells are provided in [169]. We have 2010 data on 60 of

these wells which account for over 80% of the withdrawals. The starting head is between

200 and 250 meters below land surface (m.b.l.s.), the range reflects a substantial cone of

depression around Riyadh. Recharge is assumed to be 5 mm/y in the outcrop area. We use

a transient model with a 30-year simulation horizon and weekly time steps.

In order to develop a fast, statistical surrogate model that can be efficiently embedded

in the SDP model, we train an ANN on the output of the MODFLOW model. Latin hyper-

cube sampling is used on the prior parameter distributions to generate 400 K and S samples

as input to the MODFLOW model, yielding 400 output time series of hydraulic head. Pre-

and post-processing was completed using the Python library FloPy (Bakker et al., 2016).

One representative well, chosen from the largest well field in the center of Riyadh, is used

to represent head decline in the planning model. We therefore train the ANN to predict the

30-year time series in that well, using K and S as inputs. MATLAB is used to train a 2-layer

feed forward network; the RMSE is about 1 m. Details on the ANN architecture and skill

are provided in Appendix B.
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Figure 4-2: Top: Schematic of MODFLOW grid with hydraulic head contours from one
sample simulation. Pumping wells shown with red dots. Outcrop area colored black on left
side of grid. Bottom: Study area with grid location, Riyadh city center, and location of
proposed desalination plant in Jubail.

74



Minjur
aquifer

Figure 4-3: Hydrostratigraphic cross section of study area including Minjur aquifer. Repro-
duced and edited with permission from [41]

Planning Model

We formulate a planning model that represents a simplified version of the planning challenges

described above but captures the key dynamics of the uncertainty in head decline. We use

the head in a single well as a proxy for hydraulic head decline; we choose a well in the Salbulk

well field, which comprises the largest share of withdrawals from the Minjur, close to the

center of the cone of depression around Riyadh. Discussions with planners indicate that the

most immediate threat to current withdrawals is the technical ability of current pumping

infrastructure to continue to operate if hydraulic head goes below approximately 300 m.b.l.s..

Therefore, we impose a drawdown limit of 50 m; beyond this limit pumping is infeasible, and

planners must either supply water from new sources or incur penalties for unmet demand.

We consider one representative new infrastructure alternative: a desalination plant with 108

MCM/y of capacity, sized to replace all withdrawals from the Minjur aquifer. The Bellman

equation in 4.3 is therefore parameterized as follows in Equation 4.4:
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𝑆 = {ℎ𝑡, 𝑥𝑡}

𝐴 = {𝑝𝑡, 𝑒𝑡(𝑥𝑡)}

𝐶𝑡 = 𝑃 (ℎ) * 𝑝𝑡 + 𝐸 * 𝑒𝑡 + 𝑂 * 𝑥𝑡 * 𝑒𝑡 + 𝑆 * max(0, 𝐷 − 𝑥𝑡)

(4.4)

where

• 𝑡 = time step in the model in years between 1 and 30

• ℎ𝑡 = hydraulic head (meters) in representative well at time 𝑡

• 𝑥𝑡 = desalination capacity (MCM/y) at time 𝑡. 𝑥𝑡 starts at 0 and changes to 108 two

years after the expansion option is exercised if at all.

• 𝑝𝑡 ∈ {0, 1} where 0 and 1 indicate respectively that pumping is off or on at time 𝑡

• 𝑒𝑡(𝑥𝑡) =∈ {0, 1} where 0 and 1 indicate respectively that infrastructure option 𝑖 is not

expanded or expanded. If 𝑥𝑡 = 108, indicating that the desalination plant has already

been added, then 𝑒𝑡 is constrained to equal 0.

• 𝑃 (ℎ) = Marginal cost of pumped groundwater at hydraulic head ℎ (USD/MCM)

• 𝐸= Infrastructure expansion cost (USD)

• 𝑂= Desalination marginal cost (USD/MCM)

• 𝑆 = Shortage cost (USD/MCM) reflecting damages that are incurred if the depth limit

is reached before adding desalination infrastructure, and

• 𝐷 = Demand (MCM/y), assumed to be 108 equivalent to estimates for current with-

drawal rates from the Minjur.

Details of the cost assumptions using in the formulation can be found in Appendix B.

The transition probabilities for the individual state variables are assumed to be inde-

pendent. The transition probabilities for hydraulic head are determined by the groundwater

model and Bayes’ theorem as described in equations 4.1 and 4.2. The transition for the

capacity state is deterministic, determined by the expansion action 𝑒𝑡. We assume the

desalination capacity is available two years after the decision to expand. This reflects the

flexible planning process described in the previous section in which upfront planning enables

timely capacity additions.
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4.4 Results

We now present results from the application of the method to the case in Riyadh. First, we

examine the potential for Bayesian learning about predictive groundwater uncertainty by

simulating potential future observations. Then, we demonstrate the impact of integrating

this learning into the stochastic planning model and derive the optimal capacity expansion

policy under uncertainty. Finally, we use the optimal expansion policy to simulate the

performance of the flexible approach in comparison to two static alternatives.

Groundwater Bayesian learning

We generate a confidence interval for hydraulic head predictions in our representative pump-

ing well using Monte Carlo simulation: we sample many realizations of 𝐾 and 𝑆 from 𝑝(𝜃)

and apply the ANN groundwater model 𝑔′. The initial predictive uncertainty is quite large

due to the substantial uncertainty in both 𝐾 and 𝑆 — more than an order of magnitude

for each parameter. A 90% confidence interval shows that hydraulic head in the well if

current pumping rates continue could range between 305 meters above sea level (m.a.s.l.)

and 245 m.a.s.l., based on a starting head of 337 m.a.s.l. The drawdown limit beyond which

the current pumping infrastructure is no longer able to withdraw water is at 287 m.a.s.l.

Therefore, at he beginning of the planning period, there is substantial uncertainty about

whether this limit will be reached over 30 years.

However, the application of Bayes’ theorem to new observations enables substantial

reduction of this uncertainty. This is shown in Figure 4-4. On the right side, samples from

the 𝑝(𝜃) are shown; the corresponding confidence intervals are at left. At each time step,

a new hypothetical observation 𝑜 is sampled from within the existing confidence interval

for that time period. This hypothetical observation is used to update 𝑝(𝜃) to get 𝑝(𝜃|𝑜).

In the next period, a new set of samples is drawn from 𝑝(𝜃|𝑜) and used to simulate a new

confidence interval for hydraulic head. The updating process is done on a yearly time step;

however, the results are shown bi-yearly in figure 4-4 for visual clarity. Different color shades

are used to distinguish time steps; the darkest red samples correspond to the last time step.

These dark red samples span a reduced subset of the original parameter space, showing that

the model is able to infer which possible combinations of 𝐾 and 𝑆 could have led to the

simulated observations.
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Figure 4-4: A single simulated time series of hydraulic head observations are used to update
the parameter distribution (right) and therefore the distribution for projected head (left).
The darker red colors highlighting a subset of samples in the prior parameter space indicate
the ability of the simulated observations to narrow in on a smaller range of realizations of 𝐾
and 𝑆 that could have led to those observations. These updated parameter samples are used
in turn to update the predictive uncertainty in hydraulic head. The large reduction in the
confidence interval indicates high value of information; however, the value of information
faces diminishing returns with additional observations.

This result shows the high value of information in reducing predictive uncertainty. By

year 10, the 90% confidence interval has been reduced by half. These early observations

have large value because the uncertainty at the outset was so large. Between years 10 and

years 20, the confidence interval continues to narrow but at a much slower rate. The value

of these observations faces diminishing marginal returns over time as the uncertainty is

reduced. Note that this plot shows one possible simulated set of observations in which the

final hydraulic head does not reach the drawdown limit. A different simulation may, for

example, show a more rapid depletion rate of the aquifer in which the confidence intervals

instead narrow at the bottom half of the original confidence interval. Across many tested

time series of simulated observations, we observe a similar pattern of narrowing confidence

intervals with large but diminishing value of information in reducing predictive uncertainty.
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Figure 4-5: The SDP results provide a hydraulic head threshold beyond which expanding
desalination capacity is optimal. The threshold is above the depth limit so that desalination
capacity can come online after two years without incurring shortage damages in the interim.
This threshold approaches the depth limit as time increases, reflecting that a particular head
observation in later time periods reflects a slower drawdown rate than the same observation
made in an earlier time period would have.

SDP

As described in the previous section, a single simulated set of hypothetical future obser-

vations reduces the predictive uncertainty in the groundwater model over time. The SDP

models all the possible hypothetical future observations probabilistically through the use of

the transition probabilities. The hypothetical observations correspond to possible hydraulic

head states in the SDP state space. The optimal expansion policy in time period 𝑡, therefore,

describes the best decision given the remaining uncertainty that exists after the information

based on the current hydraulic head state is used to update the future uncertainty. It is a

function of both the hydraulic head and time.

Figure 4-5 shows the drawdown threshold for the decision to add desalination capac-

ity. Beyond this threshold, the optimal policy is to add desalination capacity if none has

already been added. If the threshold has not been reached in a particular time step, the

optimal policy is to not add new capacity. As seen in the figure, the drawdown threshold is
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monotonically decreasing in time; it approaches the depth limit at the end of the planning

horizon. This pattern arises from the learning process described in the previous section. If

an early observation in year three, for example, shows a hydraulic head of 300 m, we infer

that we must have relatively low values for 𝑆 and/or 𝐾 and will likely continue on rapid

drawdown path. Therefore, while the head is still 13 m from the depth limit, there is a

high probability that the hydraulic head will reach the limit in the next two years. This

necessitates a decision today to add capacity that will become available in two years in order

to prevent shortages. Observing a hydraulic head of 300 m in year 15, however, indicates

a much slower drawdown rate. Therefore, the optimal expansion threshold is closer to the

drawdown limit because the risk of rapid head decline in the two years it would take the

desalination plant to come online is much lower.

Engineering options analysis

Next, we use the transition probabilities and the optimal policy results from the SDP to

simulate 1000 time series for hydraulic head and the capacity expansion decisions, respec-

tively. These simulated time series are used to assess the cost and reliability performance of

the flexible desalination strategy and compare it to static planning alternatives.

Figure 4-6 shows the distribution of capacity expansion decisions across the 1000 sim-

ulations. As indicated by the black bar at the right of the plot, desalination capacity is

never added in just under half of the simulations. In these simulations, the drawdown of

hydraulic head is slow, never crossing the drawdown expansion threshold. However, in over

half of simulations, desalination capacity is added, and the time at which it is added varies

considerably. Sometimes, as early year 8, a decision is made to bring new capacity online,

indicating a very rapid drawdown rate. There is a gap in years 15-17 in which few expansion

decisions are made. This corresponds to years where the amount of uncertainty reduction in

hydraulic head prediction is limited because the range of annual drawdown across different

groundwater models is more similar; if we have not learned enough to make the expansion

decision before year 15, we are unlikely to learn enough in years 15-17 to make that decision

either. Finally, the frequency of expansion tapers off around year 21. This is because of

the planning formulation; when the desalination plant is brought online late in the planning

period, it only provides value for a small number of years. Therefore, it is often optimal to

incur shortage damages for a short time instead. This is a known limitation of finite-horizon
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Figure 4-6: Histogram showing whether and when desalination capacity is added across 1000
forward simulations. The desalination plant is added in a little under half of simulations.
When desalination capacity is added, the timing of that decision variables considerably.
This variation is driven primarily by differences in the parameter realizations of 𝐾 and 𝑆
across simulations. However, different rates of learning and the finite-horizon formulation
of the SDP also contribute to the pattern of time variability.
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SDP models; they discourage investment late in the planning period when in reality those

investments would bring value in the years after the planning horizon ends. The late-period

results should therefore not guide planning decisions.

Finally, the performance of this flexible strategy across 1000 simulations is compared to

the two static alternatives: one in which the desalination plant is built at the start of the

planning period, and one in which the desalination plant is never built. Figure 4-7 presents

cumulative distribution functions (CDF) of the total cost 𝐶 over the 30-year planning period

for each of the three planning alternatives. As described in the previous section, this cost

includes capital and operating costs for the desalination plant, groundwater pumping costs,

and damages for any water shortages incurred. The static no-build alternative, shown in

orange, incurs only pumping costs in about 50% of simulations; this is shown by the vertical

section of the CDF in the lower half of the plot. In the upper half of the plot, however, we see

that the no-build alternative incurs substantial shortages in more than half of simulations.

The static build alternative is a little over half a billion dollars more expensive than the

no-build alternative in the 50% of simulations when shortages are not incurred; this is seen

in the bottom half of the plot. This difference reflects the capital cost of the desalination

plant and demonstrates that the static build alternative faces substantial over-build risk.

In the upper half of the plot, however, we see that the presence of the desalination plant

eliminates the risk of water shortages; the modest cost increases in the blue line here reflect

increasing pumping costs and the presence of desalination operating costs.

The flexible alternative mitigates both the over-build risk faced by the static build al-

ternative and the reliability risk faced by the static no-build alternative. In the top half of

the plot, the yellow line representing the flexible alternative nearly overlaps the blue line.

This shows that it eliminates nearly all the shortage damages. Small deviations to the right

of the blue line show small shortages that are incurred either by bringing the desalination

plant online slightly too late or by not building at the end of the planning period. In the

bottom half of the plot, we see that the flexible alternative overlaps the static no-build op-

tion in about 40% of simulations, indicating its ability to prevent over-building. In the 10%

of simulations between the 40th and 50th percentiles approximately, the flexible alternative

does over build; it is aligned with the more expensive build option rather than the less ex-

pensive no-build option. Because of this and the small deviations at the top of the plot, the

flexible alternative does not completely stochastically dominate the other two alternatives.
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Figure 4-7: CDF of total cost by infrastructure alternative. Costs include capital and op-
erating cost of desalination infrastructure, groundwater pumping costs, and damages for
water shortages. The flexible planning alternative mitigates almost all the reliability risk
in comparison to static no-build alternative. It also prevents overbuilding in comparison to
the static build alternative in about 80% of simulations. The flexible alternative saves an
expected $200 million and mitigates both upside and downside risk substantially, demon-
strating high value of flexibility. Horizontal axis truncated for visual clarity; no-build costs
increase to a maximum value of $45 billion
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However, it clearly eliminates most of both the upside and downside risk. The advantages

of the static alternatives are limited. Further, its expected cost of $2.28 billion is modestly

lower than the $2.47 billion of the build alternative and substantially lower than the $13.23

billion of the no build static alternatives respectively. The value of flexibility, therefore, is

high.

Sensitivity Analysis

These results rest on a number of assumptions made in the groundwater model and planning

formulation. Two assumptions that often strongly influence the results in infrastructure

planning problems are the discount rate and the value of reliability, which is formulated

here as a cost imposed on any water shortages that are incurred. In the results presented

previously we assume no discounting. While investment decisions are typically made under

discounted cash flow assumptions, this choice enables us to highlight the value of flexibility

even in the absence of discounting, which incentivizes the delay of capital investments. Here

we assess the impact of adding a 5% discount rate. The previous results also assumed a

shortage cost of $20/m3, based on World Bank estimates of water productivity in Saudi

Arabia. [158]. We now present results varying this shortage cost to be $5/m3and $50/m3.

Figure 4-8 again presents CDFs of the total cost of the three planning alternatives across

1000 simulations as Figure 4-7 did; now, scenarios for a 5% discount rate, $5/m3 shortage

cost and $50/m3 shortage cost are shown. These plots show that while the precise perfor-

mance of each of the alternatives varies across scenarios, the high value of flexibility does

not. The flexible alternative outperforms the other two on expected value, 90th percentile

costs, and 10th percentile costs, highlighting again that there is little advantage to either of

the static alternatives. When a 5% annual discount rate is added, the flexible alternative

performs even better than before. It almost completely stochastically dominates the other

two, with the exception of about 5% of simulations around the 50th percentile where it

overbuilds. The only significant impact of the high shortage cost is to make the no-build al-

ternative perform substantially worse. The horizontal axis is truncated for visual clarity; the

90th percentile costs reach 82 $ billion. The lower shortage cost improves the performance

of the flexible alternative by decreasing the frequency of overbuilding. Thus we conclude

that high value of flexibility with few trade-offs in comparison to the static alternatives is

robust to changes in discount rate and shortage cost, both of which often impact the value
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of flexibility substantially.

4.5 Discussion

Our results highlight both the value of information and the value of flexibility in reducing

and managing predictive groundwater uncertainty. The application in Riyadh, Saudi Arabia

assesses a planning problem in which alternative supply sources, in this case desalination,

must be developed in response to aquifer depletion. A traditional planning approach would

use the best hydrogeological studies available — or commission an expensive new study —

to make predictions about future water availability, and make plans to develop alternative

sources in the future based on the best prediction today. Even our best predictions, however,

are subject to uncertainty. Fully characterizing the transmissivity and storativity of an

aquifer requires a large amount of data that is often not available, especially in the developing

world. Characterizing this uncertainty and making plans that explicitly acknowledge the

possibility of unexpected outcomes can enable plans that are robust to a wider range of

futures.

However, while it is important to account for uncertainty in planning, it is also impor-

tant to asses the extent to which that uncertainty can be reduced in the future with new

information. Bayesian calibration methods have enabled probabilistic characterization of

predictive groundwater uncertainty and demonstrated the value of additional data in reduc-

ing that uncertainty. In this study, we build on these approaches by connecting predictive

uncertainty to planning decisions. We assess the value of information not only in reducing

predictive uncertainty, but also in enabling effective planning under uncertainty. Further,

we show that flexibility, when combined with uncertainty reductions over time, can enable

reliable planning decisions at reduced cost compared to static, robust approaches. In this

case, we found the high value of flexibility to be robust to variations in the cost of water

shortages, or how much value society places on water reliability.

We achieve this by developing a new planning framework that combines Bayesian infer-

ence on a high-fidelity groundwater model with multi-stage stochastic programming; this

is made computationally tractable through the use of a ANN-based statistical surrogate

model. This optimization approach enables planners to develop strategies that explicitly

account for the range of uncertainty in the future and to choose different, adaptive actions
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Figure 4-8: Sensitivity analysis
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as the state of the system evolves over time. Uncertainty is characterized using transition

probabilities, which describe the probability distribution for the state of the system in the

next time period given the state today. Our approach characterizes these transition proba-

bilities using Bayesian inference on a groundwater model, allowing us to model the potential

for a certain hypothetical future observation to update the uncertainty. We can infer, for

example, that observing only 10 m of drawdown in hydraulic head after 20 years means that

we must have relatively high 𝐾 and storativity and therefore that low drawdown will likely

continue in the future. Including this potential future information — across all the possible

observations we might encounter — enables adaptive strategies that account for the fact

that we can learn in the future.

Each of the individual components in this analysis – MODFLOW, ANNs, SDP, Bayesian

inference — is a well established existing method. The methodological contribution here lies

in a novel framework that integrates them in a novel way to support water supply planning

that accounts for uncertainty, learning, and flexibility using our best physical understanding

of the system. This integration is enabled by the use of a statistical surrogate model, in this

case an ANN trained on a MODFLOW model, which captures the dynamics of a non-linear

physical model in a way that is computationally tractable. It allows us to use numerical

methods for Bayesian uncertainty analysis for each possible head observation in each time

period, corresponding to the full state space of the SDP.

This new method is applied using a simple groundwater model and planning formulation

that allow us to demonstrate the approach with clarity. This formulation has limitations

we must keep in mind in interpreting the results. The groundwater model is a lumped

parameter, uncalibrated 2D model; the initial uncertainty in 𝐾 and 𝑆 is estimated using a

recent hydrogeological study of the region. This approach does not capture the substantial

spatial heterogeneity known to exist or detailed geologic information, and it should be inter-

preted as an approximation appropriate for assessing the first-order dynamic of long-term

head decline. However, lumped parameter or zonal models can often have greater predictive

power than more detailed alternatives which require more assumptions than can be justified

with the available information [146, 44]. In our application, 𝐾 and 𝑆 can be interpreted

as capturing information uncertainty in a parsimonious model rather than characterizing

spatial heterogeneity. We use a single grid cell from the Buwayb well field at the center of

Riyadh as a proxy for hydraulic head. This approach, while again an appropriate approx-
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imation for long-term head decline, does not capture the shape of the cone of depression

in hydraulic head around Riyadh. Both the simple groundwater model and using a single

proxy well impact the learning process shown in our results. A calibrated model may have

had smaller initial uncertainty and therefore less learning at the outset. The presence of

spatial heterogeneity may make learning more difficult. However, the presence of multiple

wells may increase opportunities for learning.

The planning formulation assumes that groundwater pumping is either on or off and that

the traditional, static planning alternatives are restricted to either building a desalination

plant upfront or not at all over 30 years. In reality, restrictions on pumping could reduce

rather than cutoff pumping. Similarly, if head decline made pumping infeasible in year 10,

for example, planners would no doubt react before the end of the planning period in year 30.

The specific quantitative comparison of expected value of the flexible approach to that of the

static approaches should therefore be interpreted with caution. The goal is not to attempt

to quantify the specific performance of the different approaches, but more broadly to assess

whether there is value to invest in a flexible approach. The essential element of the flexible

approach compared to a traditional approach is that a desalination plant can come online

quickly in only two years, compared to a more typical 5+ year horizon. Therefore, while it

is unlikely that many years of shortages would be tolerated, several years of shortages are

still possible. The low sensitivity of the results to the shortage cost suggests that the value

of flexibility would be similarly robust to changes in the duration of shortage.

Future work could extend this approach to more complex groundwater models and plan-

ning formulations and address a wide variety of groundwater systems and planning questions.

Spatial heterogeneity in aquifer parameters could be addressed through a zonal approach to

parameter estimation and the use of multiple monitoring wells. The ANN framework could

accommodate this through a greater number of input and output parameters corresponding

to different zones and multiple wells respectively; estimating the posterior over a greater

number of dimensions could take advantage of MCMC methods if necessary. Initial anal-

ysis suggests that 5 wells, for example, could be accommodated into the SDP state space

while still maintaining computational tractability; approximate SDP methods could be used

for larger scale problems [127]. More active approaches to data collection could be tested;

for example, as an alternative to passively collecting new head observations over time, the

SDP formulation could include a decision variable to install new monitoring wells to collect
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information immediately.

In the planning formulation, a wider range of infrastructure or management alternatives

such as adaptive pumping rates or demand reduction policies could be explored. Demand re-

duction measures have the potential to further reduce the need for expensive infrastructure

investments; however, they have the potential to introduce further uncertainty given the

difficulty in predicting human responses to incentives and restrictions. Wastewater reuse

could also be explored as an infrastructure alternative, which would require extension of

the framework to include constraints on water quality for different end uses. Evaluating

these more varied alternatives would benefit from consideration of additional planning ob-

jectives. For example, desalination is a highly energy-intensive supply source; considering

the energy and greenhouse gas intensity of different alternatives may further disincentive

large desalination projects. Integrating the approach developed here for learning and flexi-

ble planning with the multi-objective simulation-based optimization approaches common in

water resource systems analysis could address these limitations by enabling multi-objective

evaluation of many alternatives in large-scale systems.

The value of information and flexibility are likely to vary substantially depending on

the degree of uncertainty, planning decision, and water system. The high value of flexibility

robust to deviations in the value of reliability may not hold in other applications with greater

interactions with surface water and therefore stochastic variability or if infrastructure costs

were less substantial or could achieve higher economies of scale. Exploring these elements in

varied future applications can build theory around the drivers of and limits to flexible design

and adaptive planning as an efficient and reliable approach for water supply planning under

uncertainty. Our initial application of this method highlights the potential for Bayesian

learning in combination with flexible planning to mitigate both cost and reliability risk in a

poorly characterized groundwater system with unsustainable withdrawals. The prevalence of

uncertainty and over-pumping in many groundwater supply systems highlights the potential

for this approach to have widespread applicability.
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Chapter 5

Bayesian updating of climate change

uncertainty to enable flexible water

infrastructure planning

This chapter has been adapted from a working paper: Sarah Fletcher, Megan Lickley, and

Kenneth Strzepek, "Bayesian updating of climate change uncertainty to enable flexible water

infrastructure planning", 2018.

Abstract: The design and planning of new water supply infrastructure must account

for climate change in order to ensure reliability targets can be met over the infrastructure’s

multi-decade lifetime. However, climate change projections face substantial uncertainty in

many regions. Recent work has focused on scenario-based approaches to develop robust plan-

ning strategies that perform well across many possible future climates. Robust approaches,

however, face high risk of overbuilding expensive infrastructure if the worst outcomes are

not realized. In this paper, we assess the potential for potential future climate observations

to reduce uncertainty and enable flexible infrastructure approaches to mitigate overbuild

risk without impacting reliability. To do this, we develop an integrated modeling approach

that uses Bayesian model averaging to estimate and update dynamic model uncertainty es-

timates in climate change projections. These uncertainty estimates are used to characterize

non-stationary climate change uncertainty in a stochastic dynamic program (SDP) to assess

the potential to learn about climate change over time. We use engineering options analysis

(EOA) to evaluate the value of flexible infrastructure design. We apply this framework to a
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dam design problem in Mombasa, Kenya. We find high potential to reduce uncertainty over

time and high value in a flexible dam design in which the dam can be raised in the future

to increase storage capacity. The value of flexibility, however, depends on discounting and

technology choice.

5.1 Introduction

Long-term planning of water supply infrastructure faces uncertainty in how the climate

system will change and how those changes will impact local water resource systems. Climate

change uncertainty can increase the vulnerability of a water supply system if its sensitivity

to climate is strong and its adaptive capacity to respond is limited [3]. Recent work has

addressed both the limitations in projections of climate change by GCMs [78] and developed

approaches to planning under climate change that account for those limitations by developing

planning strategies that render the water system relatively insensitive to climate change

projections [149]. Identified sources of uncertainty in climate projections include: emissions

scenario uncertainty; internal variability in the climate system; and structural differences

across models due to differences in representations of physical processes, initial conditions,

and boundary conditions [69]. The magnitude of these uncertainties — in particular, the

influence of global geopolitics on greenhouse gas emissions — has led many researchers in the

planning community to address climate change as a "deep uncertainty" which is so severe

that probabilities cannot or should not be placed on the possible outcomes [165]. Much

of this work uses non-probabilistic, scenario-based approaches to reduce the vulnerability

of water infrastructure investments to climate change uncertainty by developing strategies

that meet reliability goals and other performance targets in many possible future climates

[92, 19, 87, 61, 89]. Early approaches such as Robust Decision Making (RDM) [93, 92]

focus on static robustness, or preventing system failure under the largest number of possible

future scenarios [165, 73]. These approaches are effective in developing strategies that meet

performance goals in a wide range of future climates over several decades but can lead to

expensive overbuild of capacity if the worst outcomes are not realized. The impacts of

overbuilding are especially severe in resource-scarce regions of the developing world.

Many studies have highlighted the importance of adaptive management approaches to

climate change in which managers adapt and react as uncertainties unfold over time [108,
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121]. Adaptive management can enable reliability at reduced cost by developing plans to

ensure short-term water needs are met without investing in permanent solutions before the

long-term future is well understood. Recent methods such as adaptation tipping points [62]

and dynamic adaptive policy pathways (DAPP) [61, 89] enable policymakers to identify

tipping points or thresholds beyond which new polices will be needed. Identifying these

thresholds — and the policies to be implemented if they are reached — in advance enables

a planned adaptation approach in which adaptive policies are fully developed and can be

nimbly executed when needed, reducing short-term transition risks [102]. Defining "dynamic

robustness" as flexibility enabling a plan to change in response to changing conditions over

time, Walker et al. (2013) raises the limitations of RDM to develop dynamic robust solutions

and highlights the value of DAPP in achieving dynamic robustness [165].

However, adaptive approaches are more difficult in infrastructure planning, as infrastruc-

ture requires large capital investments (often on the order of hundreds of millions or billions

of dollars) that can last for a century and are difficult to change [35]. In infrastructure

planning, therefore, adaptive approaches can pose trade offs or risks to static robustness if

short-term supply gaps due to droughts, for example, cannot be addressed quickly enough

with adaptive infrastructure planning [12]. Some recent studies have started to integrate

adaptive management into infrastructure planning approaches, explicitly accounting for the

potential for short-term adaptive strategies such as water transfers and demand reductions

to reduce or eliminate the need to build infrastructure [177]. Similarly, Beh et al. (2015)

[12] built on prior approaches in sequencing water infrastructure investments [134, 84, 75]

and static robustness approaches by including both flexibility and robustness as objectives

in an iterative planning approach.

These approaches, however, have some important limitations in how they address flexi-

bility in infrastructure. First, the types of flexibility addressed in these approaches is limited,

focusing primarily on flexibility in management or operations of water systems rather than

on flexibility in infrastructure itself. Flexibility can be incorporated into infrastructure in a

variety of ways. Flexible planning processes can enable flexible timing, location, or type of

infrastructure. For example, a staged development approach to infrastructure development

in which capacity is developed modularly in smaller steps can reduce the risk of overbuild-

ing capacity. Infrastructure can also be physically designed to be more easily retrofitted

in the future [168]. In water infrastructure, this has been assessed in hydropower projects
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[153] and desalination plant design [51]. Second, flexibility is a strategy or life-cycle system

property for achieving other performance targets rather than a performance goal unto itself.

Including flexibility as an optimization objective without assessing the value of flexibility in

achieving performance goals fails to address this distinction. Proactive approaches to flexible

infrastructure design and planning, in which preparations or investments are made upfront

in order to enable future flexibility, have a cost. The benefit of the flexibility in achieving

performance targets must be evaluated in order to asses whether this cost is justified.

An additional limitation of these approaches to flexibility is that while they account for

changes in the state of the system to drive adaptive planning or operations, they do not

account for changes in understanding of uncertainty to drive adaptation. The ROF metrics

developed by [123] update the probability that a performance target will be violated based

on the state of reservoir storage; historical data is used to assess how often a certain reservoir

storage level has previously led to failures. This does not account for the ROF associated

with a certain storage level to change over time as more information about the system

is collected or the system evolves. This limitation is especially important in addressing

climate change, where non-stationary runoff can substantially change the ROF associated

with a certain system state over time.

We address these limitations through the development of a planning framework that

integrates several existing analysis tools. Engineering options analysis (EOA), related to

real options analysis in finance, identifies flexible infrastructure options that can be exer-

cised in the future; Monte Carlo simulation methods are used to assess the performance of

flexible approaches with options and compare them to static approaches without options

[33]. Engineering options analysis can address two of the above limitations by 1) including

"real-in-options" alternatives that include physical infrastructure design in addition to al-

ternatives using levers in policy, planning, or management and 2) providing a framework to

estimate the value of flexibility and its tradeoffs relative to traditional robust or static ap-

proaches. Additionally, the use of multi-stage stochastic dynamic programming (SDP) with

non-stationary transition probabilities can enable the development of policies for exercising

options that change over time as both the state of the system and the characterization of

uncertainty are updated. While the computational expense of SDP has often limited its use

with realistic simulation models, recent methods in water and other domains have enabled

this integration through approximate methods [75, 127] and surrogate statistical models
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(e.g. Chapter 4 of this dissertation).

SDP requires the use of probabilistic approaches to characterizing uncertainty. This

stands in contrast to the many approaches above which use non-probabilistic, scenario

methods for addressing climate change uncertainty. However, climate change uncertainty

has multiple sources. While emissions uncertainty is highly influenced by geopolitics and

institutional decision-making, model uncertainty and internal variability are not subject to

these forces. Different uncertainties of different types can be addressed uniquely in the

same planning problem [51]. Previous work has shown that model uncertainty dominates

long-term uncertainty in global mean precipitation change [70], and recent work has enabled

probabilistic estimates of model uncertainty [156].

Probabilistic estimates for model uncertainty in climate change are typically developed

by comparing and weighting individual model projections from ensembles of GCMs from

the coupled model intercomparison project, phase 5 (CMIP5). CMIP5 has collected and

validated a large number of GCM simulations from various modeling groups, where simula-

tions are all forced by the same emissions scenarios, or representative concentration pathway

(RCP), to allow for a consistent comparison across models. Several methods have been put

forward to assess the uncertainty across models using ensembles of projections from CMIP

[156]. An early approach by Räisänen and Palmer (2001) [130] derives probability distri-

butions by assuming a "democratic" weighting in which each model projection is assumed

equally likely. This democratic weighting of models is also adopted by the Intergovernmen-

tal Panel on Climate Change (IPCC), where the multi-model mean and standard deviation

are used to characterize the trend and uncertainty in climate projections [78]. More recent

research has used BMA, a statistical approach which weights models based on their ability

to reproduce historical observations. For example, Giorgi and Mearns (2002) [55] present the

"reliability ensemble averaging" methodology, which uses BMA-derived weights to estimate

the mean and standard deviation of future change, assuming a normal distribution. Tebaldi

et al. (2005)[157] and Smith et al. (2009) [148], extend this to develop a fully Bayesian ap-

proach that uses BMA-derived weights and MCMC methods to estimate a posterior without

assuming normality.

This study develops an integrated modeling framework that addresses the impacts of

model uncertainty in climate change projections on water supply planning. It uses and

extends the Bayesian statistical model developed by Smith et al. (2009) [148] to develop
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probabilistic projections of change in 20-year mean temperature (𝑇 ) and precipitation (𝑃 ).

These probabilistic estimates characterize uncertainty dynamically: they are updated in a

Bayesian manner to account for potential future climate observations. The probabilistic

projections are used to characterize the non-stationary transition probabilities in an SDP in

which mean 𝑇 and 𝑃 comprise the states of the system. The change in 𝑇 and 𝑃 over a 20-

year time period (∆𝑇 and ∆%𝑃 respectively) are treated as hypothetical future observations

used in the Bayesian updating: this allows us to assess how uncertainty in change in ∆𝑇

and ∆%𝑃 would shift as more information about climate sensitivity is collected over time.

For example, high rates of temperature change in the first 20 years are more likely to beget

rapid temperature change in the next 20 years. By including all the possible future climate

observations and their impact on uncertainty in the transition probabilities of a stochastic

dynamic program, we explicitly account for dynamic, non-stationary climate change in our

planning. Finally, we use the SDP to develop policies for exercising flexible options for

infrastructure design and planning, and then assess these policies using engineering options

analysis. The overall approach for assessing flexible planning by taking a dynamic approach

to uncertainty that accounts learning in response to future observations is described in more

detail in Chapter 2 and illustrated in Figure 2-3. We demonstrate this integrated modeling

framework on a dam design application in Mombasa, Kenya.

The remainder of this chapter is organized as follows. In section 5.2, we present the gen-

eralized framework for integrating dynamic, probabilistic assessments of model uncertainty

in climate projections into a SDP to evaluate flexible infrastructure. Then we describe the

application to a dam design problem in Mombasa, Kenya in section 5.3. Section 5.4 present

results, and we close with conclusion and discussion in section 5.5.

5.2 Modeling approach

Assessing the impact of climate change uncertainty on water supply infrastructure planning

requires integration of several components. Long-term estimates of climate change must be

translated into the monthly runoff time series needed for dam sizing. In order to quantify

model uncertainty in climate change and propagate its impacts through an infrastructure

planning model, we develop an integrated modeling approach that combines Bayesian mod-

eling of uncertainty, stochastic weather generation, a rainfall-runoff model, and a reservoir
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Figure 5-1: Schematic of integrating modeling framework to assess model uncertainty in
climate change projections on infrastructure planning and assess the potential for Bayesian
updating of uncertainty and flexibility to mitigate risk. Climate and hydrological modeling
components are at left in blue; infrastructure planning and operations shown in center in
yellow; integrated results at right in green.

operation model. These components are embedded in a SDP to develop and evaluate flexi-

ble infrastructure planning strategies against key performance metrics. A schematic of this

process is shown in Figure 5-1, and each of the components are described below.

Stochastic dynamic programming (SDP)

SDP is an optimization approach that models decision-making under uncertainty over mul-

tiple stages or time periods. An SDP model is formulated by defining: a set of actions the

decision maker can take, a set of states of the system, the cost of the actions as a function of

the state of the system and the time period, and the transition probabilities. The transition

probabilities characterize the uncertainty in the system by defining a probability distribution

for state of the system in the next time period given the state and action in the current time
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period. These components are integrated into the Bellman equation, shown in equation 5.1,

which is solved to develop an optimal policy, or the optimal action for each state in each

time period.

𝑉 (𝑠, 𝑡) = argmin
𝑎∈𝐴

𝐶(𝑠(𝑡), 𝑎(𝑡), 𝑡) + 𝛾
∑︁
𝑠∈𝑆

𝑝(𝑠(𝑡 + 1) | 𝑠(𝑡), 𝑎(𝑡)) * 𝑉 (𝑡 + 1, 𝑠(𝑡 + 1)) (5.1)

where 𝑉 is the optimal policy, 𝑡 is the stage or time period, 𝑎 is an action from a

set of possible actions 𝐴, 𝑠 is a state from the state space 𝑆, 𝛾 is the discount rate, and

𝑝(𝑠(𝑡 + 1) | 𝑠(𝑡), 𝑎(𝑡)) are the transition probabilities. In our application, the state space 𝑆

comprises two climate variables important for runoff modeling, mean 𝑇 and mean 𝑃 over a

20-year period, as well as the type and amount of infrastructure capacity added. The action

space 𝐴 describes the amount of infrastructure capacity for a dam or desalination plant at

the outset of the planning period, and then whether infrastructure capacity is expanded

in later time periods. Future applications could also include other water planning and

management alternatives such as other infrastructure alternatives, reservoir operations, and

demand-side policies. The costs 𝐶 include the capital and operating costs of infrastructure

capacity additions as well as damages if the infrastructure fails to meet reliability targets.

Bayesian modeling of climate change uncertainty is integrated into the optimization frame-

work through the transition probabilities. Transition probabilities 𝑝(𝑇𝑡+1|𝑇𝑡) and 𝑝(𝑃𝑡+1|𝑃𝑡)

are developed using the Bayesian modeling approach described in the next section.

We develop a novel approach in which each of the 𝑇 and 𝑃 states in the SDP state

space are treated as hypothetical, future observations and used to develop updated posterior

distributions that account for that observation. For example, let us assume that 40 years

from now, we observe a mean 𝑇 of 28 degrees Celsius (°C) and mean 𝑃 of 68 mm/month.

This suggests a rapid warming and drying trend. We use those values as observations in our

Bayesian analysis to develop an updated posterior for change in 𝑇 and 𝑃 over the next 20

years, and that posterior is used to characterize 𝑝(𝑇𝑡=3|𝑇𝑡=2 = 28) and 𝑝(𝑃𝑡=3|𝑃𝑡=2 = 68)

where 𝑡 is measured in time steps of 20 years. These particular posteriors would have higher

probability on warm and dry states in the next time period than the prior. This analysis

is repeated for every possible climate observation in each time period to develop transition

probabilities that reflect Bayesian learning based on each potential future climate.
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This approach enables us to address two limitations in many current approaches to water

supply planning under climate uncertainty: 1) the ability to characterize uncertainty dy-

namically so that it can be updated over time, and 2) the development of flexible strategies

that depend on the state of the system and time period. Non-stationary transition probabil-

ities in which the probability distribution of change in 𝑇 and 𝑃 can vary with time are used

to characterize expected non-stationary change in the climate system. Similarly, deriving an

optimal policy which identifies unique optimal actions for each state and time period can be

used to develop flexible strategies for if, when, and how to add or change infrastructure as

we observe climate change over time. The optimal policy, therefore, includes decision rules

for whether to add infrastructure given a certain observed 𝑇 and 𝑃 in each time period; this

defines thresholds for 𝑇 and 𝑃 beyond which additional capacity should be added.

Bayesian modeling of climate change uncertainty

To characterize the transition probabilities described above, we extend the Bayesian statis-

tical model presented in Smith et al. (2009) [148]. The statistical model of Smith et al.

(2009) treats historical temperature observations 𝑋0 as realizations of a random variable 𝑋

whose unknown mean 𝜇 reflects the underlying mean temperature of the current climate.

Similarly, future temperature projections are treated as realizations of a different random

variable 𝑋 ′ whose unknown mean 𝜇 reflects the underlying mean temperature of the future

climate. Weights or reliabilities of each individual GCM projection 𝑗 from a set of 𝑀 models

are estimated using the difference between the historical projection 𝑋𝑗 and the historical

observations; larger differences indicate that 𝑋𝑗 must have a higher variance and therefore

model 𝑗 a lower reliability [148].

We extend this approach in three ways. First, we apply the model to 𝑃 as well as

𝑇 . We assume that 𝑇 and 𝑃 are independent, reflecting that a model’s performance in

estimating 𝑇 may be unrelated to its ability to estimate 𝑃 . Second, we apply the model

to observations and projections of change in 𝑇 and 𝑃 rather than absolute 𝑇 and 𝑃 due

to greater model skill in GCM projected changes in temperature and precipitation rather

than absolute values [107, 131]. This is especially important in our application in Mombasa

where there is less disagreement in temperature change than there is disagreement in hind-

casted absolute temperature. Finally, we apply the model to multiple time periods in series.

Smith et al. (2009) assumed two periods: a historical climate (1961-1990) and a future
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climate (2071-2100). We use pairs of 20-year time periods from 1980 to 2100, in which the

"historical" climate corresponds to the time period in the SDP and the "future" climate

corresponds to the next 20-year period; this provides the 1-stage transition probabilities

needed in the SDP.

Following [148], the statistical model is formulated as follows for ∆𝑇 ; an identical model

is used for ∆%𝑃 .

𝑋0 ∼ 𝑁(𝜇, 𝜆−1
0 )

𝑋𝑗,𝑡 ∼ 𝑁(𝜇, 𝜆−1
𝑗 )

𝑋𝑗,𝑡+1|𝑋𝑗,𝑡 ∼ 𝑁(𝜈 + 𝛽(𝑋𝑗 − 𝜇), (𝜃𝜆𝑗)
−1)

(5.2)

where 𝜇, 𝜈, 𝛽, 𝜃, and 𝜆𝑗 have prior distributions:

𝜈, 𝜇, 𝛽 ∼ 𝑉 (−∞,∞)

𝜃 ∼ 𝐺(𝑎, 𝑏)

𝜆1...𝜆𝑗 ∼ 𝐺(𝑎𝜆, 𝑏𝜆)

𝑎𝜆, 𝑏𝜆 ∼ 𝐺(𝑎*, 𝑏*)

The joint density of 𝜇, 𝜈, 𝑋0, 𝑋𝑗,𝑡, 𝑋𝑗,𝑡+1, 𝛽, 𝜃, 𝑎𝜆, 𝑏𝜆, and 𝜆𝑗 ∀𝑗 = 1...𝑀 is therefore

proportional to:

𝜃𝑎+𝑀/2−1𝑒−𝑏𝜃𝑒(1/2)𝜆0(𝑋0−𝜇)2𝑎𝑎
*−1

𝜆 𝑒−𝑏*𝑎𝜆𝑏𝑎
*−1

𝜆 𝑒−𝑏*𝑏𝜆

×
𝑀∏︁
𝑗=1

[︂
𝑏𝑎𝜆𝜆 𝜆𝑎𝜆

𝑗 𝑒−𝑏𝜆𝜆𝑗

Γ(𝑎𝜆)
𝑒−(1/2)𝜆𝑗(𝑋𝑗,𝑡−𝜇)2−(1/2)𝜃𝜆𝑗{𝑋𝑗,𝑡+1−𝜈−𝛽(𝑋𝑗,𝑡−𝜇)}

]︂

𝑋0 is the observed ∆𝑇 in time period 𝑡; 𝑋𝑗,𝑡 is model 𝑗’s projection of ∆𝑇 in the current

time period 𝑡, and 𝑋𝑗,𝑡+1 is model 𝑗’s projection of ∆𝑇 in the next time period 𝑡 + 1. 𝑋0,

𝑋𝑗,𝑡, and 𝑋𝑗,𝑡+1 are treated as observations from unique normal distributions. 𝜇 and 𝜈 are

the underlying means for the 20-year ∆𝑇 distributions in the current (𝑡) and future (𝑡 + 1)

time periods respectively. The goal of the analysis is to estimate a posterior distribution

for 𝜈, which will characterize the transition probabilities. We set 𝑎 = 𝑏 = 𝑎* = 𝑏* which

were chosen so that 𝜃, 𝑎𝜆, and 𝑏𝜆 have proper but diffuse priors. In the above distributions,

𝑁 , 𝑈 , and 𝐺 represent normal, uniform, and gamma distributions, respectively. 𝜆𝑗 is the

inverse variance of 𝑋𝑗 , representing the reliability of model 𝑗. 𝛽 is a regression parameter
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that introduces correlation between 𝑋𝑗,𝑡 and 𝑋𝑗,𝑡+1; it is estimated by the model rather than

assumed. 𝜃 is also an estimated parameter that enables a model to have different reliability

in the future compared to the present. The marginal densities for each of the parameters are

estimated using MCMC methods; we use the Gibbs sampling approach and code developed

in [148]. More details on the statistical model are available in Smith et al. (2009) [148].

In order to characterize the transition probabilities, the statistical analysis is replicated

for each climate state in each time period. The temperature state in the SDP is treated as

the observed temperature 𝑋0 in equation 5.2. The resulting posterior marginal distribution

for 𝜈 is discretized, translated from ∆𝑇 and ∆%𝑃 to absolute values of 𝑇 and 𝑃 , and used

as the transition probability for that temperature state. This process allows us to simulate

learning over time as more climate observations are collected; the transition probabilities in

the later time periods incorporate more information about how the climate has changed.

Stochastic weather generation

Climate impacts on river runoff depend on changes in month-to-month variability in precip-

itation and temperature in addition to changes in the mean. We model these two changes

separately. To develop monthly time-series of 𝑇 and 𝑃 , we follow the k nearest neighbors

(kNN) approach as described in Rajagopalan et al., (1999) applied to GCM projections.

This non-parametric statistical approach allows us to impose the mean 𝑇 and 𝑃 from the

SDP while also capturing the standard deviation in monthly values and month-to-month

autocorrelation projected by the GCMs. This approach was chosen for its simplicity and

ease of implementation; future studies could use other non-parametric approaches such as

the local polynomial regression method developed in [17].

Rainfall-runoff model

Next, the synthetic 𝑇 and 𝑃 time series are input to a hydrological model to asses the impacts

on runoff. We use CLIRUN II, the latest in a family of hydrological models developed to

assess the impact of climate change on runoff [152, 151, 174, 83]. CLIRUN II is a two-layer,

conceptual, lumped-watershed rainfall-runoff model. It averages soil parameters over the

watershed and models runoff at one gauge station at the mouth of the basin. It can be run

on a monthly or daily time step. Using the 100 𝑇 and 𝑃 monthly time series as inputs,

CLIRUN II generates 100 monthly time series for runoff.
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Infrastructure alternatives and operations

A key outcome of this approach is to assess the value of flexible water supply infrastructure

planning in mitigating climate uncertainty. To do this, our approach develops flexible in-

frastructure alternatives and compares them to static approaches. Two static alternatives

are developed: one designed with enough capacity to meet reliability targets under today’s

climate, and another "robust" alternative designed to meet reliability targets under any of

the possible future climates projected by the Bayesian climate uncertainty analysis. Then

a flexible alternative is developed in which the smaller amount of capacity sufficient under

the current climate is installed initially, but plans are made to be able to expand to the full

robust capacity in the future if needed. The performance of these alternatives is evaluated

using infrastructure operation models, which estimate the yields obtained from each of the

alternatives for each of the generated time series for runoff in the watershed. Yields are

compared to demand and reliability targets to estimate unmet demand or water shortages

under each possible future climate state. These shortages, in combination with cost esti-

mates for the capital and operating costs of the different infrastructure alternatives, are used

to characterize the cost function in the SDP.

Simulated risk profiles

Finally, the SDP results develop a policy for whether to invest in the flexible or static

alternative and, if the flexible alternative is chosen, under what climate states it should be

expanded. We develop forward simulations for different climate change paths by sampling

from the transition probabilities. We use these simulated climate change paths to assess

the performance of the different alternatives when they operate according to the policies

developed by the SDP. We develop distributions for the performance against key performance

metrics including cost and reliability.

5.3 Application to Mwache dam

Background

We demonstrate this method with an application in Mombasa, a coastal city in Kenya.

Mombasa is the second largest city in Kenya with an estimated population of 1.1 million
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[24]. Urban water demand is currently estimated at 150,000 m3/d and expected to grow

to 300,000 m3/d by 2035 [119]. Mombasa has a warm, humid climate with average annual

precipitation of about 900 mm/y and a mean annual temperature of about 26°C [118].

Precipitation is driven by monsoon winds with two rainy seasons: a long rainy season from

April to June with average monthly precipitation of 113 mm/month and a shorter rainy

season from October to November with average monthly precipitation of 90 mm/month.

The World Bank is financing a dam project on the nearby Mwache River to address water

scarcity in the region and expected demand growth [170, 114]. The dam is targeted to supply

a firm yield of 186,000 m3/d (67.9 MCM/y) at 90% reliability for urban demand with excess

for agricultural supply. The Mwache catchment covers approximately 2250 km2 west of

Mombasa[25]. Mombasa, the Mwache river, and the proposed dam location are shown in

figure 5-2. Mean annual runoff (MAR) is 113 MCM per year [25].

Uncertain projections of climate change in the region make it difficult to assess how

large to size the dam in order to meet the yield and reliability targets over its full lifetime.

While there is robust agreement across GCMs projecting warming in the region, precipita-

tion response is more uncertain. While Held and Soden (2006) established the well known

’wet-get-wetter, dry-get-drier’ hydrological response to global warming, this mechanism was

shown to break down over land in the tropics [72]. Uncertainties in the rainfall response in

the tropics are driven by thermodynamic changes and large scale dynamical changes such as

shifts in convergence zones in response to changes in sea surface temperature [26]. There-

fore, there is also substantial uncertainty in whether runoff and yield, which are primarily

driven by precipitation in this region, will increase or decrease as well. A previous study

commissioned by the World Bank has assessed the climate vulnerability of the Mwache dam

[171]. This study uses an ensemble of 121 climate projections from CMIP3 and CMIP5 and

applies RDM to evaluate design storage options ranging from 40 MCM to 140 MCM; they

recommend designs ranging between 80 and 120 MCM. [171].

Infrastructure alternatives and demand scenarios

We apply the framework developed in section 5.2 to develop a flexible dam design in which

extra storage capacity can be added in the future and assess its performance in comparison

to static alternatives. We hypothesize that by explicitly addressing the opportunity to learn

about climate change over time and update uncertainty estimates, a flexible design will
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Figure 5-2: Map of study area including Mwache river, proposed dam location, Mombasa
city center.
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perform favorably. We apply this framework to two planning scenarios. In the low-demand

scenario, we assume a target yield of 150,000 m3/d (54.8 MCM/y) with 90% reliability from

the Mwache dam; this yield target reflects current demand and can be fully met by the new

dam. We evaluate the two dam sizes proposed by the previous World Bank study [171], 80

MCM and 120 MCM, as well as a flexible alternative in which the height of the small dam

can be raised, increasing the reservoir capacity to 120 MCM. Our analysis using CLIRUN II

and the reservoir sizing model confirms that the 80 MCM dam meets the reliability targets

in the current and expected future climate but does not meet reliability targets if the climate

gets substantially warmer and drier. The 120 MCM dam meets reliability targets across all

projected future climates, providing a robust alternative. Cost estimates for the small and

robust dams were developed using the cost tool from the previous World Banks study [171].

For the flexible dam, the cost per m3 of additional capacity added is assumed to be 50%

greater than that of the original capacity.

In a second, high-demand scenario we assume a target yield of 300,000 m3/d (109.6

MCM/y) with 90% reliability, reflecting the potential for rapid demand growth in the next

decade. This high value of demand is consistent with 2035 projections from [119]. In

this scenario, the target yield is greater than the mean annual runoff in the Mwache river

and therefore the dam cannot meet the target yield regardless of its size. We model the

combination of a 120 MCM dam and a desalination plant that is used to supply demand

when reservoir storage is low. Three desalination alternatives are chosen, analogous to the

dam design alternatives. A low capacity alternative designed to meet reliability targets in

the current and expected future climate has 60 MCM of capacity; the robust alternative that

meets the reliability targets across all projected future climates has 80 MCM of capacity;

a flexible alternative starts with 60 MCM and can be expanded to 80 MCM. Capex and

opex estimates for the desalination plans were developed using the Cost Estimator tool from

DesalData [56]. Evaluating this second scenario allows us to compare the value of flexibility

across two technology options, earthen dams and desalination, which have unique water

supply profiles and cost structures. These planning scenarios, and the cost and capacity of

the infrastructure considered in each, is summarized in Table 5.1.
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Table 5.1: Key planning scenarios and corresponding infrastructure evaluated

Demand
Scenario Technology DR

Capacity
[MCM]

Capex
[M$]

Small Large Small Large Exp Flex + Exp
a Low Earthen dam 3% 80 120 76.5 99.2 49.6 148.8
b Low Earthen dam 0% 80 120 76.5 99.2 49.6 148.8
c High RO desalination 0% 60 80 183.1 232.2 72.4 255.5

Climate and hydrological analysis

To implement the Bayesian uncertainty analysis in Mombasa, we use a total of 21 CMIP-

5 members whose modeling group and model run are included in the appendix. For each

GCM, monthly temperature and precipitation values are averaged over 2°S to 6°S and 38°E to

42°E, overlaying the Mwache catchment; GCM projections are regridded from their original

resolution following the approach in Boehlert (2015) [18]. The same is done for the observed

climate, where monthly values are taken from the Climate Research Unit (CRU) dataset

version TS.3.21 [118]. The analysis is repeated for the five 20-year time periods starting

with 2001-2020 for t=1 and ending with 2081-2100 corresponding to t=5 in the SDP. The

20-year time interval was chosen so that year-to-year variability was not driving the trend

in precipitation and temperature across time periods.

The hydrological model CLIRUN II is calibrated using 14 years of monthly streamflow

data. Only one streamflow gauge, RGS 3MA03, is available in the Mwache basin [25].

However, it is directly upstream of the dam location, making it representative for this study.

The same monthly temperature and precipitation data from CRU used in the Bayesian

climate analysis is used to calibrate CLIRUN II for consistency. This temperature and

precipitation data is different than the local data used in the previous World Bank study

[171], leading to different calibration results but similar performance (historical MAR: 113

MCM/y; World Bank MAR: 133 MCM/y; our MAR: 103 MCM/y). The infrastructure

operation model includes dam operations (and desalination operations when necessary) that

seek to meet the specified yield target while accounting for dead storage, net evaporation, and

environmental flows. Unmet demand is measured for each of the 100 streamflow time series,

and the average 20-year unmet demand is used to characterize 𝑈 in the SDP formulation in

equation 5.3. More details on the implementation of CLIRUN II and the operation model

are in the appendix.
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SDP formulation

These two planning scenarios are modeled using the SDP framework depicted in figure 5-1.

The components of the SDP shown in equation 5.1 are formulated as follows:

𝑆 = {𝑇 (𝑡), 𝑃 (𝑡), 𝑍(𝑡)}

𝐴 = 𝑒(𝑍, 𝑡)

𝐶 = 𝐼(𝑇, 𝑃, 𝑍, 𝑒, 𝑡) + 𝐷 * 𝑈(𝑇, 𝑃, 𝑍, 𝑒, 𝑡)

(5.3)

where

• 𝑡 ∈ {1...5} is a 20-year time period ranging from 2001-2020 for 𝑡 = 1 to 2081-2100 for

𝑡 = 5

• 𝑇 (𝑡) is the mean temperature in °C in time period 𝑡, ranging from 25 to 33 at 0.05°C

increments.

• 𝑃 (𝑡) is the mean precipitation in mm/month in time period 𝑡, ranging from 66 to 97

at 1 mm/month increments.

• 𝑍(𝑡) ∈ {1...4} is the available infrastructure, in which the states correspond to a small

infrastructure alternative, large infrastructure alternative, flexible unexpanded alter-

native, and flexible expanded alternative, respectively. The infrastructure alternatives

are either a set of dams or a set of desalination plants.

• 𝑒(𝑍, 𝑡) ∈ {0...4} is the choice of infrastructure in which 0 is no change, 1 is a small

alternative, 2 is a large/robust alternative, 3 is a flexible alternative, and 4 is the

expansion of the flexible alternative. The alternatives include a set of dams or a

set of desalination plants. The choices are constrained by time period and available

infrastructure such that 𝑒(𝑍, 𝑡 = 1) ∈ {1, 2, 3}∀𝑍 ; 𝑒{𝑍, 𝑡} ∈ {0, 4}∀𝑡 = 2...5, 𝑍 = 3;

and 𝑒{𝑍, 𝑡} ∈ {0}∀𝑡 = 2...5, 𝑍 = 1, 2, 4

• 𝐼 is the cost of the infrastructure including capital costs (capex) and operating costs

(opex). Desalination opex is a function of the water produced in each time period.

• D is unit cost of damages incurred for unmet water demand, set at 15 $ /m3 in our

base case based on estimates of water productivity in Kenya from the World Bank

[158].
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• 𝑈 is the volume of unmet demand as a function of the climate states, existing infras-

tructure, and any new infrastructure brought online in time t. U=0 in t=1, reflecting

that t=1 is a planning and construction period and performance is not measured until

the beginning of the second 20-year time period.

5.4 Results

Here we present results from the application of the modeling framework to Mombasa. First,

we show results from the Bayesian uncertainty analysis demonstrating the reduction in

uncertainty compared to a democratic weighting and the potential to reduce uncertainty by

incorporating new information over time. Then we present results from the SDP showing the

flexible policy for the SDP and its performance in comparison to the two static alternatives.

We first present these results for our base case (scenario a: low demand with discounting)

and then discuss how the results change without discounting and with desalination in the

high demand scenario.

Bayesian climate uncertainty analysis

Figure 5-3 shows historical 𝑇 and 𝑃 from CRU and projected change in 𝑇 and 𝑃 from each

of the GCMs. Then, confidence interval (CI) using first the IPCC democratic weightings in

which all models are assumed to perform equally well are compared to CIs generated from

the Bayesian uncertainty analysis for the first time period. We see that the CIs from the

Bayesian analysis have a smaller range of uncertainty in comparison both the full range of

the individual projections as well as the democratic weighting. This is because the Bayesian

analysis puts most of the weight on a subset of models that match historical change in this

area better than the others.

The process of updating uncertainty over time using the Bayesian analysis from later time

periods is shown in Figure 5-4. We present one sample time series of how the climate states

𝑇 and 𝑃 could evolve over time. For each simulated observation in the time series, we use the

transition probabilities to simulate 10,000 time series starting at the current observation and

going to the end of the planning period. These time series are used to construct a 99% CI.

This process is repeated for each time period, with darker colors in the plot corresponding

to the CIs developed with more observations later in the planning period. This approach
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Figure 5-3: Modeled and observed temperature (left) and precipitation (right) relative to
1990 values with uncertainty estimates. The gray lines are 20-year moving averages of GCM
simulations in the grid cells over Mombasa. The purple (left) and green (right) shaded
regions show CIs using the democratic IPCC method for characterizing uncertainty plotted
at 20-year increments. The orange (left) and blue (right) shaded regions show the 90%
CI developed using the Bayesian uncertainty method applied in the first time period. The
Bayesian CIs are narrower than the democratic CIs, demonstrating the ability to reduce
uncertainty by taking advantage of the additional information that some models perform
better in this region than others.
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allows to compare how the uncertainty at the end of the planning period in 2100 changes

as more observations about temperature and precipitation are collected over time. The

top half of Figure 5-4 shows this process for temperature and precipitation, for which the

simulated observations are sampled independently. In both cases, the CIs narrow over time,

demonstrating the value of more information in reducing predictive uncertainty. Sometimes,

however, a new observation does not reduce the uncertainty at the end of the planning

period. This is seen with 2010 temperature estimate; the updated CI completely overlaps

the previous. This suggests that value of information can be limited by the noise inherent

in the statistical model, especially when the simulated observation is close to the center of

the previous CI. Figure 5-4 shows a single sample time series of potential observations; a

different time series, for example, may show a decreasing rather than increasing precipitation

trend, in which case the precipitation CI would narrow closer to the bottom of the initial

uncertainty range.

The bottom half of Figure 5-4 shows how the same simulated temperature and precipita-

tion observations update uncertainty in MAR and water shortages. MAR correlates closely

with precipitation, especially in the first half of the planning period. In the second half of

the planning period, more rapid temperature increases offset modest increases in 𝑃 , showing

a slight decline in MAR. The learning profile is similar to that of 𝑃 . Mean annual water

shortages, at bottom right, are measured against a 90% monthly reliability goal: the first

10% of shortages in any month do not incur damages. This plot assumes the low-demand

scenario (55 MCM/y) with the small dam (80 MCM of reservoir capacity). Here we see

strongly asymmetric uncertainty; the lower bound of the CI is 0. This reflects the low-

probability, high-severity risk of droughts; shortages occur only when runoff is substantially

below MAR for several months or years in a row. In this sample time series, the modest

increase in temperature and relative stability of MAR are enough to substantially reduce the

90th percentile risk over time. An alternate version of this figure is shown in Appendix C

in which small decreases in 𝑃 in combination with high warming drives MAR down and the

risk of shortages substantially higher. Across many different simulated 𝑇 and 𝑃 observations

we find a similar trend of narrowing of uncertainty, regardless of the direction of change,

demonstrating a robust high value of information.
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Figure 5-4: One sample realization of Bayesian learning over time. Black dots represent
a single simulated time series for potential future climate observations. These simulated
observations are used to develop and update probabilistic estimates for change represented
using 99% confidence intervals for projected change in 𝑇 , 𝑃 , MAR, and water shortages. In
this example, modest increases in 𝑃 lead to stable MAR, allowing us to eliminate the risk
of high shortage values by the end of the century. An alternate simulated time series with
decreasing 𝑃 and increasing shortage risk is shown in the appendix. Across many simulated
time series we find robust high value of information, demonstrated by reduction in CI range.
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SDP

The previous analysis demonstrated the ability of the Bayesian uncertainty analysis to reduce

uncertainty over time through the use of simulated potential future observations of 𝑇 and

𝑃 . These simulated observations correspond to the states of the SDP. In this way the

SDP accounts for all the possible future observations and their probabilities and chooses an

optimal strategy based on all the possible learning outcomes. This optimal strategy results

in two main outcomes, shown in Figure 5-5. In the first time period, shown in panel a)

at left, the SDP develops a threshold as a function of 𝑇 and 𝑃 in the first 20-decade time

period beyond which the large robust infrastructure is optimal; lower than this threshold

the flexible alternative performs better. This is because the relatively small cost difference

between the flexible and large dam means that if the risk of shortages at the outset is high

enough, it is better to invest in the robust option upfront. In time periods 2 through 5, the

SDP policy results in a 𝑇 and 𝑃 threshold beyond which the flexible infrastructure capacity

is expanded if available; this is shown on the right side of the figure. Similar to the first

period policy, expanding infrastructure capacity is optimal in drier and warmer states. The

threshold moves somewhat left in the plots in the later time periods. This is because a

modest shift towards warmer and drier climate in the early time period signals that further

warming and drying is expected. The same modest shift in later time periods indicates a

slower rate of warming and drying, suggesting that the risk of rapid transition to a state

where water shortages are likely is lower.

Forward simulation

We now present results showing how the flexible strategy developed by the SDP performs

against the static alternatives. The transition probabilities are used to simulate 1000 time

series for the climate states, and the optimal policies are used to assess how the alternatives

would perform in each time series. Figure 5-5 shows histograms for the decisions made

under the optimal policies across the 1000 simulations; the top row corresponds to the

low-demand scenario a) discussed here. At top left, we see that the flexible alternative is

chosen in 90% of simulations under the low-demand dam scenario with a base case discount

rate of 3%. At top right, we see that when the flexible alternative is chosen, the option

to expand is never expanded in about 70% of simulations, highlighting the relatively low
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Figure 5-5: Optimal policies from SDP results. Panel a) at left shows the initial dam decision
and the four panels b) at right show the policy for exercising the option to increase height
of dam. Results are shown for the low demand dam scenario under 3% discount rate. The
robust dam is chosen for hotter, drier climates in the first time period. Similarly, the flexible
option is exercised if the climate transitions to a hot, dry climate in later time periods. The
expansion threshold shifts in later decades. This is because a modestly hotter and drier
climate in early time periods signals more rapid change in the coming decades through the
learning process.
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probability risk of transition to a climate that is substantial drier enough to lead to shortages

beyond 10% of demand. The time period at which it is exercised varies; sometimes rapid

warming and drying leads to an early expansion decision while sometimes the change is more

gradual. There are relatively few expansions in the final time period. This reflects a known

limitation of finite-horizon SDP formulations; they discourage investment toward the end of

the planning period because there is limited time to reap the benefits of those investments.

In reality, however, those investments would bring benefits after the end of the planning

period.

Finally, we compare the performance of the flexible strategy following the optimal policy

with the two static alternatives against the objective function C of the SDP in equation

5.3. Figure 5-7 shows CDFs of the total cost of each alternative across the 1000 forward

simulations; the top row shows planning scenario a) discussed here. The large robust static

alternative, shown in blue, has the same cost (equal to the capital cost of the dam) across all

simulations; as designed, no shortage damages are incurred in any of the simulated future

climates. The small dam, shown in orange, has the most variable costs. It performs better

than the large dam in about 70% of simulations, but has substantially higher costs in 30% of

simulations due to large damages from water shortages. The flexible alternative has the same

cost as the small dam in close to 70% of simulations, but the reliability risk is substantially

mitigated because of the potential to expand. The high-end costs are higher than the robust

alternative because 1) the cost of building the 80 MCM dam and expanding to 120 MCM is

higher than building the 120 MCM dam upfront and 2) sometimes the dam is not expanded

even when modest water shortages are incurred. The ability of the flexible alternative to

mitigate both the the risk of overbuilding and the risk of severe shortages demonstrates the

high value of flexibility in this case.

Alternative scenarios

We now assess how the value of flexibility changes 1) without discounting and 2) under the

high demand scenario. Results for these two scenarios are shown in panels b) and c) of

Figures 5-6 and 5-7. We see in the low demand, no discounting scenario a) that the value

of flexibility in our base case was largely driven by discounting, which incentivizes delays in

capital investments. With a 3% discount rate, when the flexible dam is expanded 40 years

in the future, the cost of flexible dam plus is expansion is 4% more expensive than building
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Expansion decision for flexible dam
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Figure 5-6: Histogram for infrastructure decisions. Top row: scenario a) low demand with
discounting; middle row: scenario b) low demand without discounting; bottom row: scenario
c) high demand without discounting. In each row, the left plot shows the initial decision
of which alternative to choose in the first time period. The right plot shows, when the
flexible dam is available, how often it is expanded and when it is expanded. The flexible
alternative is chosen most often in scenario a) because discounting incentivizes delayed
capital investments but not in b) because large economies of scale incentivize a single, large
investment. In scenario c), more modest economies of scale lead to high value of flexibility
in the absence of discounting. Across all scenarios, the flexible dam is expanded in no more
than a third of simulations, highlighting the low probability of risk of reaching a climate
that is hot and dry enough to incur substantial shortages.
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Figure 5-7: CDF of total cost for each infrastructure alternative by planning scenario. Top:
scenario a) low demand with discounting; middle: scenario b) low demand without discount-
ing; bottom: scenario c) high demand without discounting. Each plot compares the small
and large static alternatives, shown in blue and red, compared to the flexible alternative
shown in yellow. The ability of the flexible alternative to reduce risk of over building is
demonstrated by its low cost in the low percentiles in all three scenarios. The flexible alter-
native also mitigates large reliability outages in comparison to the small static alternative,
demonstrated in the high percentiles. However, the median cost of the flexible alternative is
higher than the large robust alternative in scenario b) due to substantial economies of scale.
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the large dam upfront, compared to 27% more expensive without discounting. Without

discounting, the robust dam looks more favorable; it performs best in 60% of simulations,

has no cost variability risk, and is chosen upfront in about 75% of simulations. The low

value of flexibility without discounting is driven by the cost structure of the technology;

large economies of scale in the dam mean that an 120 MCM is only 30% more expensive

than an 80 MCM dam for 50% additional capacity. This suggests it is often better to build

the large dam upfront even if there is a relatively low probability that it will be needed.

The high-demand scenario in which a 120 MCM dam is combined with a desalination plant

shows a high value of flexibility even without discounting. The flexible alternative is chosen

upfront in over 80% of forward simulations, and the CDF demonstrates that it outperforms

the static alternatives by substantially mitigating the over build risk in comparison to the

robust alternative and also modestly reducing the shortage damage risk in comparison to

the small alternative. While the flexible alternative only reduces cost at the 90th percentile

and above, this substantially reduces the expected value as the maximum cost of the small

plant reaches almost M$400 (truncated on plot). In this case, the economies of scale for a

desalination plant are much less substantial. These results highlight differences in the value

of flexibility across technologies.

5.5 Discussion

The results in the Mombasa application demonstrate both the value of information and

flexibility in managing climate change uncertainty as well as its limitations. In the low-

demand scenario we see a high value of flexibility when costs are discounted, but limited

value of flexibility without discounting. In the high-demand scenario we have high value of

flexibility regardless of discounting. We measure the value of flexibility by assessing not only

the expected value of performance against the two objectives cost and reliability, but the

value-at-risk and value-at-gain as measured by the 10th and 90th percentiles respectively.

This highlights that although the uncertainty and learning is driven by the climate system,

decisions about whether flexibility is a valuable tool in mitigating uncertainty are strongly

influenced by technology choice and cost structure. Large economies of scale make flexibility

less valuable; it is better to choose a robust alternative when it is not much more expensive

to do so. However, delaying capital investments also provides financial value, which can
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be especially impactful in resource-scarce areas where unused capital could support other

critical infrastructure services.

The value of flexibility is also driven by opportunities for learning about future risk

of water shortages by incorporating new climate observations. The planning framework

developed here accounts for learning in both the evolution of the state of the system over

time and also for learning in how the risk of being in a certain system state changes over time.

For example, being in a climate with mean 𝑇 of 28°C and mean 𝑃 of 70 mm/month poses a

greater risk to future water shortages if that state has been reached rapidly over a short time

period. The use of multi-stage stochastic planning can be used to explicitly model learning

about uncertainty through the use of non-stationary transition probabilities characterized

by the Bayesian climate uncertainty analysis. It also accounts for risk that depends on

the state of the system by developing an infrastructure policy that varies with the current

state of the system. By enabling shortage risk to vary with both the state of the system

and with dynamic uncertainty estimates, our approach captures the full value of flexibility.

This approach treats flexibility as a strategy to achieve performance metrics of interest,

such as cost and reliability, rather than an end goal itself. This provides more directly

useful information to planners who must decide whether upfront investments in flexibility

are worthwhile. Future extensions to other applications which have differences in degree

and nature of uncertainty, hydrological sensitivity to climate change, and infrastructure

alternatives available are likely to have different value of flexibility. This approach can

enable planners in these unique settings to assess what types of flexibility if any should be

pursued proactively.

Using SDP in combination with EOA enables us to both develop policies for exercising

flexible alternatives and evaluate those alternatives using a simulation model. We acknowl-

edge that SDP has limitations for real world planning applications due to its computational

expense, which scales exponentially with the size of the problem. In our application, how-

ever, the state space is comprised only of long-term climate variables and infrastructure

capacity, limiting the size of the problem. To embed the performance using high-fidelity

physical models, a hydrological model and infrastructure operation model is run separately

for each state in the SDP and the expected value of its performance is saved and used

to characterize the SDP cost function. Using a differentiated approach in which uncer-

tainties with high learning potential use a multi-stage stochastic planning approach while
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others are addressed using more computationally efficient methods can further address this

concern when additional uncertainties are incorporated. For example, short-term adaptive

operations could be incorporated into this framework in the infrastructure operation model

without expanding the state space of the SDP. The limitations of expected utility maxi-

mization could be addressed through the use of alternative decision criteria such as those

developed by McInerney et al. (2012) [103]. Future work could also use a screening model to

optimize the choice of the static and flexible alternatives rather than the heuristic approach

used to select the alternatives here. Finally, the approach could be extended to address a

more comprehensive consideration of multi-objective planning.

Our approach takes advantage of recent developments in assessing the uncertainty in

climate change projections. CMIP5 and related model comparison projects have enabled

more sophisticated, probabilistic approaches to quantifying climate change uncertainty in

ways that recognize that all models do not perform equally in all parts of the world. We

adapt the Bayesian uncertainty modeling approach of Smith et al. 2009 [148] to 1) address

change in both 𝑇 and 𝑃 , 2) update uncertainty based on potential observations in the

future, and 3) use change in mean 𝑇 and 𝑃 from one 20-year period to the next, rather than

absolute 𝑇 and 𝑃 , to reflect greater model skill in predicting changes rather than absolute

temperature at the regional level. This approach does have limitations. It assumes that

GCMs are independent of one another, when in fact some models borrow entire components

from other models [156]. Additionally, we are simulating the potential to learn in the future

using only models available today; repeating the analysis in 40 years with a broader range

of models reflecting the new state of the science may produce larger shifts in CIs. However,

this approach is the best available to assess learning in the future, which impacts planning

decisions today. It enables a more precise, validated measure of uncertainty in comparison

to the democratic approach used by the IPCC.

Our approach addresses only model uncertainty and not emissions uncertainty. This is

an important contribution because model uncertainty dominates overall precipitation un-

certainty in the long-term [70], and the lack of political influence on model uncertainty and

availability of valid statistical approaches makes a statistical rather than scenario-driven

approach appropriate. Future work could extend the approach to address emissions uncer-

tainty by repeating the analysis under different RCPs and assessing regret and robustness

of each alternative across scenarios. This framework therefore enables a differentiated ap-
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proach to climate change uncertainty, in which different types of climate uncertainty are

addressed with a unique and appropriate modeling approach.
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Chapter 6

Discussion

6.1 Methodological contributions

Developing and assessing water supply infrastructure plans requires an integrated approach

that addresses many concurrent sources of uncertainty in the natural, built, and human

environments and their impacts on infrastructure. This dissertation makes a contribution

to the literature on water supply infrastructure planning under uncertainty through the

development of a novel planning framework and its application to develop insights about the

potential for flexible infrastructure approaches to mitigate uncertainty in three contrasting

planning problems. The planning framework makes several methodological contributions,

summarized in Table 6.1

First, the planning framework uses and extends existing dimensions of uncertainty that

are important for how uncertainty is modeled to classify uncertainties and match them

to appropriate uncertainty analysis tools that are integrated into a single analysis. This

addresses a tendency in several current approaches to address all uncertainties in the same

way. For example, RDM treats all uncertainties as deep uncertainties and relies on scenario-

based approaches; this does not take advantage of the full information available that can

be used to characterize some uncertainties probabilistically. Similarly, some uncertainties

can be substantially updated as more information becomes available, requiring a dynamic

approach; others cannot and are therefore more efficiently addressed using Monte Carlo

simulation, which takes a static approach to uncertainty.

Second, it addresses uncertainties with high learning potential — or those for which

additional information can feasibly be collected presently or in the future to meaningfully
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Table 6.1: Key methodological contributions of this dissertation

Contribution Description

Uncertainty
classification

Framework classifies uncertainties according to two dimensions
of uncertainty important for modeling and maps them to
appropriate uncertainty analysis methods.

Dynamic uncertainty
analysis and
management

Bayesian inference combined with multi-stage stochastic
programming enables planner to assess the potential to learn
about uncertainty in the future and develop planning strategies
that account for future learning in decision-making today.

Framework to test
value of flexibility

Combines engineering options analysis with hydrological
modeling to measure value of flexibility as a planning objective

Parameter uncertainty
analysis using

statistical surrogate

Artificial neural network maps any combination of uncertain
parameters to model predictions, enabling computational
efficiency necessary to embed in a stochastic dynamic program.

Dynamic climate model
uncertainty analysis

Bayesian modeling using CMIP-5 extended to update initial
weightings as additional climate observation data becomes
available.

update or reduce uncertainty — using a dynamic approach in which the uncertainty as-

sociated with a certain state of the system can change over time as more information is

collected. These dynamic uncertainty estimates are developed by applying Bayesian infer-

ence to climate models and hydrological models. The hydrological state of the system in

the planning model is used as a hypothetical, future observation used to develop a poste-

rior distribution for uncertainty that takes advantage of this new information. By using a

multi-stage stochastic planning approach which accounts for all possible future states — as

well as the probabilities of reaching those states — our approach develops optimal policies

for exercising flexible options that takes into account the potential to learn in the future.

Together, these elements achieve an integrated infrastructure planning approaches that com-

bines three elements important for assessing infrastructure planning that had not previously

been integrated: 1) dynamic assessments of uncertainty using 2) high-fidelity models of the

climate and hydrological cycle to 3) assess infrastructure performance and planning.

Finally, the framework uses engineering options analysis in order to assess the value of

flexibility in mitigating the impacts of uncertainty. Previous applications of EOA in water

supply have addressed demand uncertainties or made simplified assumptions about supply

uncertainty [37]. Here, we integrate uncertainty estimates using hydrological models with
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EOA to assess the value of flexible planning and design to address hydrological uncertainty.

Some recent work has included flexibility as an objective in a planning model [12]; we provide

an approach to assess the value of flexibility as a strategy for achieving other planning, rather

than assuming it is a worthwhile goal.

The individual applications of this planning make additional methodological contribu-

tions, notably in the integration of physical climate and hydrological models into stochastic

programs using statistical approaches to overcome computational limitations. Chapter 4 on

parameter uncertainty in groundwater in Riyadh, Saudi Arabia develops a statistical sur-

rogate model of a numerical finite-difference groundwater model using an artificial neural

network that provides a mapping of any combination of parameters values to predictions of

hydraulic head. This enables computationally tractable numerical calculation of a Bayesian

posterior distribution for each of value of the state space. While demonstrated on a sim-

ple, 2D MODFLOW groundwater model, the flexibility of artificial neural networks, which

have been widely applied in hydrological applications, enables extension to more complex

groundwater models in the future. This approach could have applications to other engi-

neering systems domains in which complex physical models are needed to appropriately

characterize uncertainty in stochastic planning approaches.

In Chapter 5 on model uncertainty in climate change in Mombasa, Kenya, a similar

approach is developed to integrate climate uncertainty into a multi-stage stochastic program.

However, the key uncertainty addresses is a model uncertainty rather than a parameter

uncertainty. Therefore the approach used in Chapter 4 to map uncertain parameter values

to predictions using a single model is not appropriate. Instead, we applied Bayesian model

averaging across an ensemble of climate model projections. This approach takes advantage

of recent advancements in developing probabilistic climate projection using model inter-

comparison. To our knowledge, it is the first time these probabilistic climate projections

have been used to characterize a stochastic program to assess the impacts of climate change

uncertainty on water resources planning.

6.2 Cross-application insights

The individual applications addressed in this dissertation provide insights for planners in

each region on the potential for flexibility in infrastructure planning and design to mitigate
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uncertainty in water supply planning; these insights are discussed in each chapter. Some

additional insights about flexibility in water supply infrastructure planning can be drawn

by looking across the three applications. In all three applications, we find value in flexible

planning or design as means to mitigate uncertainty as well as limitations to the value of

flexibility in all cases. We can make some observations about factors that drive value in

flexibility in water supply planning.

Learning In all cases, we observe that the process of learning about uncertainty over time

is useful in exercising flexible options. This is demonstrated by the result that the flexible

option is only exercised in a subset of forward simulations. In Melbourne, the flexible option

is exercised primarily in scenarios with high demand growth, after high demand growth has

been observed in the first planning period (check on details of this). Similarly, in Riyadh

and Mombasa, the flexible expansion option is exercised in response to new observation of

rapid head drawdown and rapid drying and warming respectively.

Stochastic variability A challenge in the ability of flexible infrastructure planning to mit-

igate uncertainty is the presence of irreducible stochastic variability. In Melbourne, while

the small flexible alternative has clear advantages over the large desalination plant, it does

incur more reliability risk as it does not fully mitigate the impacts of multi-year droughts. In

Mombasa, similarly, the flexible alternative is able to mitigate the worst reliability outages,

but it still incurs substantially more shortage damages than the large robust alternative.

This is not the case in Riyadh where stochastic variability does not play a role: the only

uncertainty addressed is an information uncertainty. In Riyadh, therefore, the flexible alter-

native has a nearly identical reliability profile to that of the static build alternative. This

is because the expansion policy derived by the SDP is effective in making sure short-term

reliability outages do not occur in the two years between when the decision is made and the

capacity comes online — and because there is no variability in supply or demand.

Value of reliability The value of reliability, operationalized in this dissertation as a

penalty incurred for water shortages in which demand targets are not met, may or may not

have a large impact on the value of flexibility. In the Melbourne application, the shortage

penalty is treated as a deep uncertainty and addressed with scenario analysis. The results

show that the value of flexibility is highly dependent on this value. In the base case of 25
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$/m3 the flexible alternative performs well. However, when the shortage value is lowered

to 5 $/m3 or raised above 50 $/m3, the no-build alternative and large plant alternative

respectively perform more favorably. In Riyadh, however, the value of flexibility is insensitive

to the shortage value. This is related to lack of stochastic variability as discussed above; the

flexible alternative almost never incurs shortage damages, and even a most shortage value

of $5/m3, down from the base case of $25/m3 based on World Bank estimates of water

productivity, is enough to promote the flexible alternative over the no-build alternative. In

Mombasa, the value of flexibility is also insensitive to the shortage penalty. This is because

of the substantially lower capital costs, such that total cost of the large dam is equal to 6.6

MCM of water shortages at the base shortage value of $15/m3. This means that the optimal

SDP policy is incentivized to avoid even small reliability outages. The value of reliability

therefore can have a large or modest impact on the value of flexibility, depending on the

cost of the infrastructure and the probability of reliability outages.

Discounting We also find a large influence of the discount rate on the value of flexibility.

Higher discount rates incentivize delayed capital investments and therefore promote flexible

options that defer some or all of the capacity until later time periods. In the applications

in Melbourne and Riyadh, we found high value of flexibility across all discount rate values

tested. In Mombasa, however, in the scenario based on current demand in which only a dam

is built, rather than a dam plus a desalination plant, we find that the flexible alternative

has little value without a discount rate.

Economies of scale A key advantage of large, traditional infrastructure project is ability

to leverage economies of scale; the unit cost of capacity decreases as the size of the project

increases. Modular infrastructure projects, in which smaller volumes of capacity are added

as needed, therefore poses a tradeoff between the ability to adapt and the inability to access

economies of scale. In Mombasa, the key reason that the flexible dam design has limited

value of flexibility in comparison to the large, robust dam is because of the high economies

of scale for an earth dam: the large dam is only 27% more expensive for 50% more capacity.

The economies of scale for reverse osmosis desalination, however, are much lower because

the technology is inherently modular. Therefore, the applications focused on desalination

planning rather than dam design faced a much more modest tradeoff. This suggests that
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water planners choosing between different water supply technology options may want to

consider the economies of scale each option faces and whether the technology can effectively

take advantage of flexibility.

Type of flexibility The types of flexibility addressed in the applications varies. Chapter 4

evaluates a flexible infrastructure planning process in which the timing of capacity additions

is flexible, while Chapters 3 and 5 assess flexible infrastructure design in which the volume of

capacity additions is flexible. These were chosen to appropriately manage the uncertainties in

each case. In the aquifer depletion problem in Chapter 4, it is known that new infrastructure

will have to be developed — the question is when. By contrast, in Chapters 3 and 5, it is

assumed that new capacity is needed immediately — the question is how much. The specific

formulation of flexibility impacts its value. For example, the essential element for success of

the flexibility in Chapter 4 is advance preparations, such as choosing a design and location

in advance, such that the infrastructure can be brought online in only two years. This makes

the risk of reliability much lower. The ability of planners to effectively prepare in advance,

enabling them to execute flexible policies quickly and nimbly will have a substantial impact

on the potential for flexible approaches to reduce cost risk without impacting reliability.

6.3 Limitations and extensions

Many opportunities exist to improve and extend the approach to flexible water supply

infrastructure planning developed in this dissertation. Areas for future work include: the

planning framework, planning applications, water resource modeling, social and institutional

analysis and other domains. Key opportunities for extensions in each of these areas are

summarized in Table 6.2.

Planning framework The planning framework makes a contribution in classifying uncer-

tainties and linking them to appropriate uncertainty analysis tools. There are opportunities

to further develop other dimensions of uncertainty and to refine the operationalization of

the existing categories. Many dimensions and taxonomies of uncertainty exist beyond those

discussed in this dissertation; future work could build theory around which dimensions of

uncertainty are important for modeling and managing uncertainty, and whether disagree-

ments on this topic in the literature are based on subjective choices or logical errors [116].
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Table 6.2: Key opportunities for extensions and future work

Category Extension opportunities

Planning framework

Refine operationalization of uncertainty dimensions

Test additional uncertainty management strategies

Add additional uncertainties and categories as needed

Planning applications

Optimize value of flexibility

Improve multi-objective analysis

Scale to large systems via integration with
simulation-based optimization approaches

Water resource modeling

Identify properties of water systems that drive value
of flexibility

Extend to other water resources planning problems e.g.
hydropower, irrigation, thermal cooling, and flooding

Address additional measures of climate change beyond
long-term mean T and P e.g. extreme events,
autocorrelation, variance

Social and institutional
analysis

Use multi-agent modeling to address coupled interactions
of planners, stakeholders, and end users

Integrate stakeholder collaboration to identify and evaluate
uncertainties and opportunities for social learning

Other domains

Extend to other engineering systems infrastructure domains
e.g. electricity, transportation

Guide and evaluation water technology development
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There is substantial debate in the community as to what constitutes deep uncertainty, for

example. Further work could explore literature in information theory or the philosophy of

science on interpretations of probability to build logical arguments supporting a specific

definition.

Opportunities exist to expand on and refine the "learning potential" dimension of uncer-

tainty in future work. In this dissertation, we address only statistical uncertainties with high

learning potential and used Bayesian inference to model the potential for future observations

to update or reduce uncertainties. In reality, deep uncertainties can present opportunities

for learning as well. For example, scenario or emissions uncertainty in climate change is a

one of the most commonly cited deep uncertainties, and our understanding of it will cer-

tainty change and update over time. Scenario-based approaches for modeling the impacts

of this learning process could better enable evaluation of adaptive infrastructure and man-

agement approaches to mitigating climate change uncertainty. Additionally, a limitation of

the current implementation for statistical uncertainties is that they use only the existing

models that are currently available; learning in the future may take the form of new model

development.

Additionally, while the framework currently provides a means to test the value of flex-

ibility in managing uncertainty through the use of engineering options analysis, it could

be expanded to address other strategies for managing uncertainty as well. For example,

information collection could be addressed as a decision variable in which planners can seek

out additional information upfront rather than passively collecting it over time. Remotely-

sensed earth observation data, such as NASA satellite missions GRACE and its follow on

mission GRACE-FO as well as SMAP, present opportunities for new sources of information

to reduce hydrological uncertainties in planning decisions.

Planning applications There are a number of practical opportunities to improve the

ability of the framework to realistically model planning decisions. For example, further

computational advancements may be needed in order to include several high learning po-

tential uncertainties in a single analysis. Additionally, in this dissertation we have not

attempted to optimize the choice of static and flexible alternatives; we use the SDP to

develop the optimal policy for exercising the option but not the best choice of flexibility.

Instead, we have relied on planner-suggested alternatives and heuristic approaches to choose
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the alternatives to compare. In practice, the specific choices of static and flexible alterna-

tive influences the relative value of flexibility. Future work could use screening models [11]

or other optimization approaches to compare optimal static and flexible alternatives rather

than heuristic-based alternatives.

Future work could also consider a wider range of infrastructure or other planning alter-

natives. For example, Chapter 4 in Saudi Arabia only evaluated a RO desalination plant.

However, wastewater treatment for reuse and additional groundwater development could

also be used to increase supply capacity. Across all the applications, demand-side measures

to reduce water use through restrictions and incentives could be considered as an alterna-

tive to infrastructure development. Effective demand reduction measures are likely to play

an important role as uncertainty increases in many water resource systems as a method

to manage uncertainty. Integrating demand reduction into the planning framework would

require the addition of economic models to asses the impact of — and uncertainty in — hu-

man responses to demand policies such as increased tariffs. This could leverage recent work

integrating agent-based models into water resource system models to assess social responses

to different policies.

Finally, we have only considered two planning objectives in these applications: reliability

and cost. Planners have many other objectives as well, such as maintaining ecosystem

services, equitable distribution and access, water quality, etc. One notable objective not

addressed in this dissertation is the energy intensity of water supply; this is especially

important in evaluating desalination investments which are highly energy intensive. Saudi

Arabia is aiming to reduce the amount of its energy resource consumed domestically, and

evaluating the energy intensity of new investments options is likely to promote options such

as wastewater reuse with lower energy use. In order to implement this — as well as the

proposed extensions to address a larger number of alternatives in larger scale systems —

future work could explore the use of multi-objective evolutionary algorithms [136]. These

and other search algorithms that enable simulation-based optimization have been widely

used to find Pareto optimal solutions across many planning objectives in large-scale systems

more tractably that traditional optimization approaches.

Water resource modeling Future work can also extend the approaches developed here

to integrate more complex hydrological models. Groundwater applications can include spa-
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tial heterogeneity — a different form of stochastic variability that exists in space rather

than time — using a zonal approach. The ANN could be applied using additional input

parameters for each of the zones. The ANN could also be used to predict head in multiple

wells, which could help identify the shape of the cone of depression and potentially reduce

parameter uncertainty more quickly. Additional extensions could apply to unconfined, re-

newable aquifers with seasonal variation and greater interaction with surface water. This

poses a challenge to the assumption of path independence because hydraulic head would

not be monotonically decreasing; new planning model formulations could take a hierarchical

approach in which annual and seasonal variations are addressed as separate state variables.

The Bayesian climate modeling could also be extended to address uncertain climate

variables beyond decadal mean temperature and precipitation. Water planning decisions

are also impacted by changes in monthly and annual autocorrelation (e.g. to assess changes

in the frequency of multi-year droughts) and variance in T and P. The Bayesian methods

developed here could be extended to develop uncertainty estimates for these additional

climate metrics and integrated into new stochastic weather generation approaches.

While this dissertation focuses on water supply planning, the planning framework could

be applied to other planning questions in water resources. For example, in dam design

for hydropower, we could evaluate the potential to learn about electricity demand over

time and assess the value of flexible design. Similar extensions could be made in water

use for thermal electric cooling and irrigation. The climate analysis could be extended to

assess learning about the frequency of extreme events and used to inform flood planning

decisions. Similarly, uncertainty in ecological indicators, such as the frequency and duration

of low environmental flows, could be incorporated. Long-term future work could aim to

integrate these water resources domains to assess learning and flexibility in an integrated

water resources management approach.

Finally, application of this method across many different water systems could enable

identification of properties of water systems which enable high value of flexibility. For

example, the results from the three applications in this dissertation suggest that the relative

influence of stochastic variability vs. information uncertainty has a strong influence on the

value of flexibility. Designing a large-N study across many water systems could identify and

test metrics like the ratio of stochastic variability to information uncertainty to see if they

have statistically significant impacts on the value of flexibility. Different regions of the world
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face different ratios of internal variability, model uncertainty, and emissions uncertainty in

climate change [69]. Testing the influence of these different types of uncertainty could

enable the development of heuristics that identify systems where flexibility can be applied

vs. systems where a robust approach is more favorable. This could be helpful for planners

to identify and screen different climate adaptation scenarios without undertaking the full

application of this modeling framework.

Social and institutional analysis There are a number of opportunities to extend the

framework to address social and institutional uncertainties more comprehensively. First,

in our current applications, we have modeled decisions from the perspective of a single

planner, focusing on pragmatic alternatives the planner has the authority to implement.

In reality, many different actors interact with water resource systems, and decisions made

by the planner can influence the behavior of other actors and vice versa. Future work

could explicitly model the behavior and decisions of multiple actors to include this two-

way coupling of natural and human systems [147]. For small numbers of actors, such as

multiple water utilities or planners in a region, game theoretic approaches for managing

uncertainty could be used. Alternatively, we could model the impact of many individual

actors through agent-based modeling, which has been applied to water resource systems to

model the response of individual actors to changes in the water system at different scales

[145]. This approach could be extended to address uncertainty by including variability in

social responses using statistical or scenario-based approaches. For example, agent-based

models could include uncertainty in the impact of demand-side restrictions or policies to

reduce water use.

Second, institutional uncertainties could be addressed and included in the uncertainty

framework. For example, project delays are a common and impactful uncertainty in infras-

tructure planning. Indeed, the Wonthaggi plant in Melbourne discussed in Chapter 3 faced

lengthy construction delays. This could be included in the existing uncertainty framework

by using historical data on construction times to develop probabilistic estimates of project

completion time that could be included as statistical uncertainties. In the SDP model, this

could be implemented by including probabilistic state transitions for planned infrastruc-

ture capacity, instead of assuming a fixed time for project construction. Other institutional

uncertainties may require greater extension of the existing uncertainty framework. For ex-

131



ample, the deep uncertainty analysis could be extended to identify and address institutional

uncertainties that arise from ambiguity, or differences in stakeholder perspective, in a differ-

entiated way. This could draw on recent literature integrating qualitative approaches into

engineering systems analysis [154]. For example, qualitative scenario-discovery methods

have been applied to identify deep uncertainties in multi-stakeholder decision processes [85].

Mixed-method approaches could be used to elicit the incentives, constraints, and uncertain-

ties impacting the decisions of different stakeholders and then included in the optimization

model; recent work has developed and applied this approach in electricity system planning

[32].

Finally, future work could integrate stakeholder collaboration, an important element in

crafting decision support for planners and policymakers that is directly usable [28]. A key

motivation for the differentiated approach to diverse uncertainties developed in this disser-

tation is that in practice planners face many uncertainties in a single decision. Collaborative

or participatory approaches could be used to identify these uncertainties and to classify them

in a manner informed by stakeholders’ assessment of the level of uncertainty and opportu-

nities to learn in the future. Similarly, prior work in adaptive management has addressed

the importance of social learning, in which exchanges across stakeholders and actors lead

to greater understanding of the systems [163]. The approach developed here for assessing

opportunities to learn about hydrological uncertainty in future could be extended to address

social learning processes and its implications for planning decisions.

Other domains Finally, the methods and approaches developed in this dissertation could

inform other fields of research as well. Many other engineering systems domains, such as

electricity or transportation systems, address infrastructure planning decisions in the face

of multiple, diverse uncertainties. The framework presented here could be broadly adapted

to those systems. In particular, climate change uncertainty impacts many of these domains

and the Bayesian approach developed in Chapter 5 could be applied to other infrastructure

systems whose performance is impacted by climate to assess the value of flexible approaches

to managing risk. The insights in this dissertation can also guide water technology devel-

opment. For example, while much of research in desalination aims at improving efficiency

and reducing cost of large scale technologies, we demonstrate that modular designs in which

smaller volumes of capacity can be added even if the unit cost is somewhat higher can add
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value at a broader system-level scale. The framework developed here can be used to assess

the impacts of new desalination or other water technology developments on water resource

systems planning and performance.
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Appendix A

Multiple uncertainties in Melbourne

Reservoir operations

For each generated simulation of future natural water supply, we calculate the total urban

demand, demand for water from supply infrastructure systems (desalination plants and

irrigation pipelines) and the unmet demand on an annual basis.

Total demand is modeled as a product of demand per capita and population. The base

population in 2007 is 3.86 million. Each year, population grows at either a high or low

growth rate of 150,000 or 50,000 respectively, based on historical data and forecasts [10].

The choice of the high or low growth rate is simulated in each 10-year planning period of

the total 30-year model horizon. The probability of high growth is 0.5 in the first period.

Condition probabilities are used to model mean reversion; if population growth was high

in the first period, it has only 0.25 probability of being high again in the second period,

and vice versa. This leads to 8 population growth outcomes, which range from 150,000 to

450,000 in growth over the 30-year planning period.

Once total demand is calculated, the demand from each infrastructure component and

unmet demand is calculated using a water balance approach and simple operational rules,

represented in Figure C-3 with parameter assumptions shown in Table A.1. The model uses

five operational rules to track reservoir storage, water supplied and shortages:

1. Reservoir storage is calculated by adding the natural water inflow is added to the

amount of water in reservoirs at the beginning of a given year .

2. Demand is calculated as the demand per capita times the population. Demand is then
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Figure A-1: Schematic showing operational rules assumed in Melbourne analysis
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subtracted from total reservoir storage, leaving either remaining demand or surplus

water availability.

3. If the amount of water left is lower than the action threshold 𝑊𝑎𝑐𝑡𝑖𝑜𝑛, then water from

the Sugarloaf pipeline is imported and added to reservoir storage in the infrastructure

alternatives in which it is available (S2, S5, and S6). We calculate the amount of

water available from the Sugarloaf pipeline as a linear function of the sum of amount

of water available at the beginning of year 𝑡(𝑊𝑡0) and the natural inflow in year 𝑡(𝐼𝑡).

This reflects the assumption that the amount of water available from the Sugarloaf

pipeline in a given year is correlated with general water availability in the Melbourne

area in that year.

4. If reservoir storage is lower than both the action threshold 𝑊𝑎𝑐𝑡𝑖𝑜𝑛 and the amount

of water at the beginning of year 𝑡(𝑊𝑡0), then water from the desalination plant is

imported and added to reservoir storage, in the infrastructure alternatives in which it

is available (S2 – S6). The latter condition reflects the assumption that the desalination

plant is only used when the overall water availability is decreasing, and not when the

reservoirs are recovering from a drought.

5. Finally, if the water left in the reservoirs after imports from available new infrastruc-

ture is lower than the critical threshold, 𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙. If this is the case, we leave reservoir

storage at 𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 and register the difference as shortage (unmet demand). This un-

met demand would have to be met by sources other than natural inflow, the Sugarloaf

pipeline, and the desalination plant, or through demand reductions. Note that the

model does not include elastic demand reductions in response to shortages; this ap-

proach was taken to be able to simply and clearly measure and communicate the total

volume of shortages.

Decision model

We use a decision analysis model to evaluate the six infrastructure alternatives and choose

the best in each model run. Population growth uncertainty is incorporated directly into

the decision analysis model as an uncertain event to demonstrate the impact of allowing

a decision-maker to observe population growth over time and react. In each model run,
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Table A.1: Parameter assumptions for water system moel

Parameter Description Value Source/ comment

𝐷𝑐𝑎𝑝 Demand per capita 100 kL/p/y

𝑃𝑡 Population in year t Based on population
outcome in decision model

𝑞𝑜
First parameter of regression of
Sugarloaf pipeline water availability -60 Estimate

𝑞1
Second parameter of regression of
Sugarloaf pipeline water availability 0.089 Estimate

𝐼𝑟𝑟𝑎𝑣𝑚𝑖𝑛
Water availability from pipeline
during dry years 20 MCM/y Estimate

𝐼𝑟𝑟𝑎𝑣𝑚𝑎𝑥
Maximum water availability from
pipeline 100 MCM/y Estimate

𝑆𝑚𝑎𝑥 Desalination plant capacity 75 or 150
MCM/y

Depends on size of plant
(small or large) in year t

𝑊𝑚𝑎𝑥
Maximum capacity of all reservoirs
in Melbourne water supply system 1812 MCM (Melbourne Water, 2015)

𝑊𝑎𝑐𝑡𝑖𝑜𝑛
Action threshold (of storage level
in Melbourne water supply system) 980 MCM (Melbourne Water, 2015)

𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
Minimum required storage level in
Melbourne water supply system 580 MCM (Melbourne Water, 2015)

perfect information about water supply is assumed, and the choice of best infrastructure

alternative is calculated using the standard backward recursion method of solving decision

trees [129].

Figure A-2 shows an abbreviated schematic of the decision tree used in this case. In

year 0, the decision-maker (DM) chooses from one of the six infrastructure alternatives (S1,

S2, ...., S6). Population growth is either high or low over each 10-year planning period, as

described in Section A2. Then, after observing whether population growth was high or low,

the DM can then decide in year 10 whether to expand the small desalination plant capacity

for the infrastructure alternatives that have a small plant with expansion option (S3 and S5).

The population growth and planning process occurs again in year 20. We have incorporated

a reversion to the mean in the population growth probabilities so that population outcomes

tend to be close to the base case over the 30 year planning period; if population growth

went up in the previous period, there is only a 1
4 chance it will go up again in the second

period and vice versa. Finally, the population again sees high or low growth until year 30.

Each branch of the tree, consisting of a specific outcome of S (the choice of infrastructure

alternative), P (the population growth outcome), and O (what expansion option choice was
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made), incurs a specific payoff 𝜋. For infrastructure alternatives without a flexible expansion

option, the DM does not make additional decisions after year 0, and different payoffs are

incurred based on high or low population growth in each of the three 10-year periods. The

best infrastructure alternative and accompanying expansion option decision (if relevant) are

chosen to minimize the expected value of the payoff or total cost function.

Note that the implementation here takes into account path dependence, which is com-

putationally tractable because of the simplified population model which assumes only two

possible realizations of population growth in each period. In Chapters 4 and 5, the SDP

implementation requires much more granularity in order to incorporate high fidelity physical

models of hydrology and climate. Therefore, in those applications, an assumption of path

independence is made.

Additional results

Additional results can be found in the Supplemental Information of the published pa-

per, which can be found at: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29WR.

1943-5452.0000823
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Appendix B

Groundwater uncertainty in Riyadh

Groundwater model

MODFLOW

MODFLOW is a numerical groundwater model developed in the 1980s by the USGS. In this

paper, we use the version MODFLOW 2005 [65]. We assume the aquifer is confined and use

a 2 dimensional version of the model. MODFLOW therefore solves the following version of

the groundwater flow equation:

𝜕

𝜕𝑥

(︂
𝐾𝑥𝛿

𝜕ℎ

𝜕𝑥

)︂
+

𝜕

𝜕𝑦

(︂
𝐾𝑦𝛿

𝜕ℎ

𝜕𝑦

)︂
+ 𝑊 (𝑥, 𝑦, 𝑡) = 𝑆

𝜕ℎ

𝜕𝑡
(B.1)

where 𝐾𝑥 and 𝐾𝑦 are hydraulic conductivity in the 𝑥 and 𝑦 directions respectively, 𝑊

is the source term in this case reflecting pumping out of the aquifer and recharge into the

aquifer, 𝑆 is the storativity, 𝛿 is the aquifer thickness assumed constant, 𝑡 is time, and ℎ is

the hydraulic head.

Artificial Neural Network

400 simulations of the MODFLOW model are used to train the artificial neural network

(ANN). Latin hypercube sampling over the prior parameter distribution 𝑝(𝜃) is used to

generate a unique combination of input parameters for each simulation; the set of these

parameter combinations span the full possible range. The simulations are run with 100

time steps per year and recorded at a single grid cell representing the Buwayb well field.

This yields a total of 4,000 data points for hydraulic head with varying inputs for 𝐾, 𝑆,
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Figure B-1: Error histogram comparing drawdown estimates from MODFLOW to corre-
sponding estimates from the ANN.

and 𝑡. This dataset is randomly split into a 70-15-15 train-validation-test partition. A

feedforward ANN is trained using MATLAB’s scaled conjugate gradient backpropagation

algorithm. Many different network architectures varying the transfer function, number of

hidden layers, and number of neurons are tested. We select the network with the lowest

root mean square error (RMSE) on the test partition. This architecture has 2 hidden layers,

with 6 neurons each, and a sigmoid transfer function. Because of the SDP formulation

which imposes a drawdown-limit of 50 meters, only observations above the drawdown limit

are included in calculating the RMSE; this allows us to choose the model that performs best

in the range it will be used in the SDP. The RMSE calculated using this approach is 1.02

m, indicating excellent performance for our long-term regional planning application.

Cost assumptions

Equation 4.4 in Section 4.3 describes the formulation of the SDP for the groundwater appli-

cation. Figure B-2 illustrates the cost assumptions used in the formulation. The marginal
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cost of pumped groundwater 𝑃 is the sum of two components: pumping costs and pretreat-

ment costs because of the brackish quality of the water. Pumping costs were estimated

using the cost of energy needed to raise water the height of drawdown in the well plus head

losses due to friction estimated using the Darcy-Weisbach equation [77]. Pumping cost range

between $0.40/m3 at the assumed starting depth of 337 m.a.s.l and $0.47/m3 when the 50

m depth limit is reached. Brackish treatment costs were assumed to vary between $0.3/m3

and $0.35/m3 for the starting depth and maximum depth respectively. The marginal cost

of desalinated water is estimated as the sum of pumping costs through an existing pipeline

from the desalination plant on the Arabian Gulf to Riyadh plus desalination opex. Pipeline

pumping costs are assumed to be $1.35/m3 and were estimated as the cost of energy needed

to raise water the elevation difference between the desalination plant at sea level and Riyadh

at 612 m.a.s.l. plus head losses due to friction again estimated using the Darcy-Weisbach

equation [77]; changes in elevation over the pipeline’s path were not considered. RO desali-

nation opex and capex were estimated to be $0.48/m3 and M$227 based on a 108 MCM/y

capacity plant using the Cost Estimator tool from Global Water Intelligence’s "Desal Data"

database [56]. This size was chosen to be equivalent to estimated withdrawals from the

Minjur aquifer.
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Figure B-2: Cost assumptions for groundwater SDP formulation. Pumping and brackish
treatment costs are incurred for water supplied from groundwater; pipeline pumping and
desalination opex are incurred for water supplied from desalination. Desalination capex is
incurred when a new desalination plant is brought online.
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Appendix C

Climate change uncertainty in

Mombasa

Bayesian climate uncertainty analysis

An ensemble of 21 climate model projections are used. The models, as well as the ensemble

number used, are listed below in Table C.1. More details on the statistical model used can

be found in Smith et al. (2009) [148].

K-nn bootstrap for stochastic weather generation

The k-NN bootstrap approach from Rajagopalan and Lall (1999) [132] is implemented as

follows:

1. Standardize the GCM’s monthly temperature and precipitation values, based on the

GCM-monthly climatology over each 20-year time period.

2. Calculate k-value. Because we implement the k-NN based on the climatology of the

current month (total of 20 months in the 20 year window) and adjacent months (total

of 40 months in the 20 years window), we have a total of 60 months being considered

in the nearest neighbor. Following [132], we set 𝑘 equal to the square root of 60, which

we round down to 7.

3. For each value of 20-year mean 𝑇 and 𝑃 and time period in the SDP state space, a

GCM is sampled.
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Table C.1: Climate model ensembles used

Modeling Center Institute ID Model Name (ens. member)

Commonwealth Scientific and
Industrial ResearchOrganization
and Bureau of Meteorology, Australia

CSIRO/BOM ACCESS 1.0 (1)
ACCESS 1.3 (1)

Beijing Climate Center, China,
Meteorological Administration BCC BCC-CSM1.1 (1)

EC-Earth Consortium EC-EARTH EC-EARTH (2, 8, 9, 12)

The First Institute of Oceanography,
SOA, China FIO FIO-ESM (2, 3)

NOAA Geophysical Fluid Dynamics
Laboratory NOAA GFDL

GFDL-CM3 (1),
GFDL-ESM2G (1),
GFDL-ESM2M (1)

National Institute of Meteorological
Research/Korea, Meteorological
Administration

NIMR/KMA HadGEM2-AO (1)

Met Office Hadley Centre MOHC HadGEM2-CC (1)

Japan Agency for Marine-Earth
Science and Technology, Atmosphere
and Ocean Research Institute (The
University of Tokyo), and National
Institute for Environmental Studies

MIROC MIROC-ESM-CHEM (1)
MIROC-ESM (1)

Atmosphere and Ocean Research
Institute (The University of Tokyo),
National Institute for Environmental
Studies, and Japan Agency for Marine
-Earth Science and Technology

MIROC MIROC5 (1, 2, 3)

Norwegian Climate Centre NCC NorESM1-M (1),
NorESM1-ME (1)
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4. Initialize starting month by randomly selecting a year in sample time window and

setting initial current month to January in that year.

5. Calculate the Euclidean distance for all of the current months’ and adjacent months’

standardized precipitation and temperature values (total of 60 Euclidean distances).

6. Rank the distances from smallest to largest and select the first 𝑘 ranks (𝑅1, 𝑅2, ..., 𝑅𝑘).

7. Specify the sampling density, 𝐷𝑖 for the first 𝑘 ranked months as follows:

𝐷𝑖 = 1/𝑅𝑖∑︀𝑘
𝑗=1 𝑅𝑗

8. Sample the month from the distribution, 𝐷𝑖 and specify the next month in the time

series to be the month following the one sampled from 𝐷𝑖.

9. Repeat steps 5-8 using a unique sampling density 𝐷𝑖 until the 20-year monthly time

series is complete.

10. Transform the standardized monthly time-series back to monthly values by multiplying

by the monthly standard deviation, adding the GCM’s monthly cycle back in and then

adding the annual mean values of 𝑇 and 𝑃 . If negative precipitation values exist, set

them to zero.

CLIRUN II Rainfall-Runoff Model

CLIRUN II is a lumped watershed rainfall-runoff model designed to assess the impacts of

climate change on runoff. It builds on the single layer model CLIRUN [83] by taking a

two-layer approach to modeling soil moisture: the upper soil layer and lower groundwater

layer allow for both fast and slow runoff response to precipitation [151]. Figure C-1 depicts

the model structure and Figure C-2 shows the performance of our model calibration on the

Mwache River. More details about the model can be found in Strzepek et al. (2011) [151]

Reservoir Operation Model

The reservoir operation model uses a water mass balance approach, shown in Equation C.1.

∆𝑆𝑡 = 𝑅𝑡 + 𝑃𝑡 + 𝐷𝑡 − 𝑌𝑡 − 𝐸𝑡 −𝑂𝑡 (C.1)

147



Figure C-1: Schematic depicting structure of CLIRUN II. Model take mass balance of water
approach, with six calibrated parameters that determine the flow rates. Reproduced with
permission from Strzepek et al. (2011) [151]
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Figure C-2: Calibration fit for CLIRUN II rainfall-runoff model. Top panel compares mod-
eled vs. observed values for monthly runoff from 1976 to 1990. Bottom panel compares
modeled vs. observed values for monthly average streamflow across the 14-year time period.

148



Figure C-3: Reservoir operations model applied to a sample 5-year time series of runoff for
a 120 MCM reservoir. Top panel shows reservoir inflows and storage volume. Bottom panel
shows yield and unmet demand. In this sample time series, reliability outages occur at the
end of year 1 due to several consecutive months of inflows lower than demand.

where 𝑆 is reservoir storage, 𝑅 is runoff, 𝑃 is direct precipitation into the reservoir, 𝐷 is

imported desalination water, 𝑌 is reservoir yield delivered to serve demand, 𝐸 is evaporation

from the reservoir estimated using modified Hargreaves [7], 𝑂 is downstream outflows, and

𝑡 is time measured in monthly steps. Operating rules are applied such that yields are

equal to the full domestic and agricultural demand, or as much as can be delivered. If

desalination is available, it is used to refill reservoir storage when storage levels drop below

50% of capacity. Reservoir levels can not drop below the dead storage volume of 20 MCM.

Outflows are released to prevent storage going above the reservoir capacity, and we assume

no environmental outflow requirements. Figure C-3 demonstrates the reservoir operations

for a 120 MCM dam without desalination for a sample 5-year time series of runoff.

Additional Results
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Figure C-4: Confidence intervals for learning over time: alternate simulation in which pre-
cipitation and MAR decline, driving shortage risk higher.
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