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Abstract 
The growth of location-constrained renewable generators and the integration of electricity 

markets in the United States and Europe are forcing transmission planners to consider the 

design of interconnection-wide systems. In this context, planners are analyzing major 

topological changes to the electric transmission system rather than more traditional 

questions of system reinforcement. Unlike a regional reinforcement problem where a 

planner may study tens of investments, the wide-area planning problem may consider 

thousands of investments. Complicating this already challenging problem is uncertainty 

with respect to future renewable-generation location. Transmission access, however, is 

imperative for these resources, which are often located distant from electrical demand. 

This dissertation frames the strategic planning problem and develops dimensionality 

reduction methods to solve this otherwise computationally intractable problem. 
 

This work demonstrates three complementary methods to tractably solve multi-stage 

stochastic transmission network expansion planning. The first method, the St. Clair 

Screening Model, limits the number of investments which must be. The model iteratively 

uses a linear relaxation of the multi-period deterministic transmission expansion planning 

model to identify transmission corridors and specific investments of interest. The second 

approach is to develop a reduced-order model of the problem. Creating a reduced order 

transformation of the problem is difficult due to the binary investment variables, categor-

ical data, and networked nature of the problem. The approach presented here explores 

two alternative techniques from image recognition, the Method of Moments and Principal 

Component Analysis, to reduce the dimensionality. Interpolation is then performed in the 

lower dimensional space. Finally, the third method embeds the reduced order representa-

tion within an Approximate Dynamic Programming framework. Approximate Dynamic 

Programming is a heuristic methodology which combines Monte Carlo methods with a 

reduced order model of the value function to solve high dimensionality optimization 

problems. All three approaches are demonstrated on an illustrative interconnection-wide 

case study problem considering the Western Electric Coordinating Council.  
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1. Introduction 

The transmission investments made today will shape the power system for decades to 

come, determining what types of new generation will be available to meet policy goals 

from climate change to local air quality and water consumption.  This dissertation ad-

dresses the problem of planning this next generation electric transmission network. This 

is an immense task, given the overwhelming dimensionality and large uncertainty that 

characterizes this complex problem. Planning the next generation grid is significantly 

complicated by the anticipated large penetration of wind and solar generation and the vast 

scope of present electricity markets. This work proposes a comprehensive framework to 

tackle capacity expansion of the transmission network and develops the building blocks 

to complete the approach. In isolation, these tools are designed to aid transmission 

planners in identifying new robust transmission investment patterns.  

The transmission grid is the backbone of the electric system, transporting power 

from generators to distribution centers to our homes, businesses and schools. The extra 

high voltage transmission network (EHV), defined to be all transmission lines rated 

345kV and above, is the bulk power transportation system from large generators to 

demand centers, the federal highway system of the road network. Residential, commer-

cial and industrial customers all rely on the electric grid for reliable and economic 

service. When the transmission system fails, the power system fails. As was dramatically 

demonstrated during the Northeast Blackout of 2003 in the United States, the successful 

operation of this network is vital.  Without it, commerce grinds to a stop and the other 

networks, such as transportation and communication that rely on the power system, also 

fail. However, as electricity demand grows, population centers change and new genera-

tion replaces the old, the demands on the transmission network change. To meet the 

demands of the evolving system, new transmission investments must be made to maintain 

the reliability and economic viability of the network.   

Climate change and other policies which induce high penetrations of renewable gen-

eration are forcing both the transmission network and its planning to evolve quickly. 
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Transmission planning has historically been done on a regional (United States
1
) or 

country-wide basis (in Europe); the planning areas in the western United States, for 

example, are shown in Figure 1-1. In the past, these regions were able to plan inde-

pendently as their systems were not tightly interconnected and fossil generation could be 

sited within the regions to meet electric demands. Unlike fossil generation, however, 

renewable energy generators are location constrained. That is, renewable energy genera-

tors can only economically be sited in areas with strong natural resources. As seen in 

Figure 1-2 through Figure 1-5, these resources are not distributed evenly across regions 

or nations and are not correlated with areas of high load (along the coasts in the United 

States and in northern Europe).  Accessing these resources requires significant transmis-

sion investment as detailed in reports such as the Eastern Wind Integration and 

Transmission Study [42], and dramatically displayed in 2011 when a $12 billion wind 

farm proposed in the Texas Panhandle was cancelled due to lack of transmission capacity 

[26]. 

                                                 
1
 “To call the U.S. grid balkanized would insult the Macedonian.” Mark Spitzer, former FERC Chairman. 

[66] 
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Figure 1-1 Western Planning Areas [70] 

 

 

Figure 1-2 Wind Resource Map of Europe 

[23] 

 

Figure 1-3 Solar Resource Map of 

Europe [24] 
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The historic conditions which allowed electric areas to be planned separately no 

longer hold true. Location-constrained renewables are being considered to replace 

location-unconstrained fossil generation. The once independent systems are becoming 

more interconnected and operational issues (termed seams issues) resulting from planning 

and operating interconnected systems independently are growing. To cope with these and 

other issues, larger areas are being considered for transmission planning. In Europe, the 

European Network of Transmission System Operators (electricity) has been tasked with 

developing European-wide transmission plans. In the United States, the Department of 

Energy has sponsored transmission planning across the three electrical interconnects, 

shown in Figure 1-6 [19], [20], [68], and the Federal Electricity Regulatory Commission 

has mandated wider regional planning [25]. 

 

Figure 1-4 Wind Resource Map of the 

United States [44] 

 

Figure 1-5 Solar Resource Map of the 

United States [45] 
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Figure 1-6 Three Electrical Interconnections in the United States 

 

Under the most favorable conditions, planning the transmission network is a non-

trivial problem. The transmission network is an infrastructure system with investments 

characterized by their high capital costs and long lifetimes. Each transmission line is a 

lumpy investment with costs ranging from $1.1 million to $4 million per mile depending 

on the voltage rating of the line [3]. These cost estimates, however, are more realistically 

viewed as lower bounds. For example, aesthetic and environmental concerns elevated the 

cost of a 69 mile line in Connecticut to $1.3 billion compared to the $76 million predicted 

using the costs above [47]. Transmission investments must also be planned prospectively. 

The time from a transmission line’s selection for construction to energization is five to 

ten years. In that time, the need for the investment may be eliminated, for example a new 

power plant may have been constructed elsewhere in the system, or exacerbated, for 

example a boom in the economy prompting higher electricity demands. Once construct-
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ed, transmission lines have operating lifespans of 40 to 50 years
2
. As part of a networked 

system, the effects of adding capacity are often non-intuitive. In some cases, adding 

capacity to the system can actually exacerbate rather than relieve problems.  

Planning the transmission network to incorporate high renewable generation penetra-

tions is complicated both by the geographic scope required and the uncertainty in the 

development of future generation. The growth of the location constrained generation is 

dominantly policy driven. These policies, however, are unstable due to changes in 

political will. For example, in the Unites States the development of wind resources has 

been tightly coupled and fluctuated with the Production Tax Credit (PTC) which subsi-

dizes wind power production.  This policy uncertainty is compounded by the mismatch in 

generator build time and transmission build time [52]. Location-constrained generators 

such as wind and photovoltaics require a two to five year construction timeline, while 

transmission lines require five to ten years to plan and construct. With generator build 

times significantly lower than those for transmission, planners are forced to either antici-

pate new generation and build potentially unnecessary infrastructure or be reactive in 

building new transmission, potentially discouraging new generation investment.    

Tools to support this new type of wide-area stochastic planning do not yet exist. 

There are models which demonstrate that new capacity is needed, for example the 

ReEDS model [60]; however, these models lack the technical detail required to examine 

specific plans. An example of the plans produced by the ReEDS model, shown in Figure 

1-7, identifies capacities between grossly aggregated regions, but does not have the detail 

required to specify investments (eg a 500kV double circuit line between two specific 

system buses). There are also indicative transmission plans, the most well-known of these 

developed by American Electric Power (AEP) and shown in Figure 1-8. These indicative 

plans, also sometimes referred to as crayon plans, have not been economically or techni-

cally evaluated; these crayon plans are also not created using underlying models or other 

scientific rational. Plans such as the AEP proposal are also often viewed with skepticism 

                                                 
2
  In reality, transmission lines are rarely if ever decommissioned. The wires, pylons and insulators are 

simply replaced or upgraded as necessary. 
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by regulators and other stakeholders when they are proposed by the transmission compa-

nies which would profit from their construction.  
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Figure 1-7 ReEds Transmission Expansion Planning Results from the Renewable 

Electricity Futures Study 

 

 

Figure 1-8 AEP Transmission Overlay Plan [4] 
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Tools to guide transmission planners toward high-value investment options must 

capture the temporal and technical details inherent to the problem. While the technical 

models are well defined, the temporal characteristics are less well framed. Given the 

stochastic and temporal characteristics, the planning problem can very naturally be 

represented as a decision tree as shown in Figure 1-9. Following a single path (darkened) 

through the decision tree, the present day decision (T=0) is what new transmission lines 

should be added. These lines are planned without knowing where the new generation will 

be added to the system. While these new transmission lines are being sited and construct-

ed, new generation is being added to the system. In the two-stage model presented in 

Figure 1-9, both the new generation and new transmission lines come online in year ten.  

In year 10, the system planner can observe the new generation investments and with this 

new knowledge plan new lines to come online in year 20. When the full problem is 

enumerated and solved in this framework, discussed further in 1.2.3, the value of any 

transmission investments today is dependent on how well it performs across a variety of 

future scenarios.   



 

26 

 

 

Figure 1-9 Decision Tree Representation of the Multi-Stage Stochastic Transmission 

Expansion Problem with Uncertainty in Future Generation 

In a standard decision tree representation, squares represent decisions points and circles 

represent the realization of an uncertain parameter or variable. In this case, the squares 

represent the selection of new transmission lines (each spoke coming from the square 

represents a distinct investment option) and the circles represent the resolution of both 

the quantity and location of new generation (each spoke coming from the circle repre-

sents a specific future scenario of generation expansion).  

 

 

  

T=0 (present) T=10 years T=20 years

Decide new transmission 

investments for 10 year 

horizon

New transmission 

investments energized

Observe new generation 

installations 

Decide new transmission 

investments for 20 year 

horizon

New transmission 

investments 

energized

Observe new 

generation 

installations 

. . .

. . .

. . .
. . .

. . .



 

27 

 

1.1 Transmission Expansion Planning 

Transmission planning is often used colloquially as an omnibus description for the entire 

process of adding a new transmission investment to the existing system. This process 

involves deciding on the new assets to be added, reliability analyses, cost-allocation and 

siting and routing for new lines. Traditionally, cost allocation and siting have been the 

most contentious issues in transmission expansion planning. Cost allocation is the deter-

mination of who pays for the new multi-million dollar investment and siting is both the 

determination of the geographic route and permitting of that route. Siting is a contentious 

issue because transmission towers and lines belong to the class of locally unwanted land 

uses (LULUs) which reduce property value. It is also one of the few pathways that local 

authorities and stakeholders have to block lines for environmental, aesthetic or economic 

reasons. As shown in Figure 1-10, these processes are not independent but instead inform 

one another. For example, the expansion plan decided upon may fail the required reliabil-

ity analysis or stakeholder input may require a transmission line to be rerouted. With the 

new rerouting, the transmission line may no longer be an economic solution. For the 

purposes of this dissertation, however, transmission expansion planning will be more 

narrowly defined to refer to the selection of new transmission assets.  
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Figure 1-10 Steps in the Transmission Planning Process 

1.1.1 Motivations for Transmission Expansion Planning 

Transmission investments are made for two major reasons: improving the reliability of 

the power system and lowering the cost to operate the power system. These investments 

can be transmission lines (overhead lines or underground cables) or additional support 

equipment such as protection systems, transformers or reactive power controls which can 

improve the operation of existing transmission lines. The traditional treatment of trans-

mission expansion planning frames the problem as trading-off between economic benefits 

through lower system operating costs and the investment costs of new transmission 

investments. In this view, the reliability of the system is treated as a constraint in the 

planning process. There are, however, streams of research which consider reliability 

probabilistically and explicitly within a risk context [14]. 

The reliability requirements of the power system can be represented both with eco-

nomic costs and engineering constraints. From an economic perspective, the power 

system should be able to meet the electric demand all hours of the year with very low 

probability of non-served demand, more generally called electricity non-served (EENS) 

or power non-served (PNS)
3
. The engineering constraints on the system are more compli-

                                                 
3
  In the United States, the a common loss of load expectation used is one day in ten years. 
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cated. The majority of power flows through the transmission network are alternating 

current (AC) as shown in Figure 1-11. With alternating current, the power flowing 

through each line on the transmission network fluctuates with time at a set frequency (60 

hertz in the US and 50 hertz in Europe) and a set voltage level (for example 345kV). If 

the frequency and voltage are not maintained within tight bounds, some demand may not 

be met (brownouts) and/or the power system may totally collapse (blackouts). These 

bounds must be maintained even if there are large disturbances on the power system, 

such as a generator unexpectedly failing or a storm disabling a transmission line. These 

failures of individual pieces of equipment are called contingencies, and the most common 

contingency scenarios to consider contain the failure of any one single component, 

referred to in the field as n-1 contingency analysis. Investments in the transmission 

network can alleviate these threats by, for example, providing alternative routes for 

power to flow or providing voltage or frequency support directly.  

 

Figure 1-11 Illustration of Alternating Current Power 

Investments in the transmission network can lower the operating costs of the power 

system by facilitating access to lower cost generation sources. There are areas of the 

power system which experience congestion. Like traffic congestion, congestion in the 

power system means that the flow into or out of a specific area is limited. For example, a 

hydro power plant may have a capacity of 1,000 MW but may be connected to the system 

with a transmission line capable of carrying only 500 MW to the demand center. As a 

result of the congestion at the hydro power plant, a more expensive generator closer to 

Time
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the load must be dispatched. If a new transmission line is added to the system which 

connects the hydro power plant to the demand center with an additional 500 MW, the 

congestion in the system will be reduced. The more expensive plant will no longer be 

dispatched, and the cost of operating the system will be lessened.  

New transmission investments can also reduce the losses in the system. Losses in the 

power system reflect electricity that is produced by generators but does make it to the 

demand in order to do useful work. Instead, this useful energy is lost to the system, for 

example through production of heat in transmission lines. In the United States, for 

example, approximately 7% of all generation, or 262,000 MWh is consumed annually by 

losses across the transmission and distribution networks [21]. Using a back of the enve-

lope calculation, this implies that in the United States $15.7 billion is spent annually on 

non-productive generation
4
. Losses in transmission lines can be reduced either by in-

vestment in new equipment to increase the operating voltage transmission of lines or by 

adding new transmission lines such that less power flows on each line.  

The addition of transmission capacity can also lower costs by easing operational and 

market restrictions within the power system. For example, when bordering areas are well 

connected, the generation reserves burden can be shared at a lower cost rather than borne 

individually [36]. Transmission capacity can also help reduce the effects of variability 

inherent to wind and solar generators by providing access to flexible generators and 

capitalizing on the reduction of variability as the geographic scope considered increases 

[31]. By eliminating congestion in the network, transmission capacity investments can 

also help mitigate market power in electricity markets [65]. 

More recently, it has also been explicitly recognized that transmission may be con-

structed for a third reason, the meeting of public policy goals.  These public policy lines 

may not be justified under either the economic or reliability criteria above (for example, 

see Section X in FERC Order 1000 [25]). The dominant public policy goal considered in 

today’s transmission expansion planning studies is the inclusion of renewable resources. 

                                                 
4
 Assume an $60/MWh for coal plant generation 
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Because these resources are location-constrained, they cannot be effectively accessed 

without new transmission investments. 

1.1.2 Timescales for Transmission Expansion Planning 

Transmission expansion planning takes place on multiple timescales ranging from 5 to 30 

years. These timescales, roughly outlined in Table 1-1, have different foci and require 

varying degrees of technical accuracy.   

Table 1-1 Timescales for Transmission Expansion Planning 

 (Very) Near 

Term 

Mid-Term 

(Tactical) 

Long-Term 

(Strategic) 

Very Long Term 

Horizon 0-5 years 5-10 years 15-20 years 25-30 years 

Major Focus Reliability 

Reliability 

and Econom-

ics 

Economics and 

Scenario 

Analysis 

Scenario Analysis 

Load Flow 

Type 

AC Load 

Flow 

DC Load 

Flow 
DC Load Flow 

Transportation 

Load Flow 

Representative 

Models 

Dynamic 

Simulation 

 

AC Optimal 

Power Flow 

Optimal 

Transmission 

Expansion 

Planning 

 

DC Optimal 

Power Flow 

Optimal  

Transmission 

Expansion 

Planning 

 

DC Optimal 

Power Flow 

Optimal Trans-

mission 

Expansion 

Planning 

 

Pipes and Bubbles 

 
 

 

The shortest time scale considers investments to be made in the next five years. Eco-

nomic issues may be considered, but the major focus of this timescale is reliability. In 

order to capture near-term reliability issues, the types of models used have very high 

technical fidelity. The investments considered on this timescale are more likely to be 

transformer upgrades, reconductoring, or other projects related to existing transmission 

lines rather than new transmission lines in new rights of way. Realistically, this is be-

cause it is unlikely that a new line could be permitted and constructed within a five year 

period.  

Mid-term or tactical planning includes both reliability and economic foci. Looking 

five to ten years out, the investments identified in this horizon may present longer-term 
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fixes to the problems identified in the near-term planning or address structural rather than 

temporary economic and reliability issues. These investments may be identified using 

expert judgment or an optimal Transmission Network Expansion Planning model 

(TNEP). Different types of optimal TNEP models will be explored in 1.2, but briefly, the 

goal of such models is to algorithmically minimize the total system cost trading off 

generation, non-served energy and transmission investment costs. The models used to 

identify and evaluate transmission solutions in mid-term planning are of lower technical 

fidelity than those in the near-term horizon. These models typically use an approximation 

of the AC load flow called the DC load flow. The DC load flow simplifies the AC load 

flow by assuming the magnitude of the voltage sine waves (shown in Figure 1-11) at each 

node remains constant. The most common form of the DC load flow is also linearized, 

allowing it to be integrated into traditional linear or mixed-integer linear optimization 

models.  Mid-term planning is designed to identify new transmission lines (either green-

field development or re-enforcing an existing transmission line) that would then iterate 

with the more technical reliability analyses, siting, and cost allocation procedures identi-

fied in Figure 1-10. 

Long-term or strategic planning is used to guide mid-term planning toward higher-

value transmission solutions and for scenario analysis. The most common use is scenario 

analysis; for example, most high renewable penetration studies are strategic planning 

studies. Like mid-term planning, the models used in strategic-planning studies are based 

on DC load flows and both expert analysis and optimal transmission expansion algo-

rithms are used. The models used for long-term studies are also most likely to be 

abstractions of the real system with aggregated generation and demand buses. Unlike 

mid-term planning, the transmission lines identified in a long-term planning study are 

unlikely to be formally considered as potential investments.  

Finally, the furthest time horizon typically considered for transmission planning is 

25-30 years. On this timescale, the power system is very abstracted. If power flows are 

modeled in a system, they are often assumed to be directable, simplifying the physics 

driven flows but continuing to respect capacity restraints of the lines. More often, sys-
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tems are aggregated to a pipes and bubbles model. In this approach, large areas are 

aggregated to a single load/generator, or bubble, and the transmission lines between areas 

aggregated into a single transfer capacity, or pipe. For example, a pipes and bubble 

approach might consider each country in Europe as a single bubble and connect a single 

pipe to each adjacent country. This type of modeling examines how much transfer 

capacity might be useful between regions, but does not have the technical detail to 

identify specific transmission investments.   

The work presented in this dissertation focuses on the mid-term and long-term plan-

ning horizons. The emphasis is on using information from the long-term planning horizon 

to inform mid-term planning investments. With this, the planning emphasis is also on the 

major economics tradeoff rather than operational reliability.  

1.2 Optimal Transmission Network Expansion Planning Model 

Formulations 

Optimal TNEP models algorithmically balances the investment costs of new lines against 

reductions in generation and non-served energy costs. Models for the optimal TNEP 

problem are used to guide system planners toward promising investment choices which 

are then subject to further operational reliability analysis. The balance of costs is 

achieved by minimizing annualized systems costs, the sum of annualized investment, 

non-served energy and generation costs. From an optimization perspective, single-

horizon transmission planning falls into one of the hardest problem classes. Transmission 

network expansion planning is a network problem with non-directable flows and integer 

investments. It is a combinatorial optimization problem and classified as an NP-Complete 

problem for which no solution method exists in polynomial time. The number of potential 

plans for a single investment horizon grows exponentially with respect to the number of 

potential investments (2
n 

where n is the number of investment options).  A very small 

problem with only 10 possible transmission investments has 1,024 different plans possi-

ble, while a problem with 100 possible transmission investments has over 10
30

 plans 

possible. A more realistically sized problem with 1,000 possible investments has over 

10
300

 possible plans.  



 

34 

 

 The full transmission expansion planning problem is a mixed-integer non-linear 

problem (MINLP). The integer constraints arise from the transmission investment 

variables which represent the lumpy investments. The non-linearity arises from represent-

ing the physics-driven flows of electricity within the system. The complete DC load flow 

formulation of the MINLP formulation is given equations Eq. 1 through Eq. 8.  The 

objective function, given in Eq. 1, reflects the tradeoffs typical to mid-term and long-term 

planning horizons. In Eq. 1, the total cost of the system including new transmission costs, 

generation costs and non-served energy is minimized.  Kirchoff’s first law, that demand 

at each bus must be equal to the sum of flow in to the bus, plus generation at the bus, and 

non-served energy at the bus minus flow out of the bus is given in Eq. 2.  The non-

linearities of the optimal transmission expansion problem are shown in Eq. 3 and Eq. 4 

which represent flows on the networks.  The first non-linearity results from the fact that 

flows on transmission lines are inversely proportional to physical properties of the line, 

captured in the reactance of the line    and directly proportional to the sine of the differ-

ence in voltage angles between buses.  The second non-linearity is given in Eq. 4, which 

describes flow equation for new lines and the non-linearity results from the multiplication 

of the integer investment variable    by the flow.   

Eq. 1             ∑(∑(       )  ∑         
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Eq. 7           
    n=1,…,N 

Eq. 8         
    k=1,…,K

0
 

 

Indices and Sets: 

i index of buses 

k index of  circuits 

i(k), j(k) index of terminal buses of circuit k 

h index of load hours 

n index of generators 

K+ set of candidate circuits 

K
0
 set of existing circuits 

Ωi set of all circuits connected to bus i 

σi set of all generators located at bus i 

H number of load hours 

I number of buses 

M number of candidate circuits 

N number of generators 

 

Parameters/Constants 

cg generator costs [$/MW] 

ct annualized cost of candidate circuits [$] 

cμ cost of non-served energy [$/MW] 

d bus demands [MW] 

f
max

 circuit capacities [MW] 

g
max

 generator capacities [MW] 

X circuit reactances [pu] 

b per unit base 

 

Free Variables 
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θi,h bus voltage angle 

 

Positive Variables 

fk,h circuit flow [MW] 

θk,h
 

positive bus voltage angle component across circuit k 

gn,h generator output [MW] 

μi,h non-served energy [MW] 

 

Binary Variables 

xk investment variable 

 

The most common implementation of the TNEP problem is a linearized formulation. 

The linearized formulation of the problem allows for the use of well characterized 

traditional optimization routines for linear and mixed integer linear programs (LPs and 

MILPs).  In order to linearize the MINLP, Eq. 3 and Eq. 4 are simplified to Eq. 9 and Eq. 

10 by assuming small angular differences in the network. When angular differences are 

small, the sine of an angle may be approximated the angle itself (in radians).  The non-

linearity left in Eq. 10 can be linearized for traditional optimization methods through the 

use of the disjunctive formulation such as in [8]. Other optimization methods, such as 

meta-heuristics, are blind to the non-linearity in Eq. 10 as they do not rely on linear 

relaxations of the full problem to establish bounds on the objective function for the 

algorithm to proceed.  

 

Eq. 9       
  

⁄ (               )      

Eq. 10       
  

⁄ (               )         

 

For clarity, the formulation presented thus far is the most basic expression of the 

problem. It does not include losses or the n-1 contingency considerations discussed above 

or any other reliability constraints. There are, however, linear representations of the 
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losses that may be integrated into MILP formulations of the optimal transmission expan-

sion planning problem (see for example [1] [42] or [59]). Likewise, the n-1 contingency 

constraint has been included in transmission expansion planning models, but it is general-

ly considered in an iterative fashion where the optimal transmission expansion planning 

model determines a test plan, n-1 reliability is examined, and new constraints are passed 

back to the optimal transmission expansion planning model (see for example [50] or  

[53]).  

The most common optimal TNEP formulations are both deterministic and static. De-

terministic models do not consider the many uncertainties that face power system 

planners, including uncertainty across fuel prices, policies affecting the power system and 

new generation locations. As deterministic models simplify the uncertainty facing 

planners, static models simplify the time horizons planners consider. Although new 

transmission lines have life spans of more than 40 years, static models consider only a 

single future year.  This static-deterministic model formulation is the one presented above 

in Eq. 1 through Eq. 8. 

Due to the computational complexity of the problem, the static-deterministic formu-

lation is the most studied in the academic literature. Beginning with LL Garver’s 

foundational planning paper in 1970, researchers have applied a variety of approaches to 

solve the problem, including linear optimization [26], dynamic programming [18], 

decomposition techniques [8],  engineering heuristic guided searches [32][59] and meta-

heuristics [54] [58][71].  The dominant approach for transmission expansion planning in 

the late 1990s to early 2000s used traditional optimization techniques for MILPs. Follow-

ing the thrust on traditional optimization methods in the early 2000s has been an 

emphasis on meta-heuristic methods. A variety of meta-heuristic models ranging from 

genetic algorithms [58] to simulated annealing [54] have been applied to the transmission 

expansion planning, though no one meta-heuristic approach has been found to be most 

effective.  

While the static-deterministic problem is the most studied formulation, the problem 

considered in this dissertation requires multi-stage stochastic modeling.  The effects and 
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current literature of multi-stage transmission planning modeling are discussed in 1.2.1 

and stochastic planning in 1.2.2. Finally, the combination of stochastic and multi-stage 

modeling are considered in 1.2.3. 

1.2.1 Multi-Stage Planning 

Transmission lines are capitally intensive investments with economic lifespans of 40 or 

more years. Over the lifespan of these investments, the power system will continue to 

evolve. Existing generators will retire, and new generators will be added. Loads will 

increase and decrease with the economy and new development patterns. Fuel prices will 

fluctuate as will national policies and environmental regulations.  All of these changes 

will affect the value of a transmission plan. A transmission expansion model, however, 

cannot capture all of these varying timescales. Instead, modelers simplify the number of 

time horizons to capture the most important details.  

The most common simplification made in TNEP models is to consider only a single 

investment decision stage.  With this simplification, modelers plan for a specific target 

year. Traditionally, plans have been constructed for mid-term horizons (5-10 years) or 

long-term horizons (15-20 years).  The static case is the one most commonly studied in 

the literature (see above citations) and is also the most common in industry and policy 

studies. The most prominent renewable integration/transmission studies are examples of 

long-term static studies [17][42][43]. A less common approach is to consider a series of 

static time horizons. As shown in Figure 1-12, the static sequential approach plans for the 

first time horizon, carries over the new investments from the first stage as constraints to 

the second stage, plans for the second stage, etc.  The WECC TEPPC planning approach 

using a 10 year planning process and integrating those lines as constraints into the 20 

year horizon is an example of the static sequential approach [68].  
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Figure 1-12 Comparison of Static, Static Sequential and Multi-Stage Modeling 

 

The static horizon simplifications are problematic because either economies of scale 

are not captured in the modeling or pent up demand for new transmission capacity 

overstates the desirability of large lines. As an example of the economies of scale in the 

transmission system, on a thermal-capacity basis, a 345kV double circuit line (tower with 

two sets of conductors) costs $1,333/MW-mile while a 765kV single circuit line (tower 

with one set of conductors) costs 70% less, $413/MW-mile
5
. If a mid-term horizon is 

used, there is a limited time for demands to grow, and the need for larger lines is never 

recognized. On the other hand, with a long-term horizon and the assumption of no new 

transmission over 20-30 years, there is a pent-up demand for new transmission and large 

lines are almost exclusively selected.  

This concept is illustrated in a simple three bus model in Figure 1-13.  In this model, 

a single load exists at Bus A with generators at Buses B and C.  There are also two 

investment options: a 750 MW line from Bus A to Bus B for an annualized cost of 5 

million USD (MUSD) or a 1,500 MW line in the same corridor for 7.25 MUSD annually. 

In the traditional myopic formulation, only the load in year 10 would be considered. In 

this case, only 400 MW of transmission capacity is required to meet the load and the least 

cost investment is the smaller 750 MW line. If, however, a second time horizon, 25 years, 

is considered the demand has grown to 1,500 MW and now an additional 900 MW of 

capacity is required to meet the demand at Bus A. The lowest-cost option is now the 

                                                 
5
 Assumes AEP Thermal Limits and Costs, [3] 
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more expensive but larger line. To include the effects of multi-stage modeling in optimal 

transmission expansion planning models, the objective function explicitly includes costs 

on multiple time horizons and inter-temporal investment constraints are added. An 

example of an objective function considering two time-horizons is given in Eq. 11. In Eq. 

11, the costs are discounted by a factor,   , and summed across each annual time horizon, 

y....Y. 

Figure 1-13 Test System for Time Horizon Simplification 

Test system assumes cost and capacity characteristics approximating a 345kV double 

circuit line and 765kv single circuit line at 100 miles length. 

 

Eq. 11 
    ∑ [          ∑(∑(         )  ∑           
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These effects have also been explored in a case study on the Spanish transmission 

network. The case study considered a reduced-order system with 701 existing 400kV and 

700kV lines. Five five-year periods were considered between 2015 and 2035. First, each 
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time period was planned statically (individually) with 279 candidate lines considering 

three different capacities assuming 1% load growth annually.  As seen in Figure 1-14, 

there are five lines constructed in the 2015 plan that are no longer required in the 2035 

plan.  The planning exercise was then rerun using a more limited set of 16 potential 

transmission investments and two time horizons (2015 and 2035) to directly compare a 

multi-stage approach to the static-sequential results. As shown in Figure 1-16, the static 

and multi-period models produce different first stage decisions in 2015. The static 

approach selects seven first stage investments (four 400 MW lines, 0 750 MW lines and 

three 1500 MW lines) while the multi-stage model selects only five lines (one 400 MW 

line, one 750 MW line and three 1500 MW lines). This case study clearly illustrated that 

even in a small system, the static sequential approach does not mirror the results pro-

duced by the true multi-stage model. 

 

  

 

Figure 1-14 Spanish Case Study Static Results for 2015 (L) and 2035 (R) 

Note that only lines which are not consistent across one or more time horizons are 

shown. 
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Figure 1-15 Spanish 2015 Case Study Dynamic Programming Results (L) and Static 

Planning (R) 

  

This type of multi-stage modeling is relatively rare in the academic transmission ex-

pansion planning literature. Examples of the relevant literature are given [5], [9],[64], and 

in [35]. Common to these works is an emphasis on investment timing rather than captur-

ing effects of economies of scale or rectifying issues with myopic planning. This may in 

part be due to the small test systems with limited investment options used in the academic 

studies. For example, [9] considers 23 investments, of which only 13 are transmission 

lines, across a system with 157 buses. By comparison, there are more than 2,000 buses in 

the electricity system in the western United States over 200kV. Each of these works is 

also focused on the demonstration of a new algorithm rather than an analysis of the 

results. The first three works demonstrate heuristic algorithms while [5] explores a 

branch-and-bound algorithm with a transportation-based transmission work (respects 

only Kirchoff’s first law).  

One reason that multi-stage models are not as popular in the literature is the compu-

tational complexity added by the intertemporal constraints. The addition of multiple time 

stages again increases the size of the optimization problem. The growth of the number of 
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possible plans that must be considered is demonstrated in a two-horizon expansion 

planning problem with two possible investments. As shown in Figure 1-16, if only the 

first stage problem is considered, there are four possible transmission expansion plans to 

evaluate. On the other hand, when two stages are considered, there are now nine possible 

two-stage transmission plans to consider.    

 

Figure 1-16 Expansion of the Decision Space Including Multiple Time Horizons 

 

While true multi-stage modeling is not common to industry methods, heuristic meth-

ods have been used to span time horizons. For example, in the Southwest Power Pool’s 

Integrated Transmission Planning, three time horizons are considered (near term, 10 

years and 20 years) [61].While the three timescales are never formally integrated, in-

vestments identified in longer terms studies are highlighted in the near term studies. 

Likewise, Red Electrica in Spain uses a long term planning models in to inform medium-

term transmission planning [16]. 

1.2.2 Planning Under Uncertainty 

Almost all industry and academic transmission expansion planning models consider 

specific scenarios with perfect knowledge. That is, the modeler assumes that all future 

demands, fuel prices, generator locations and reliability issues are known. In reality, of 
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course, planners have very imperfect knowledge about the future.  Natural disasters 

destroy infrastructure and cause major changes in fuel prices. Technological break-

throughs produce new generation types not even known to today’s planners.  In order to 

capture some of this uncertainty, planning models can try to produce transmission plans 

with low costs across a variety of different futures.  

Including uncertainty in the objective function affects the operational costs. As 

shown in Eq. 12, the investment decisions made are not based on the individual scenario, 

s, but the operational costs all become scenario dependent. Each scenario is also weighted 

by its probability, ps. There are both random and non-random sources of uncertainty to be 

considered in the transmission expansion planning problem. Random uncertainty, such as 

the outage of a component, the evolution of fuel prices, and demand growth can be 

modeled probabilistically based on future projections of historic data. Non-random 

uncertainties such as the location of new generation, regulatory changes, and the devel-

opment of new technologies, however, are do not historic datasets on which to draw. 

Eq. 12            ∑  [∑(∑(         )  ∑           
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As an illustration of uncertainty’s effects on transmission expansion in a small ex-

ample, take the three bus example now shown in Figure 1-17. In this iteration of the 

model, a new low-cost power plant may be constructed at Bus C and three different 

investment options are presented by the planner. The total system costs assuming each 

transmission and generation scenario are given in Table 1-2. If the planner had perfect 

foresight and knew that the plant would not be built, the lowest cost investment option 

would be to build Lines A-B and B-C. Note that because the system is networked, the 

most intuitive solution, building Line A-B only, is not the lowest cost option in any 

scenario. Instead, building the additional line between Buses B and C allows the lower 

cost plant to meet the entire load at a lower cost by sending power across both the new 

lines and the existing line between Bus A and Bus C. On the other hand, if the planner 

had perfect foresight and knew the new generator would be built, the lowest cost option is 

to build only the additional capacity between Bus A and Bus C. If the planner assumes 
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the generation is built and only adds only Line A-B, but the generation developer pulls 

out, the system becomes very expensive, nearly a factor of five more, to operate. 

 

 Cost  

(MUSD) 

Capacity 

(MW) 

Line A-B 5.0 750 

Line A-C 5.0 750 

Line B-C 3.0 500 

Figure 1-17 Test System for Uncertainty Simplification 

 

Table 1-2 Scenario Costs for Uncertainty Test System 

System Costs New Generator 

(MUSD) 

No New Generator 

(MUSD) 

Expected Value 

(MUSD) 

Line A-B 268 369 318 

Line A-C 104 500 302 

Lines A-B, B-C 161 336 248 
 

 

The most common place to find uncertainty considered in for transmission expansion 

planning is in the area of planning for reliability. As a field, probabilistic transmission 

expansion planning focuses on random uncertainties, specifically failure of components 

[14],[34]. With this approach, the uncertainty is treated as a constraint (eg the system 

must survive with at least a set probability) [14]. This framing with uncertainty as a 
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constraint is not appropriate considering uncertainties affecting operational costs. The 

reliability tests are binary, either the system fails or survives. With operational costs, 

there is not a failure metric but rather a distribution of operational costs.  Plans can be 

differentiated by the expected value of these costs or other decision metrics of interest 

such as minimum regret. 

Planning across uncertainties again increases the size of the planning problem. As a 

result, the approach used by most of the academic planning literature does not truly 

optimize across uncertainties. Instead, the general strategy is to generate a variety of 

plans by optimizing deterministic scenarios. The plan is then evaluated under different 

scenarios, and the plan with the best decision metric is selected. For example, Sozer 

generated scenarios using Monte Carlo sampling and then selected an optimal plan 

according a multiple comparisons to the base (MCB) metric [62]. Zhao also optimized 

individual scenarios to create transmission expansion plans and then tested the reliability 

of each transmission plan under the other scenarios [72]. Likewise, Bustamente-Cedeno 

and Arora used scenarios to generate potential transmission expansion plans [11]. The 

optimal transmission expansion plans was then selected from amongst the set using 

expected value and minimum regret decision metrics. These approaches reduce the 

computation burden of solving the stochastic problem, but likely miss the plan which 

performs best across uncertainty as demonstrated by [41].  

Each hour of the year modeled in TNEP may also be framed as an uncertainty. For 

computational reasons, the full 8,760 hours each year are rarely modeled in an optimiza-

tion problem. Instead, a selected number of hours (for example those representative of 

peak, intermediate and baseload demand) are modeled. The duration of each representa-

tive hour may be reconsidered as the probability for that load profile and the goal of the 

optimization is to produce the highest expected value. This is the framing used in [31] 

though not explicitly modeled in a stochastic framework. 

1.2.3 Stochastic Multi-Stage Planning with Recourse 

Combining multi-stage modeling and stochastic modeling explicitly models the full 

optimization problem of transmission expansion planning under uncertainty. The problem 



 

47 

 

now explores four major sets of tradeoffs summarized in Table 1-3. First, the optimiza-

tion considers the balance of current and future costs. Second, the optimization considers 

the tradeoff between economies of scale and current costs. Larger lines capitalize on 

economies of scale, but they are also more expensive to build in the near term. By 

combing stochasticity and multi-stage modeling, the tradeoff between economies of scale 

and adaptability is also included. If large lines are constructed to capitalize on economies 

of scale but those interconnected areas experience less than predicted generation expan-

sion, the investments may be underutilized. On the other hand, under-building and under-

estimating generation may result in congestion, underutilization of the new generation 

and higher operational costs. Finally, the optimization respects the fundamental tradeoff 

between investment and operational costs.  

Table 1-3 Summary of Tradeoffs Considered in Stochastic Multi-Stage Models 

Tradeoffs 

Current Costs vs Future Costs 

Current Costs vs Economies of Scale 

Economies of Scale vs Adaptability 

Investment Cost vs Operational Costs 

 

By combining multi-stage and stochastic modeling, the structure of the objective 

function changes. An example of an objective function for a single investment with two 

decision-stages and two uncertainty-stages model is given in Eq. 13 and a graphic illus-

tration of the problem in Figure 1-18. In Eq. 13, the cost to minimize is the cost of first 

stage transmission investments, the expected first-stage operational costs, OC1, and the 

discounted sum of second stage investment costs and second-stage expected operational 

costs, OC2. As shown in Figure 1-18, for a single investment the tree grows to 12 unique 

combinations of first stage investments, second stage investments, first stage uncertainty 

and second stage outcomes.  
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Eq. 13               [       ]                    [             ]  

 

 

Figure 1-18 Single Investment, Two Decision-Stage, Two-Uncertainty Stage Prob-

lem Illustration 

After each decision, x, the current system state is shown in brackets. NB, once the single 

line has been selected for investment, no further transmission investment options exist. 

 

Important to note in Eq. 13 is that the second stage decision is contingent both upon 

the first stage decision and the outcome of the first stage uncertainty. This ability to 

reconsider investment decisions after the uncertainty has been revealed is referred to as 

recourse. Access to recourse is what differentiates this stochastic multi-stage modeling 

from the deterministic multi-stage modeling where a single trajectory for all time is 

selected.  In this modeling context, the most important outcomes are the stage one 

decision investments. After these investments are made, the uncertainty is revealed, and 

the process is rerun given the new starting state of the world. Again, although only the 
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first stage decisions would be considered for investment, the additional decision stages 

provide foresight into possible future system developments and influence the first stage 

decisions.  

While not explicitly discussed until this point, the location of new generation re-

sources is not independent of new transmission investments. By design, new transmission 

lines increase access to areas with high electric prices, making areas serviced by the new 

transmission more desirable for generation expansion.  This is especially true in the case 

of location-constrained generators which rely on transmission access to move their power 

from remote areas. As a result, the uncertainty shown in Figure 1-18 should be represent-

ed endogenously with a relationship between the transmission investments made and new 

generation investments as given in Eq. 14. In Eq. 14, the probability of a generation 

expansion scenario, ps, is dependent on the first stage decision, x1. Likewise the probabil-

ity of the second stage scenario is dependent on both the first and second stage 

investments as well as the uncertainty outcome from the first stage. 

 

Eq. 14 
             ∑[(       )          ]

 

   

  

   (    (            )

 ∑[(               )                ]

 

   

) 

 

Exceptionally few academic works have explored multi-stage stochastic planning 

with recourse. On a line-by-line basis, stochastic multi-stage modeling has been explored 

using a real-options framing [10],[29]; however, when considering network planning, 

individual decisions (eg a single transmission line) cannot be evaluated individually due 

to network effects.  For example, in Figure 1-19 the value of a line from Bus A to Bus B 

is contingent on the construction from a line from Bus B to Bus C. Munoz, Hobbs and 

Kasina have explored the approach using a Benders Decomposition approach for a two 

stage problem with three uncertainty scenarios [40],[41]. In their work, both transmission 
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and generation are co-planned in the first stage, and the uncertainty comes from full 

scenarios (demand growth, generation mix requirements, etc). When the scenario uncer-

tainty is realized, the second stage offers access to recourse through both generation and 

transmission investments. In [40], the size of the problem is restricted by considering 

only three uncertainty scenarios and a single type of new investment in existing corridors.  

 

Figure 1-19 Network Effects Illustration 

 

1.3 Dissertation Overview 

A paradigm shift has taken place in transmission expansion planning. Rather than tradi-

tional questions of regional-system reinforcement, planners today must design network 

architectures for areas the size of continental Europe. The design of these new networks 

will determine the efficacy of expanding electricity markets and the ability to integrate 

high penetrations of renewable and other location-constrained generators. Planning these 

networks requires balancing the uncertainty in the evolution of the power system and the 

significant economies of scale inherent to transmission investments.  

This new planning paradigm poses fundamental challenges to existing tools. These 

tools, designed for reinforcement problems, were developed to consider tens of invest-

ments and tens of nodes. The new paradigm, however, requires the analysis of thousands 

of investments and thousands of nodes. This change in dimensionality, before consider-

ing both the stochasticity and multi-stage aspects, overwhelms the capability of existing 

methods. The complexity of the problem, however, demands decision support tools to 

assist planners and policy makers. 

Tackling the dimensionality of the wide-area multi-stage stochastic transmission ex-

pansion planning problem will require not a single model, but rather a comprehensive 

A B
A

C
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approach. This work proposes one such suite of models. Chapter 2 focuses on directly 

reducing the dimensionality of the stochastic multi-stage transmission expansion problem 

through the development of a screening model. This work presents a method to reduce 

the number of investments considered in a wide-area transmission plan by greater than 

90%. Chapters 3 and 4 propose novel heuristic approaches to solving the multi-stage 

stochastic problem. Chapter 3 proposes interpolation techniques based on image pro-

cessing techniques and Chapter 4 embeds these interpolation techniques in an 

approximate dynamic programming framework. Finally, Chapter 5 presents broader 

conclusions and future work prompted by this research. 
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2. St. Clair Screening Model: Dimensionality Reduction through 

Algorithmic Screening 

The primary goal for transmission expansion planning is to decide which investments to 

make today. The investments considered for the mid-term planning horizon are new 

transmission lines, and each line is specified by its end nodes and rated voltage. When 

planning for regional power systems, local planners used expert judgment to select small 

numbers of potential investments. The number of possible investments in the intercon-

nection and continental scale systems, however, is exponentially greater than the smaller 

regional systems. Due to this increased number of investments, uncertainty in future 

power system development and the necessity of multi-stage modeling, all lines may also 

not be considered in an optimization. For example, a system with 1,000 nodes has 

500,000 unique connections between node pairs; the path between each node-pair or 

corridor, may house different types of investments. For example, a corridor between two 

nodes may contain a combination of 345kV, 500kV or 765kV rated transmission lines; if 

only a single circuit at each of the three voltage ratings is considered, a 1,000 bus system 

has more than 1.5 million potential investments to consider.  

The number of transmission investments is a key driver for the complexity of the 

multi-stage stochastic transmission network expansion planning (MS-TNEP) problem. 

The number of investments exponentially (2
n
) increases the computational size of the 

problem while the number of uncertainty scenarios increases the size of the problem 

polynomially. Thus reducing the number of transmission investments is an effective way 

to reduce the computational size of the problem. Despite the larger number of potential 

transmission expansion lines, few are selected for an individual plan; of the 1.5 million 

investments in the 1,000 node example, an expansion would contain only 10-100 lines or 

less than 0.01% of all possible lines. Many of the possible investments would never be 

constructed, for example a 1,000 mile 345kV transmission line would not be selected for 

both physical and economic reasons.  

The most effective way to shrink the number of investments for planners to consider 

would be to solve the full stochastic multi-stage problem. This full problem, however, is 
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not computationally feasible and is simplified for the screening model. To identify likely 

transmission investment options and eliminate those which are not used under any 

scenario, this chapter proposes and demonstrates a novel screening model, the St. Clair 

Screening Model.  An overview of the formulation and its implications of the St. Clair 

Screening Model are discussed in 2.1. Once formulated, the screening model is demon-

strated on a test system described in 2.2. The results of the demonstration, including a 

97% reduction in the number investments required for consideration, are given in 2.3, and 

the implications of these results and future work are given in 2.4. 

2.1 St. Clair Screening Model Formulation 

The goal of the St. Clair Screening Model is to reduce the total number of transmission 

investments for further consideration by solving a series of simplified problems. As 

shown in Figure 2-1 the structure of the model can be depicted in three main steps. First, 

transmission investments are characterized both physically and economically (discussed 

in 2.1.1.) in preparation for the optimizations run in the second step. Second, an optimiza-

tion model identifies where new capacity should be added in the system. For a large 

system with significant uncertainty, the most computationally demanding aspects of the 

optimization problem are the integer investments and the stochastic modeling. In the St. 

Clair Screening Model, these two constraints on the problem are relaxed in order to 

create a model which solves in a reasonable amount of time. The method and implica-

tions of the simplifications are discussed in 2.1.2. Finally, in the third step, specific 

investments are identified to meet the capacity needs identified by the optimization model 

in step two.  
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Figure 2-1 Schematic of St. Clair Screening Model 

2.1.1 Characterization of Transmission Investments 

Transmission lines must be characterized both physically and financially. In a smaller 

study, each transmission investment would be characterized uniquely; however, with 

thousands of investment options, this individual characterization would be overly time-

consuming. Instead, the St. Clair Screening Model uses engineering heuristics to quickly 

characterize lines. Once the gross quantity of lines has been screened, individual financial 

and rating studies would be performed for future studies. These ratings would be updated 

and modified through the iterative processes with siting and routing discussed in Chapter 

1. 

Physically, a transmission line can be described by its maximum capacity to 

transmit power, measured in MW and its impedance, measured in Ohms. The impedance 

of a transmission line describes its opposition to power flow and is made up of the 

resistance and reactance. Resistance, typically much smaller than reactance in high 

voltage transmission lines, is inversely related to the line’s conductivity and is a function 

both of the material properties of the conductors used and the length of the transmission 

line.  The reactance of a transmission lines describes its opposition to alternating current 

and voltage, as in used in power transmission, and describes to the inductive and capaci-
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tive properties of the transmission lines. The reactance of a transmission line is also 

related to both its material properties and length and can be calculated using literature 

values as shown in Eq. 15. 

Eq. 15            

       Reactance per unit length 

    Length of line k 

The capacity of a transmission line is a determined by its operating voltage level, 

reactance, and the operational standards within the power system. One of the more 

common ratings on a transmission line is its thermal rating. The thermal rating describes 

the maximum capacity of a transmission line before it overheats. This rating reflects the 

active constraint for short lines (less than about 50 miles). For medium length (50-200 

miles) and long lines (over 200 miles), power flow is constrained to lower quantities by 

voltage drop and then stability issues.  These varying constraints are encapsulated in an 

engineering heuristic known as a St. Clair curve, first described by H.P. St. Clair in 1953 

[63]. The St. Clair curve, shown in Figure 2-2, provides a relationship between the length 

of a transmission line and its carrying capacity normalized by Surge Impedance Loading 

(SIL).  The SIL of a line is a function of the operating voltage level and the impedance of 

the transmission line. It represents the operation of the line when the line’s capacitance 

and inductance are balanced, and the line neither supplies nor consumes reactive power.   
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Figure 2-2 St. Clair Curve [63] 

 

 

Figure 2-3 Piecewise St. Clair Curve Used 

345kV double circuit, 500/765kV single circuit 
 

Lines can be quickly rated for their maximum capacity using the St. Clair curves us-

ing literature values for surge impedance loading. The St. Clair curve can be 

operationalized as a piece-wise linear function, as shown in Figure 2-3; the SIL and 

thermal rating values used in Figure 2-3 are given in Table 2-1. For each potential 

investment, which is already specified at a specific voltage level, the length of the trans-

mission line is calculated using the GPS coordinate of each node. The capacity is then 

read directly from the St. Clair curve.  Again, the St. Clair curve provides a useful 

heuristic to relate the length of a transmission line to its rating; however, these ratings 

would be revised through additional study once a smaller set of lines is selected for 

analysis.  

Table 2-1 Surge Impedance Loading and Thermal Ratings [3] 

 345kV Double 

Circuit 

500kV Single 

Circuit 

765kV Single 

Circuit 

Thermal Rating (MW) 1500 3000 8000 

SIL Rating (MW) 400 880 2090 
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The cost of a new transmission line includes the land (right of way), transmission 

towers, conductors and labor. Like the reactance, the cost can be linearly scaled as a 

function of length as shown in Eq. 16.  Typical line costs range from $1.5-3.3 million per 

mile and vary by voltage rating, local geography and right-of-way costs. Characteristic 

costs are given in Table 2-2 for common line ratings in the United States. In Table 2-2, 

two different 345kV configurations are shown, single and double circuit. A single circuit 

configuration has one set of conductors on a single tower while a double circuit configu-

ration has two sets of conductors on a single tower. While both single and double circuit 

lines have been constructed, the double circuit configuration is more prevalent and 

capitalizes on economies of scale.   

Eq. 16              

         Reactance per voltage rating and unit length 

    Length of line k 

Table 2-2 Characteristic Transmission Line [3] 

Line Type Cost per mile  

(Million USD) 

345kV single circuit 1.5 

345kV double circuit 2 

500 kV single circuit 2.9 

765 kV single circuit 3.3 

2.1.2 Linearization of the TNEP Problem 

The first major simplification in the St. Clair Screening model is the relaxation of integer 

constraints for new investment in the optimization problem. This simplification exponen-

tially decreases the solution time for the optimization model. Physically, this 

simplification means that rather than investing in a complete transmission line between 

two nodes, the model selects instead the amount of capacity between two nodes. This 

capacity can range from 0 MW up to the capacity of the full transmission line.  For 

example, if a corridor was rated to mirror the capacity of a new 765kV transmission line 
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limited to by its thermal capacity, the model may select any capacity from 0 MW up to 

8,000 MW. 

This new formulation for the optimization model is given in Eq. 1 to Eq. 24. The re-

laxation of the investment variables is given in Eq. 4.  By linearizing the transmission 

investment variables, the type of load flow in the model is also transformed from a DC 

load flow model to a hybrid load flow model.  In the hybrid load flow model, flows on 

existing lines are governed by their reactance and the difference in voltage angles (Eq. 3), 

and flows on new lines are only constrained by the maximum capacity of the new in-

vestment (Eq. 4). This hybrid model has been used previously in transmission expansion 

planning [57]. 

As a result of linearizing the investment variables, each type of line must be consid-

ered individually. With linearized transmission investment variables, the investment costs 

must also be linearized. Rather than the full investment cost for a new line, the transmis-

sion planning model considers costs on a cost per MW basis. An example of these 

linearized costs, which assume that each type of line is limited to its thermal capacity, is 

given in Table 2-3. On a $/MW basis, the 765kV line is significantly less expensive than 

either the 345kV or 500kV transmission as demonstrated in Table 2-3. As a result, if all 

three line types were considered simultaneously, the linear optimization would always 

select capacity from the 765kV transmission investment pool first. In order to capture the 

cost characteristics as well as the capacity characteristics, the model must be run sequen-

tially for each generation scenario, i.e. first with all 345kV capacity limits and costs, 

second with all 500kV capacity limits and costs and finally with all 765kV capacity limits 

and costs.  

Table 2-3 Linearized Transmission Costs Assuming Thermal Limit Constraint 

(Non-Annualized Costs) 

 345kV Double 

Circuit 

500kV Single 

Circuit 

765kV Single 

Circuit 

Cost ($/MW-mile) $1,333 $967 $413 
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The linearization of investment costs also introduces the potential for short-line bias 

in the model. The piece-wise linear St. Clair curve, shown in Figure 2-3, is an approxima-

tion of a negative exponential function with respect to length. While the capacity 

decreases dramatically up to 150 miles in length, the cost scales linearly. This mismatch 

introduces an unintentional short line bias. Take for example, the two test systems in 

Figure 2-4. In it a single 100 mile line has been characterized both economically and on a 

capacity basis for a 345kV double circuit investment. In the second system, a third node 

has been added to the system. Now the St. Clair procedure is used to rate two individual 

50 mile segments instead of a single 100 mile transmission line. Each 50 mile segment 

costs $2,300/MW (or $4,600 for both segments) compared to the $6,440/MW for the 100 

mile line. This bias results from the fact that a 50 mile line has significantly higher 

capacity using the St. Clair methodology than a 100 mile line. Thus the same cost is 

divided by a higher capacity over a series of small lines. This bias is a fundamental issue 

when using the St. Clair curve. The St. Clair curve rates a specific segment of a transmis-

sion line rather than the whole path.  The curve assumes that a short transmission line 

will be loaded on one end and discharged at the other.  As a result, it received a higher 

rating than if it was explicitly modeled as part of a longer transmission path which would 

have a higher impedance and potentially voltage stability/angular stability issues.   

The bias is mitigated to an extent by power electronics which effectively increase the 

capacity of short and medium lines in practice. The St. Clair approach assumes that each 

line is uncompensated, that is, there is no additional voltage or current support.  Realisti-

cally, however, at each node there may be generation or load with the ability to control 

voltage and current. This support can effectively lower the reactance of a transmission 

line and raise its effective power transfer capacity. Because this effect is not captured in 

St. Clair curves, the St. Clair curve methodology may still underestimate the capacity of 

short to medium length lines.  
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Figure 2-4 Distortions in Per Unit Cost Due to St. Clair 

Assumptions and Linearization 

 

Rather than solve the full stochastic problem, the St. Clair Screening Model solves a 

series of deterministic multi-stage models. The basic idea is to sample deterministic 

generation scenarios until no new corridors (path between two nodes) are selected for 

investment. By sampling many generation scenarios, the model captures the maximum 

number of transmission corridors possible while solving quickly. With this approach, 

however, the possibility that some ‘flexible’ corridors, those with mediocre value in a 

single scenario but high expected value across scenarios, will not be identified [40]. 
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Indices and Sets: 

i index of buses 

k index of  circuits 

i(k), j(k) index of terminal buses of circuit k 

h index of load hours 

n index of generators 

K+ set of candidate circuits 

K
0
 set of existing circuits 

Ωi set of all circuits connected to bus i 

σi set of all generators located at bus i 

H number of load hours 

I number of buses 

M number of candidate circuits 

N number of generators 

Y set of years considered 

  

Parameters/Constants 

cg generator costs [$/MW] 

ct annualized cost of candidate circuits [$] 

cμ cost of non-served energy [$/MW] 

d bus demands [MW] 

f
max

 circuit capacities [MW] 
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g
max

 generator capacities [MW] 

X circuit reactances [pu] 

b per unit base 

 

Free Variables 

θ bus voltage angle 

 

Positive Variables 

f circuit flow [MW] 

θ
 

positive bus voltage angle component across circuit k 

g generator output [MW] 

μ non-served energy [MW] 

x investment variable 

 

2.1.3 Transformation from Corridor Capacity to Investments 

The goal of the St. Clair Screening Model is to identify a more limited set of investments 

for planners to consider. The relaxed linear model thus far, however, can only specify 

corridors which receive investment and the amount of investment they receive. In order 

to determine specific investments, these continuous capacities must be transformed back 

into lumpy integer investments. In the St. Clair Screening Model, this transformation is 

calculated via the St. Clair curves discussed earlier.  

The transform from continuous investment variables to specific investments has two 

steps. First, for each corridor, the maximum capacity for each type of investment is 

calculated. Next, each continuous investment variable is compared to the capacity for 

each investment type, and the smallest and thus least cost investment is selected. For 

example, consider the hypothetical continuous investment variables for a 500 mile 

corridor shown in Table 2-4 and the capacities for the different investment types in Table 

2-5. Cycling through the continuous investment quantities, the smallest investment to 
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provide the 250 MW is the 345kV line and the lowest cost investment to meet the capaci-

ty for the 2,000 and 2,200 MW capacity requirements is a 765kV line.   

Table 2-4 Illustration of Linear Model Results 

Corridor Capacities (MW) 

250 2,000 2,200 

 

Table 2-5 Capacity for 500 Mile Lines by Investment Type 

345kV 500kV 765kV 

500 MW 1,100 MW 2,400 MW 

   

2.1.4 St. Clair Screening Model Flow 

The previous three subsections reviewed the assumptions and limitations of the various 

sub-modules in the St. Clair Screening Model. When combined, the flow of information 

and connections between modules is shown in Figure 2-5.  The first step of the screening 

model is to rate all potential investments both financially and as discussed in 2.1.1. The 

model iteration shown in Figure 2-5 considers the three different line ratings characteris-

tic to the United States, but other investment types may be considered. As discussed in 

2.1.2, the linear optimization model must be run considering each investment type 

separately and the optimization is repeated for sampled deterministic generation expan-

sion scenarios to identify an amount of new capacity (MW) in each corridor. The 

continuous investment variables from each linear optimization are then transformed to 

investment variables via a St. Clair curve as discussed in 2.1.3. 
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Figure 2-5 St. Clair Screening Model 

2.2 Screening Model Demonstration Problem 

The St. Clair Screening Model is demonstrated in the following sections on a reduced 

order model of the Western Electric Coordinating Council (WECC) footprint. WECC is 

one of the three electrically independent interconnections in the North America, shown in 

Figure 2-6. This model rather than existing IEEE test system models was used because 

the architecture of the wide-area extra high voltage network differs from distribution or 

small systems. Medium and low voltage distribution models, for example, are generally 

radial rather than meshed, and the extra high voltage distribution lines considered in the 

St. Clair Screening Model are too large to be deployed in a distribution setting. 
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Figure 2-6 North American Interconnections 

2.2.1 WECC System Model 

The test system used in this model is a 240 bus reduced-order model of the WECC 

footprint, developed by the California Independent System Operator [49]. For this 

demonstration, the WECC model was further simplified by combining nodes located 

within five miles into a single geographically unique zone. This simplification was made 

to focus on major transmission investments rather than transformer capacity or small 

local reinforcements. The nodes within each geographically zone were connected with 

transportation lines, lines with directable flow in the hybrid optimal power flow model, 

with 20,000 MW capacity to avoid congestion. Collapsing the system in this way reduced 

the number of nodes from 240 to 113. It also reduced the number of existing lines by 

10% from 329 to 296; these changes are summarized in Table 2-6. This base model was 

augmented with 53 unique Western Renewable Energy Zones (WREZs) developed by the 

Western Governors’ Association [69] for a total of 164 unique nodes. Each WREZ is a 

designated geographic area which contains a significant quantity of high quality renewa-
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ble energy resources. These WREZs are the sole location for new renewable generation 

development in the model.  

 

 

Figure 2-7 Existing Nodes and Susceptance Lines 

in the Modified WECC System 

 

Table 2-6 Size Comparison of Original and Simplified WECC Models 

 Nodes Transmission Lines 

Original Model 240 329 

Simplified Model 113 296 
 

 

The demonstration model considers 13,695 individual corridors. These corridors in-

clude all possible connections between existing WECC nodes, WECC nodes and 

WREZs, and between all WREZs.  For each generation scenario, the relaxed TNEP 

problem was solved with three different corridor ratings: 345kV double circuit, 500kV 

single circuit and 765kV single circuit. The 345kV double circuit rather than 345kV 

single circuit was used to reflect industry preference for new investment at the 345kV 

rating. The SIL, thermal limits and costs for these different line types are summarized in 
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Table 2-7. When enumerated at all voltage levels, this leads to 41,085 unique investment 

variables (e.g. 3 possible investments for each of the 13,695 corridors) and 2
41,085 

possible 

unique plans if any combination of lines may be selected.   

Investment in the transmission network is induced in the model through annual load 

growth. Load growth in the model is assumed to be 2% annually, and a stratified sample 

of 19 load hours is modeled in each time horizon. The load hours modeled were stratified 

seasonally, to reflect the changing load patterns across the wide geographic area as well 

as across load levels (peak, intermediate and baseload). The load hours were also strati-

fied across hydro-production levels due to the high percentage of hydropower in the 

Pacific Northwest. To focus on transmission build-out prompted by uncertainty in 

renewable energy in this demonstration problem, existing thermal generation was also 

assumed to grow at 2% annually. While not a realistic assumption, the exogenously 

applied growth in thermal capacity allows for exploration of transmission investment 

based on changing location and quantities of new renewable generation without also 

running a generation expansion model to assure adequacy of generation supply. For 

problems focused on broader questions, this assumption may not be necessary and 

generation expansion may be handled differently.  

Table 2-7 Summary of Transmission Line Properties 

 345kV  

(double circuit) 

500kV 

(single circuit) 

765kV  

(single circuit) 

SIL (MW) 400 880 2090 

Thermal (MW) 1500 3000 8000 

Cost (MUSD/mi) 2.0 2.9 3.3 

 

2.2.2 Generation Sampling 

The question driving this research is how to plan the transmission network in the face of 

uncertainty in the development of location-constrained generators. As a result, the 

uncertainty considered in the demonstration of the St. Clair Screening Modeling is the 

location and quantity of new wind and solar generation. The uncertain nature of future 

generation development was captured using 500 randomly sampled generation-expansion 
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scenarios. These scenarios are deterministic expansion paths characterized by the amount 

and location of new generation on 10 and 25 year time scales. While the only uncertainty 

in this model is the quantity and location of location-constrained generation, the frame-

work of the St. Clair Screening model could also be used to examine other uncertainties.  

 

Figure 2-8 Existing Nodes (Blue), WREZs (Green)  and lines in the Modified WECC 

System 

 The first 250 generation expansion scenarios used in the WECC demonstration 

problem are stratified by the number of WREZs developed.  The location of these 

WREZs is shown with the location of exiting nodes and transmission lines in Figure 2-8. 

Rather than directly sample a percentage of zones, each WREZ was assigned a probabil-

ity of selection such that an expected number of WREZs were developed. For example, if 

there were 100 WREZs and the goal was to sample 10% of zones, each WREZ would be 

assigned a probability of selection of 0.1. With these probabilities assigned, a random 

number was generated for each WREZ and only those with a random number less than 

0.1 would be selected for development. For the demonstration problem here, samples 
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were stratified to develop 20%, 40%, 60% and 80% of WREZs as shown in Table 2-8. A 

greater number of 20% WREZ samples were developed because a greater number of 

unique WREZ combinations are possible. 

Table 2-8 Number of Generation Scenarios by Expected Percentage of WREZs 

Expected Percentage of WREZs Developed 20% 40% 60% 80% 

Equal Probability of Selection 100 50 50 50 

Weighted Probability of Selection 100 50 50 50 

 

The majority of WREZs contain modest quantities of potential wind and solar gener-

ation. Of the 53 WREZs considered, only 23% have potential for more than 1,000 MW 

new generation
6
.  To ensure the inclusion of scenarios with higher penetrations of renew-

able energy, an additional 250 samples were included where the probability of a WREZ’s 

selection for development was directly proportional to its potential capacity of wind and 

solar generation development.  

Once the WREZs were selected using the methods outlined above, the quantity of 

generation for each WREZ was sampled. For each selected WREZ, the quantity of new 

generation to be added, ranging from 0-100% of the total potential was randomly sam-

pled.  In the second stage, the potential generation for development in each WREZ was 

the total generation not developed in the first stage.  

The set of randomly sampled generation scenarios were augmented with two addi-

tional scenarios. The first scenario assumed no new generation development in any 

WREZ, and the second scenario assumed complete development in each zone. All 502 

samples were solved considering the full set of possible corridors in the WECC/WREZ 

model and three investment types for a total of 1,506 iterations. 

2.3 Results 

The primary goal and result of the St. Clair Screening Model is a reduced set of new 

transmission lines for consideration. This reduction, over 97% in the demonstration 

problem, is discussed in 2.3.1. The results provided, however, are much richer. An 

                                                 
6
 1,000 MW after capacity factor de-rate 
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iterative method, the screening model provides the frequency of each corridor’s use. As 

discussed in 2.3.2, examining the frequency of investment can lead to further insights into 

potentially robust corridors and information to guide additional optimizations. The St. 

Clair Screening Model also provides insights into the use of linear relaxation, both the 

importance of considering multiple investment types on each corridor (2.3.3.1) and the 

validity of the linear relaxation for the screening model (2.3.3.2).  Finally, as formulated, 

the model provides insight into high value renewable energy zones. 

2.3.1 Reduction in Transmission Investments 

Each iteration of the St. Clair Screening Model identifies the amount of new capacity in 

each corridor. These capacities, continuous variables, are transformed to unique invest-

ments specified by location (corridor) and rating (kV) as discussed in 2.1.3. In the 

demonstration problem, the 1,506 two-stage optimizations identified 491,173 non-zero 

investment variables.  These continuous investment variables in turn identified 1,081 

investments (unique by both location and rating). With 1,081 investments, only 0.2% of 

investment variables identify unique investments. This indicates, that across optimiza-

tions, the same investments are being identified repeatedly.  

The reduced set of investments identified by the screening model represents a 97% 

reduction of investments to consider. Of the 1,081 remaining investments 629 (58%) are 

345kV double circuit, 301 (28%) are 500kV single circuit and 141 (14%) are 765kV 

single circuit. It is not surprising that a greater number of 345kV double circuit (smallest 

investment option) lines are identified as 345kV lines may be identified in all runs. On 

the other hand, 500kV investments may only be identified in 2/3 of the runs and 765kV 

investments may only be identified in 1/3 of the runs.  For example, in an optimization 

where all transmission corridors have been rated to a 500kV capacity, the optimization 

can select capacities up to the 500kV capacities. If, however, the selected capacity is less 

than (or equal to) the 345kV line capacity, it will be transformed to a 345kV investment. 

A 765kV investment, on the other hand, can never be identified in that same optimization 

because the maximum capacity allowed for selection is the 500kV capacity.  
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2.3.2 Frequency of Corridor Use 

Examining the corridors where new investments take place can lead to further insight for 

planners. For example, the frequency of investment in each corridor can be used to guide 

follow-up optimization studies (i.e. assigning higher branching priorities to investments 

with higher frequencies) or identify corridors which are robust to uncertainty in genera-

tion expansion scenarios and should receive further routing and siting analysis. The first 

section here examines the frequency of development per corridor across time stages. In 

2.3.1, the corridors with development in the first stage (mid-term planning horizon) are 

analyzed. These corridors are of greater interest because they would house the invest-

ments which must be decided upon today. Finally, in 2.3.2.2, corridors which may be 

considered robust for their frequency of development are discussed.  

With each iteration of the screening model, the optimization selects corridors for de-

velopment. In the WECC demonstration problem, the St. Clair Screening Model 

identifies 5% (629) of the possible corridors for investment. As shown in Figure 2-9, the 

number of unique corridors identified per iterations reduces with the number of iterations, 

and all unique corridors are identified within the first 1,175 iterations of the model. It 

should be noted that the samples in Figure 2-9 are not random but ordered as given in 

Table 2-9 with the no-generation and all-generation samples first. 
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Figure 2-9 Number of New Unique Corridors with 

Additional Generation Samples 

 

Table 2-9 X-Axis Ordering Given in Figure 2-9 

x-axis number in  

Figure 2-9 

Generation Samples Transmission Rating 

1-3 No Generation Developed 345kV, 500kV, 765kV 

4-6 All Generation Developed 345kV, 500kV, 765kV 

7-506 Randomly Sampled Generation 345kV 

507-1,006 Randomly Sampled Generation 500kV 

1007-1,506 Randomly Sampled Generation 765kV 

 

The number of corridors, 629, is smaller than the number of possible investments, 

1,081, because multiple types of investments may be made in each corridor. For example, 

one iteration of the screening model may identify a 500kV investment in a specific 

corridor while the next may identify a 765kV investment in the same corridor. Both 

iterations identify the same single corridor but produce two investment variables.  
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These corridors, paths between two nodes, are developed with frequencies in the 

demonstration problem range from 99.9% of generation scenarios to 0.033% of genera-

tion scenarios. As shown in Figure 2-10, of the corridors which are developed in some 

iteration, the majority are developed in less than 11% of all scenarios. Only 21% (132) of 

the corridors are developed in more than 50% of scenarios. These 132 corridors, less than 

1% of the original 13,695 corridors, may be of further interest for routing studies. 

  

Figure 2-10 Frequency of Corridor Development by Percentage 

of Developed Corridors 

2.3.2.1 First Stage Investments 

Thus far, the frequencies of corridor investment have considered both the mid-term (first) 

and long-term (second) time horizons. These frequencies are useful for screening corri-

dors for future planning studies, especially optimization planning studies.  The 

information on decisions that planners must make in the near term, however, is found in 

the mid-term time horizon (10 years). In the demonstration problem, a smaller percentage 

of corridors, 3.4% (472 rather than 629) are selected for investment in the first stage. The 

distribution of frequencies for this smaller set of corridor is also steeper.  As shown in 

Figure 2-11, fewer than 40% of corridors are developed in more than 10% of first stage 

scenarios. This continues to narrow the number of corridors that planners must character-
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ize further. There are, for example, only 157 corridors developed between existing nodes, 

and only 40 of these are developed in at least 50% of the scenarios as also shown in 

Figure 2-11. This can continue to focus planners on corridors for further characterization. 

 

 

Figure 2-11 Frequency of Corridor Development by Percentage of Developed 

Corridors in First-Stage Scenarios 

2.3.2.2 Robust Corridors 

A small subset of corridors in the demonstration problem may be characterized as robust 

corridors. Robustness in this context means that the corridor receives investment in 

nearly every generation scenario; it is robust to future uncertainty. There are 41 such 

robust corridors in the demonstration problem. These corridors have investment in at 

least 90% of future scenarios and are shown in Figure 2-12. If the robustness criterion is 

increased to 95% of scenarios, 28 corridors may be considered robust, and if the robust-

ness criterion is increased to 99% of scenarios, 19 corridors may be considered robust. 

These corridors can be singled out for further analysis or fixed in future planning studies.  
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Figure 2-12 Map of Corridors Developed in At Least 90% of Scenarios 

Thick red lines show corridors developed in 99% of scenarios or greater. Thinner orange lines 

show corridors that are developed in greater than 90% but less than 99% of scenarios. 

 

Given the future uncertainty in generation development, it would be reasonable to 

expect that all robust corridors connect existing nodes. After all, with no certain new 

generation or demand at a node, there is no obvious reason to interconnect the node. As 

shown in Figure 2-12 and Table 2-10, however, more than 50% of the robust corridors 

(using the 90% criterion) connect either a WREZ to a WREZ or a WREZ to an existing 

node. These corridors are developed frequently for a combination of reasons. First, the 

short line bias discussed in 2.1.2 means that the model selects series of short segments 

over continuous long lines.  An example of this short line bias in the Pacific Northwest is 

 

 

Table 2-10 Percentage of Corridors Developed in At Least 90% of Scenarios by 

Type 

 >90% >95% >99% 

WECC Connections 19 11 10 

WREZ Connections 22 17 9 
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highlighted in Figure 2-13. In Figure 2-13, the transmission segments A-C and C-B are 

constructed through the WREZ, marked C, rather than directly from the existing nodes, 

labeled A and B. Second, in this iteration of the screening model, all corridors were 

eligible for construction in each scenario.  Thus, even if no new generation is constructed 

at the WREZ labeled C, corridors A-C and C-B may be developed. This secondary issue 

could be eliminated by allowing construction only between existing nodes and new nodes 

with generation development. In this case, corridors A-C and C-B would only be availa-

ble for development if WREZ C was selected for generation expansion. This constraint 

was not made in the current iteration of the model, and the resulting information on 

potentially high value WREZs is discussed in 2.3.3.2. 

 

 

Figure 2-13 Illustration of Short-line Bias in Demonstration Case 

 

In the demonstration case, there are several instances of robust corridors which form 

a pass-through. A pass-through is defined to be a sequence of corridors where a WREZ 

forms an intermediary point between two existing nodes, such as above in the A-C, C-B 

example.  Logically, both the pass-through and the direct route (e.g. line A-B in the 

example above) should be included in the set of identified corridors. In the demonstration 

problem, there are eight such pass-throughs using the 90% of scenarios criteria for 

robustness.  For each of these pass-throughs, the direct route was also identified as a 

corridor of interest by the screening model. 

 

 

A

B
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The WREZs used in the demonstration problem contain high quality of renewable 

energy potential and are mainly differentiated by the type and quantity of resource 

potential. Due to a combination of short-line bias and allowing investment to WREZs 

whether or not generation investment is made, several WREZs are interconnected in over 

90% of scenarios. These paths through WREZs may signal to system planners that as 

power flow is desired along the path, these WREZs may be particularly advantageous to 

develop. Routing paths near these zones provide necessary reinforcement capacity for the 

system and economic benefit without WREZ development but also have the option to 

access these resources. As shown in Table 2-11, if all segments constructed greater than 

99% of scenarios in first stage are developed, direct access to 10,000 GW of wind and 

solar power would be provided. If these segments are expanded to include those con-

structed at least 90% of the time, this would provide access to an additional 9,000 GW. 

Table 2-11 WREZ Wind and Solar Resources (GW) Accessed by Lines in the First 

Stage 

 

 

 

 

 

 Robustness Criterion 

 >99%  Scenarios >90% Scenarios 

Wind (MW) 3,517 9,780 

Solar (MW) 6,225 9,228 

Total (MW) 9,742 19,009 

 

2.3.3 Insights into Linear Relaxation 

The linear relaxation of the transmission network expansion planning problem has been 

used both to warm-start mixed-integer optimizations and to screen investments [55],[56]. 

There are, however, limitations to the relaxation as discussed in 2.1.2. The output of the 

screening model demonstrates the importance of running the linear relaxation using 

multiple corridor ratings. In the following sections, the necessity of running the screening 

model optimizations using multiple investment characteristics and the ability of the linear 

relaxation to respect the lumpy nature of the problem are explored. 
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2.3.3.1 Importance of Multiple Voltage Characterizations 

The goal of the St. Clair Screening Model is to identify the set of promising transmission 

investments for further analysis. Because multiple types of investments (e.g. 500kV and 

765kV) cannot be directly compared in the linear investment model, each generation 

scenario in the St. Clair Screening Model is optimized assuming maximum investment 

capacity and cost characteristics for the three different investment types (345kV double 

circuit, 500kV single circuit, 765kV single circuit).  As the optimizations using the 

765kV corridor ratings are able to identify 765kV, 500kV, and 345kV investments, it 

may be non-obvious why the 345kV and 500kV iterations are necessary. After all, the 

345kV corridor rating runs are only able to identify 345kV investments and the 500kV 

corridor rating iterations are only able to identify 345kV and 500kV investments.  

The lower capacity iterations are necessary due to the relaxation of physical flow 

constraints in the linear optimization model. As discussed in 2.1.2, the linear relaxation 

allows for flows on new lines to be driven by economic rather than physical constraints 

(Eq. 4). This relaxation potentially allows for larger flow through new investments than 

would be allowed physically
7
. The constriction on new flows results from the differences 

in operating voltage level and physical properties of the lines. For example, consider the 

hypothetical example given in Figure 2-14. In the example, a 500kV line is considered to 

augment an existing 345kV line in corridor A-B.  In the hybrid optimal power flow, the 

500kV line adds 2,200 MW for a total of 3,200 MW capacity in corridor A-B. Physically, 

however, only an additional 1,420 MW are added. The effective capacity is smaller than 

expected due to restriction on angular differences. Without the new 500kV line the 

maximum angular difference (calculated using Eq. 25 and demonstrated in Eq. 26) is 0.5 

radians or about 29 degrees. When the new 500kV line is added, the new maximum 

angular difference is constrained by the 500kV line and reduced to 0.11 or about 6.3 

degrees (Eq. 27). With this new smaller maximum angular difference, the 500kV line 

may convey 2,200 MW but the flow for the 345kV line is reduced to 220 MW (Eq. 28). 

                                                 
7
 The hybrid OPF also allows for counter-flows wherein the difference in angles would dictate flow in one 

direction, but the flow in the new lines runs opposite direction. The author is unaware of methods to 

mitigate this issue. 
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The net effect is to reduce the effective capacity to 2,420 MW or 76% of the expected 

3,200 MW. In some cases, this constriction is sufficient to change the optimal invest-

ment.  

Eq. 25              

Eq. 26                     0.5 

Eq. 27                         

Eq. 28                
   

 
        

 

 
Figure 2-14 Artificial Network Constraint Example 

 

The lower capacity optimizations would not be necessary if the 765kV iterations 

capture all of the investments generated by the 345kV and 500kV iterations. If this were 

true, the potential constrictions would not change the investment types. As shown in 

Table 2-12, however, the 765kV iterations capture only 57% of the investment variables 

generated.  Specifically, it captures only 42% of the 345kV investment variables and 68% 

of the 500kV investment variables. This demonstrates the necessity of the lower capacity 

iterations. 

A B

X=5*10-5 p.u.

pmax=2,200 MW

X=5*10-4 p.u.

pmax=1,000 MW
345kV

500kV
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Table 2-12 Number and Percentage of Lines By a Single Voltage Level St. Clair 

Screening Model 

  Percentage of 

Total Lines 

Identified 

Percentage of Lines 

Identified by Voltage Rating 

  345kV 500kV 765kV 

Corridor 

Characterization  

345kV  57 96 0 0 

500kV  62 62 97 0 

765kV  57 42 68 100 
 

 

2.3.3.2 Validity of Linear Relaxation 

One concern with the linear relaxation is that it will not accurately represent the lumpi-

ness of the transmission expansion problem. To check whether or not the lumpiness was 

respected, capacity of all 491,173 non-zero continuous investment variables were com-

pared to the smallest investment size considered in the problem (345kV double circuit). If 

most corridors are developed at a small percentage of the 345kV capacity, it would 

indicate that only a marginal investment was made in the corridor, that the full lumpy 

investment of a transmission line was not required and that the optimization is not 

accurately representing the TNEP problem. On the other hand, if the corridors are devel-

oped at a high percentage of their 345kV capacities, it would be expected that a full 

transmission line would be selected in the integer problem, and the lumpiness of the 

problem is still being respected. As shown in Figure 2-15, very few (6.3%) continuous 

investment variables are developed at less than 10% of the 345kV capacity, and a majori-

ty, 60% of investments, are developed at greater than 90% of the 345kV capacity. This 

indicates that in the demonstration problem, the linear relaxation is not perverting the 

inherent lumpiness of the problem. While this analysis confirms that the lumpiness of the 

problem is respected for the majority of investments, the other distortions of the linear 

relaxation (e.g. the hybrid optimal power flow) remain.  
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Figure 2-15 Histogram of Investment Variables by Percentage of 345kV Capacity 

2.4  Conclusions and Future Work  

The screening model presented here, the St. Clair Screening Model, is an effective 

method for reducing the corridors and investments required for consideration in stochas-

tic wide-area transmission planning.  The full problem is made tractable by transforming 

the multi-stage stochastic integer problem to a series of deterministic multi-stage scenari-

os. The integer problem is also relaxed to a linear problem with continuous investment 

variables translated into integer variables through the use of St. Clair curves.  In a case 

study on the Western Electric Coordinating Council footprint, the St. Clair Screening 

Model was able to reduce the number of corridors, connections between specific node 

pairs, by 95%. The screening model also reduced then number of lines, connections 

between specific node pairs with a voltage rating, necessary for consideration by 97%.  

These dimensionality reductions are summarized in Table 2-13. 

Table 2-13 Summary of Dimensionality Reduction Through St. Clair Filter 

 Corridors Lines 

Percentage Selected  4.59% 

(629 of 13,695) 

2.63% 

(1,081 of 41,085) 

Reduction 95.31% 97.37% 
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In addition to reducing the number of corridors and lines for consideration in an op-

timization or other technical study, the St. Clair Screening Model provides information 

about the frequency of investment in individual corridors. This information could be 

embedded in a tree search, such as a branch and bound optimization. It can also be used 

to identify corridors developed in all or nearly all scenarios which may be robust to 

uncertainty. In the WECC case study 41 corridors were identified as developed in at least 

90% of first-stage scenarios. These 41 corridors connected both existing system nodes as 

well as WREZs and as a result may indicate WREZs which are advantageous to develop, 

as they lie along economically advantageous pathways.  

There are several future refinements possible for the St. Clair Screening Model. As 

discussed, the St. Clair curves are inherently biased toward shorter connected transmis-

sion segments than single long lines. This bias may be exacerbated by using line only 

costs rather than line costs as well as additional substation costs for both line compensa-

tion and transformers. Further refinement of the model may explore the effect of 

including these costs on the corridors selected. Additionally, the optimal power flow used 

in this work is lossless; however, investment in new transmission is prompted by changes 

in both magnitude and location of generation, load and losses in the system. This work 

focused on the geographic location and quantity of generation; however, the work should 

be extended to examine the impact of losses on the corridors selected by the filter.  
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3. Dimensionality Reduction and Interpolation for Multi-stage 

Stochastic Transmission Expansion Planning Algorithms 

The multi-stage stochastic transmission expansion planning problem is computationally 

intractable using traditional optimization methods. Even when the full set of investments 

has been reduced from many thousand potential investments to approximately 1,000 

potential investments, such as was shown in Chapter 2, the problem remains beyond the 

scope of traditional methods in a reasonable time frame. When traditional methods, such 

as Branch and Bound or Bender’s Decomposition, cannot be used, heuristic algorithms 

are used instead. Meta-heuristics such as Simulated Annealing or Tabu Search have been 

used for smaller transmission expansion planning problems and are blind to the computa-

tional problems associated with traditional optimization methods [36],[58]. These 

methods, however, are also blind to problem specific characteristics which may make the 

problem easier to solve and provide further insight into the structure of the problem.   

Rather than meta-heuristics, a third approach is to use heuristic algorithms guided by 

problem specific knowledge. For example, CHOPIN is a heuristic transmission expansion 

planning model built around a search tree. This tree search is guided by information 

derived from optimal power flows [31].  More broadly, classes of algorithms such as 

approximate dynamic programming are flexibly structured to integrate problem specific 

knowledge. These models all rely on interpolation, estimating the value of new transmis-

sion plans using information from previously characterized transmission plans. Both the 

dimensionality and the networked nature of the wide-area MS-TNEP problem effectively 

preclude the use of existing interpolation methods. Instead, a method to predict these 

costs must reduce the dimensionality of the MS-TNEP problem and then predict a value 

in the reduced dimensional space. Unlike the dimensionality reduction in Chapter 2 

which was designed to reduce the number of independent variables (investments), the 

dimensionality reduction here is a transformation from a search space based on the 

investments to another space. 

This work proposes new approaches to approximate the MS-TNEP problem combin-

ing dimensionality reduction methods from the image processing literature with 
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traditional interpolation techniques. This chapter proceeds in six major sections. Section 

3.1 describes the challenges of developing a reduced order model using existing methods. 

Next, Section 3.2 introduces two dimensionality reduction methods from the image 

recognition literature and 3.3 discusses two interpolation techniques. Finally, 3.4 evalu-

ates combinations of the dimensionality reduction and interpolation techniques as 

reduced order models for transmission expansion planning. Conclusions are presented in 

3.5 and future work in 3.6. 

3.1 Approximating the Multi-Stage Stochastic Transmission 

Expansion Network Planning 

The existing transmission planning literature has focused on reinforcement planning, 

adding a small number of lines to existing well developed systems. In this context, new 

transmission investments are unlikely to change the major flow patterns in the network. 

As a result, methods which consider transmission lines on a one-by-one basis may be 

considered. These methods implicitly consider the investments to be independent, that is, 

the value of adding transmission line A and transmission line B is approximately the 

same as adding both at the same time. The wide-area problem, however, is fundamentally 

different. In this problem, a great number of alternatives are considered, with the value of 

a new investment dependent on many other possible investments. Unlike the reinforce-

ment problem, there are also a majority of plans which produced high levels of non-

served energy.  

The MS-TNEP problem presents fundamental problems for constructing and exploit-

ing a reduced order model. The shape of a response surface for the transmission 

expansion planning problem can be thought as a landscape of steep canyons as in Figure 

3-1. Of the trillions of possible transmission expansion plans, most have high costs 

because demand is not met and non-served energy is very expensive as illustrated in 

Figure 3-2. A very few plans, those in the canyons, have all demand met. The goal of an 

optimization algorithm is to identify those areas of the surface where all demand is met 

and then find the optimal solution in this smaller area.   
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Figure 3-1 Aerial of the Grand Canyon 

[36] 

 

Figure 3-2 Illustration of Costs 

 

A reduced order model of the transmission expansion planning model for the wide-

area should be designed to capture different patterns of investment. These patterns could 

be specific combinations of lines or more general observations of north-south and east-

west investment.  Because the networked problem produces non-intuitive investment 

combinations, defining what will characterize the structure of these patterns a priori is not 

possible. The difficulty of a priori assigning the patterns or neighborhoods of solutions 

was noted early in transmission planning research by Duschonet in 1972 [18]; however, 

no generalized solution was offered by Duschonet and research in the transmission 

planning field moved away from dynamic programming methods and toward linear 

programming and mixed-integer methods.  

One of the key difficulties of defining investment patterns as combinations of lines is 

the sensitivity of operational costs to incremental investments. For example, a very 

advantageous investment pattern in the test problem shown in Figure 3-3 could be a 

build-out of a key east-west 500kV transmission line. This line allows demand to be met 

at each of the three demand nodes with minimum cost. The value of plans containing this 

line, however, is dependent upon the construction of two of the three smaller connector 

lines (Line 1, Line 2 and Line 3 in Figure 3-3). With at least two lines constructed, all 

three load centers have access to the generation. With only one of these three lines, one 

Operating

Cost

Non-served energy

All demand met
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load center remains unconnected to the generator and has unmet demand. Indicative costs 

demonstrating these cases are shown in Figure 3-4. As shown in Figure 3-4, plans with 

two or three connector lines have very low operational costs. Plans with only zero or one 

lines have dramatically higher operational costs due to the costs of non-served energy. It 

is important to note that in the transmission planning context, high non served energy is 

realistically unacceptable and that operational costs are measured in the billions of 

dollars. It is tempting to assume that these smaller connections can easily be identified, 

but as demonstrated in Figure 3-3, there many possible advantageous and disadvanta-

geous combinations even in a very small system.  

 

Figure 3-3 Feature Identification Test System 

 

 

Figure 3-4 Relative Costs for Feature Identification in This Test System 
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This sensitivity is a complication for many standard methods. For example, one 

common way to characterize the difference between two binary strings is the Hamming 

Distance. The Hamming Distance quantifies the number of symbols which are different 

in a string. In transmission expansion planning, a binary string would describe which 

investments were made as in Figure 3-5 (1 = investment, 0 = no investment); however, as 

also shown in Figure 3-5 plans with equal Hamming Distance can have wildly different 

values. In Figure 3-5, both plans two and three have a Hamming Distance of two. Plan 

Two has a different combination of small lines than Plan One, but all demand is met and 

has a low cost. Plan Three, however, has no small connecting lines and demand is not 

met.  Despite the difference in operational costs, the plans are indistinct using the Ham-

ming Distance. 

 

 East-West  

Line 

Line 1 Line 2 Line 3 Hamming Distance 

 from Plan One 

Plan One 1 1 1 0 0 

Plan Two 1 1 0 1 2 

Plan Three 1 0 0 0 2 

Figure 3-5 Hamming Distance Example 

 

Regression methods likewise fail due to the networked nature of the problem. If, for 

example, the east-west line in Figure 3-3 was treated as an independent variable with the 

cost as a dependent variable, the regression would fail to recognize its value. Half of the 

plans (four of eight) with the line have very high costs. Capturing all of the dependencies 

necessary to accurately capture the value of the line quickly devolves into full enumera-

tion of all line combinations, the dimensionality of the problem is not reduced and all 

states must be explored. 

3.2 Dimensionality Reduction 

The first challenge in building an approximation for the MS-TNEP problem is transform-

ing the high dimensional problem to a lower dimensional space. This transformation is 

required because the dimensionality of the MS-TNEP problem prevents interpolation 
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based purely on the combinations of investments themselves. One of the most natural 

ways to capture the information in a transmission expansion plan is graphically, through a 

transmission map. Unlike mathematical network representations, such as node incidence 

matrices, transmission maps quickly and intuitively display patterns of investment. This 

work explores two novel dimensionality reduction techniques from the image recognition 

literature inspired by this insight. 

Image recognition algorithms have been explicitly developed to transform data rich 

images into smaller sets of comparable summary data. These approaches allow for 

dimensionality reduction while still maintaining much of the information discussed 

above. Here, two image recognition approaches are explored, the Method of Moments 

and Principal Component Analysis. These two approaches are described in 3.2.1 and 

3.2.2. 

3.2.1 Method of Moments 

The Method of Moments (MOM) is an image recognition technique with roots in the 

Optical Character Recognition literature. The method works by calculating the statistical 

moments of an image. These moments are then compared to a database of existing 

moment profiles to identify the letter or number.  The statistical moments treat an image 

as a distribution and describe the image’s axial symmetry, skew, etc. As a dimensionality 

reduction technique, the MOM satisfies the requirements presented in 3.1. MOM identi-

fies patterns of investment based on a plan’s image rather than on individual investments, 

and these patterns emerge from analyzing many plans rather than being identified a 

priori.  

Much research on MOM has been on identifying invariant moments. These 

measures, such as Hu’s moment invariants [30], allow images to be recognized regardless 

of rotation or scale. For the transmission planning problem, however, both rotation have 

meaning (i.e. an east-west line rotated 90 degrees is a north-south line and the two should 

not be equated). As a result, the simplest of moment formulations may be used. As shown 

in Eq. 29, each moment is characterized by its x degree (p), y degree (q) and total degree 

(p+q). While an arbitrarily high number of moments may be calculated, moments of 
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degree three are ordinarily sufficient to characterize an image. The weighting function 

inside the integral, f(x,y), shown in Eq. 29, indicates where new transmission lines have 

been constructed. 

 

Eq. 29       ∫ ∫                
 

  

 

  

 

 

3.2.1.1 Interpretation of Moment Values 

Each moment calculated is itself a scalar quantity but encodes physical information about 

the system. The moments of projection (mp,0 and m0, q) have intuitive meaning for the 

transmission expansion problem. These moments of projection up to order two are 

discussed briefly below both with their classical meaning in image recognition and the 

translation of that meaning to describing a transmission expansion plan. Moments with 

interaction terms (p>0 and q>0) and greater than order three do not have the same 

intuitive meanings appealing in the lower order moments, and while only five moments 

are discussed below, all ten moments up to order three (p+q≤3) were considered for 

dimensionality reduction.  

The zeroth moment (m0,0) describes the shaded area of a black and white image. For 

the transmission expansion planning problem, the weighting function, f(x,y), can be 

scaled such that the moment of degree zero indicates the total MW-miles of new trans-

mission miles. For this weighting function, the weighting for each transmission line is the 

capacity divided b length. The weighting function can also be scaled to reflect the differ-

ent line ratings (e.g. 765kV weighting >500kV weighting>345kV weighting); however, 

alternate weighting functions will not have the same physical meaning. The technical 

procedure used to transform an expansion plan into an image is given in Appendix  A. 

The first moments (m1,0, m0,1) describe the center of mass of an image or alternatively 

the axial symmetry of the image. For transmission planning, a positive first moment with 

respect to the x-axis (m0,1) indicates that the center of mass of the new transmission is in 

the northern quadrants of the map. More simplistically, it indicates that more new trans-
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mission is in the north than the south. Likewise, a positive first moment with respect to 

the y axis (m1,0) indicates more investment in the east than west (and vice versa for a 

negative first moment). A transmission expansion plan with a first moment (m0,1) equal to 

zero would have equal megawatts of capacity added both in the north and south 

The second order projection moments (m0,2, and m2,0) indicate the moments of inertia 

of the image. Thinking about his applied to transmission expansion planning, it indicates 

the centrality of investment to the axes. A low second order moment indicates investment 

is near the axis considered (low moment of inertia about the axis). A high second order 

moment indicates investment is far from the axis (high moment of inertia about the axis). 

3.2.2 Principal Component Analysis 

Developed by Karl Pearson in 1901, Principal Component Analysis (PCA) is a tool to 

identify patterns in high dimensional data and then store those patterns in a lower dimen-

sional form. The method identifies patterns through analysis of the problem’s covariance 

matrix. The patterns are summarized by the principal components or eigenvectors of the 

covariance matrix. Each principal component is orthogonal and captures a descending 

quantity of variance in the data; the dimensionality of the data can then be reduced by 

tracking a reduced number of principal components.   

PCA is commonly used as an image recognition tool and to compress images de-

scribed by thousands of pixels into lower dimensional storage. Applied to the 

transmission expansion planning problem, PCA identifies patterns of investment, and the 

ultimate goal is to correlate these patterns of investment with expected costs.  Rather than 

literally transform the transmission map into an image, investment matrices area ana-

lyzed. 

The first step of applying PCA to the MS-TNEP problem is to construct the matrix 

for analysis. For the MS-TNEP problem, the matrix to be analyzed is the investment 

matrix. Each row of the investment matrix represents a specific expansion plan and each 

column represents a specific investment. As shown in Table 3-1 and Table 3-2, the 

investment matrix can be represented as a binary matrix or a capacity based matrix. The 

binary representation in Table 3-1 treats each line equivalently, regardless of size. The 
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capacity representation in Table 3-2, on the other hand, emphasizes patterns in higher 

capacity lines.  

Table 3-1 Binary Matrix Representation 

 Line 1 Line 2 Line 3 Line 4 

Plan 1 1 0 1 0 

Plan 2 0 1 0 1 

Plan 3 1 1 0 0 

Plan 4 1 0 1 1 

Plan 5 0 0 0 0 
 

 

Table 3-2 Capacity Matrix Representation 

 Line 1 Line 2 Line 3 Line 4 

Plan 1 900 0 100 0 

Plan 2 0 100 0 100 

Plan 3 900 100 0 0 

Plan 4 900 0 100 100 

Plan 5 0 0 0 0 
 

 

The covariance matrix is a compact manner to organize and analyze relationships be-

tween various data sets.  The covariance matrix for Table 3-1 is shown in Table 3-3 and 

covariance matrix is symmetric about the diagonal, and for clarity only the upper triangle 

is shown. The diagonal entries of Table 3-3 show the statistical variance for a specific 

line and the off-diagonal entries reflect the statistical covariance between each of the 

lines. For example, the construction of Line 1 and Line 3 in Table 3-1 are related; both 

are constructed in Plan 1 and Plan 4. In Table 3-3, this relationship is shown as a positive 

covariance of 0.2.  On the other hand, in the plans here the incidence of Line 3 and Line 3 

are anti-correlated; Line 2 is only constructed in Plan 1 and Plan 4 while Line 3 is only 

constructed in Plan 2 and Plan 3. This relationship is shown in the covariance matrix with 

a negative score of -0.2.  Rather than looking for patterns across what would be an 

exceptionally large covariance matrix, the data is summarized through the eigenvectors of 

the covariance matrix also known as principal components.  
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Table 3-3 Covariance Matrix for Table 3-1 
Data Centered Before Calculation 

 Line 1 Line 2 Line 3 Line 4 

Line 1 0.3 -0.05 0.2 -0.05 

Line 2  0.3 -0.2 0.05 

Line 3   0.3 0.05 

Line 4    0.3 
 

 

The principal components for the full problem can be used to reconstruct the initial 

data set.  Each principal component, shown in Table 3-4, captures a certain quantity of 

the variation, and the quantity of this variation captured is reflected in the eigenvalues, 

which are calculated alongside the eigenvectors. For the test problem here, the individual 

principal components shown in Table 3-5, individually capture at most 51% of the 

variation in the data and as little as 1%.   

The quality of the reconstructed data improves with the number of principal compo-

nents used for the reconstruction.  As shown in Table 3-6, reconstructing the data in 

Table 3-1 using only the first principal component captures two of the major patterns. In 

the plans which exhibit the patterns with high covariance factors (Plan 1, Plan 2, Plan 4) 

have Lines 1, 2, and 3 well represented. Plans 3 and 5 as well as Line 4 throughout do not 

contain these patterns and are poorly represented. For example, in the reconstructed data, 

Line 4 has values which range from 0.3 to 0.6 rather than near an integer value. Adding 

the second principal component, shown in Table 3-7, however, accounts for the variation 

in Line 4 and provides a much better representation. If all principal components are used, 

the investment matrix may be reconstructed perfectly. Thus, a trade-off must be made 

between the number of dimensions used and the accuracy of the approximation.  

 

Table 3-4 Principal Components 

for PCA Test System 

PC 1 PC 2 PC 3 PC 4 

0.53 -0.10 0.71 -0.46 

-0.53 0.10 0.71 0.46 

0.67 0.25 0.00 0.70 

-0.062 0.96 0.00 -0.29 
 

Table 3-5 Eigenvalues for PCA Test System 

 
Eigenvalue 

Percentage  

Variation Explained 

PC 1 0.61 51% 

PC 2 0.32 27% 

PC 3 0.25 21% 

PC 4 0.02 1% 
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Table 3-6 Reconstructed Test PCA Data Using One Principal Component 

 Line 1 Line 2 Line 3 Line 4 

Plan 1 1.0 0.0 1.0 0.3 

Plan 2 0.1 0.9 -0.2 0.5 

Plan 3 0.4 0.6 0.2 0.4 

Plan 4 1.0 0.0 0.9 0.4 

Plan 5 0.4 0.6 0.2 0.4 
 

 

Table 3-7 Reconstructed Test PCA Data Using Two Principal Components 

 Line 1 Line 2 Line 3 Line 4 

Plan 1 1.1 -0.1 0.9 0.0 

Plan 2 0.0 1.0 -0.1 1.0 

Plan 3 0.5 0.5 0.1 0.0 

Plan 4 0.9 0.1 1.1 1.0 

Plan 5 0.5 0.5 0.1 0.0 
 

3.3 Interpolation 

The two dimensionality reduction techniques overviewed above reduce the number of 

predictive variables to describe the relationship between a transmission plan and its cost. 

By themselves, however, these methods do not provide a relationship between the 

predictive variables and expected cost of a transmission expansion plan. This relationship 

is given by an interpolation method. An interpolation method takes the set of variables 

provided by the dimensionality reduction techniques and creates a reduced order model to 

predict the expected cost of new transmission plans. Two interpolation methods are 

proposed and explored in this work: nearest neighbor and linear regression. The relation-

ships in these models are not pre-specified by the modeler but instead arise from training 

the interpolation method on the cost of known transmission plans and updating the 

models with more information as it is generated.   

The first method, nearest neighbors, is the most natural for object recognition tech-

niques. Historically, object recognition algorithms have been used to classify an unknown 

object into categories of known objects [13]. In the character recognition algorithms, for 

example, an unknown character is compared to each of known letters of the alphabet. The 
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unknown character is then matched to the closest known letter. The determination of 

which characterized plan is the nearest neighbor of a proposed plan is made by compu-

ting the Euclidian distance. The Euclidian distance between two plans is the ordinary 

distance between the estimators of each plan.  Any number of nearest neighbors can be 

used to estimate the cost of a new plan. If a single nearest neighbor is used, the new plan 

is estimated to have the same cost as that nearest neighbor. If more than one nearest 

neighbor is used, the cost can be estimated using an unweighted mean cost of the neigh-

bors or by weighting the neighbors inversely proportional to distance (e.g. close 

neighbors have higher weights and further neighbors have lower weights).  

The second approach uses traditional linear regression. With this approach, the vari-

ables produces by the object recognition techniques are the explanatory variables and the 

expected costs are the dependent variable.  The estimated cost of a new plan is then a 

function of the linear regression coefficients determined using the characterized plans. 

3.4 Evaluation of Dimensionality Reduction and Interpolation 

Techniques 

The combined dimensionality reduction and interpolation methods can be used to guide a 

search in multiple ways.  The predicted costs could be used globally to select the overall 

optimal plan.  The predicted costs could also be used in a more limited manner, for 

example to decide between two branches in a decision tree. Tests for both of these 

possible uses are included in 3.4.1. and 3.4.2. All methods are evaluated using a set of 

1,000 transmission plans were created using the algorithm outlined in Appendix  A. Of 

these 1,000 plans, 750 were used to train the dimensionality reduction and interpolation 

techniques and the remaining 250 were used to test each method. 

The Western Electric Coordinating Council (WECC) 240 bus model discussed in 

Chapter 2 is also used as the test system here. For initial exploration of the dimensionality 

reduction techniques, the test system has been simplified to a single peak load hour and a 

single time horizon of 10 years out. The set of 220 reinforcement corridors, corridors 

which already connect existing nodes, are considered in the model and each corridor is 

rated physically and financially at a 500kV single circuit capacity using the St. Clair 
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curve described in Chapter 2 and a cost of $2.9 million/mile. Uncertainty in generation 

development was again introduced through probabilistic generation developed at specific 

Western Renewable Energy Zones (WREZs). In this test system, generation development 

was only considered at the 10 largest WREZs and each WREZ was assumed to connect, 

without congestion, into its nearest neighbor WECC node. These WREZs are shown in 

green in, and the corresponding WECC nodes are shown in red. Two pairs of WREZs 

share a nearest neighbor, leaving eight unique WECC nodes with potential WREZ power 

injections.  
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Figure 3-6 Test System for Value Function Approximation Testing 

3.4.1 Cost Prediction 

The first set of trials test the ability of each approximation method to predict the total 

expected cost of a transmission expansion plan. These costs include both the operational 

and investment costs. Rather than compare the predicted cost to the true cost directly, a 

normalized mean (mean of costs minus the minimum expected total cost) was used to 

evaluate predictions. The normalized mean was used because there is a high minimum 

operational cost required to meet demand. The variation in plans compared relative to this 

minimum cost is small (1,189 million USD compared to 14,434 million USD); however, 

the variation itself remains large in absolute terms, over one billion USD.  
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3.4.1.1 Moment Results 

Six different prediction techniques using the method of moments were explored to predict 

the cost of each plan. These permutations, shown in Table 3-8, vary both by the number 

of moments and the number of neighbors used. For the trials using 10 moments, all 

moments up to those of degree three are used. For comparison, the trials using six mo-

ment used only moments up to order two (shown in Table 3-9). All nearest neighbor trials 

treated neighbors equally and were not weighted by distance. As shown in Table 3-8, the 

average errors range from 252 million USD (21.1%) to 409 million USD (34.4%). 

Generally, the methods using 10 moments rather than 6 performed better; however, this 

improvement is marginal. These errors are likely sufficiently large not to allow differen-

tiation globally between plans; 78 of all 250 samples (31%) lie within 21% of the 

normalized mean value. 

Table 3-8 Cost Prediction: Moment Results 

Nearest 

Neighbor 

Number of 

Moments 

Number of 

Neighbors 

Absolute Average 

Error (M-USD) 

Percentage Average 

Error of Normalized 

Mean 

10 5 328 28% 

10 1 399 34% 

6 5 353 30% 

6 1 409 34% 

Regression Number of 

Moments 

 Absolute Average 

Error (M-USD) 

Percentage Average 

Error of Normalized 

Mean 

10  252 21% 

6  282 24% 

 

Table 3-9 Moments Used in Six Moment Set 

Total  Degree 0 1 1 2 2 2 

p 0 0 1 1 0 2 

q 0 1 0 1 2 0 
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3.4.1.2 PCA Results 

As with the method of moments, multiple combinations of PCA outputs and interpolation 

techniques were tested.  As shown in Table 1 11, PCA analysis was performed on both 

the capacity and binary representations of the investment matrices. Each PCA analysis 

produces 220 eigenvectors (equal to the number of investment variables); however, for 

both the binary and capacity representations, only the top ten eigenvectors were used. 

Thus the dimensionality for all PCA techniques was reduced from 220 to 10. 

For both the nearest neighbor and regression interpolation techniques, the distances 

and independent variables are the product of the eigenvector and the plan. This produces 

a scalar quantity. In regression and the unweighted nearest neighbor interpolation tech-

niques, these variables are used directly as the independent variables. Unlike the 

moments, where there is no intuitive reason to weight one more than the other, each 

eigenvector resulting from the PCA analysis also produces an eigenvalue weighting 

factor. To explore whether or not these weighting factors improve the interpolation, 

nearest neighbors were explored using these weights as shown in Eq. 30. 

 

Eq. 30                                  

 

The errors for the PCA trials are generally lower than those for the MOM trials. The 

mean errors for the predicted costs range from a minimum of 13.5% to a maximum of 

27.0% with three combinations achieving 14% average error.  Unlike MOM, this error 

may be sufficiently small to allow differentiation amongst plans globally. 
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Table 3-10 Cost Prediction: PCA Results 

Nearest 

Neighbor 

Eigenvalues Number of 

Neighbors 

Absolute Average 

Error (M-USD) 

Percentage Average 

Error of Normalized 

Mean 

Binary, W 5 164 14% 

Binary, UW 5 163 14% 

Binary, W 1 213 18% 

Binary, UW 1 223 18% 

Capacity, W 5 232 20% 

Capacity, UW 5 250 21% 

Capacity, W 1 282 24% 

Capacity, UW 1 322 27% 

Regression Eigenvalues  Absolute Average 

Error (M-USD) 

Percentage Average 

Error of Normalized 

Mean 

Binary  161 14% 

Capacity  266 22% 
 

 

3.4.2 Ranking Prediction 

The ranking prediction trials tested the approximation’s ability to correctly predict the 

lower cost of two plans. For these trials, the actual cost predicted is not as important as 

long as the relative ranking of the plans is correct. To test each approximation’s ability to 

correctly predict lower cost plans, 500 random pairs of the 250 test plans were sampled. 

The true lower cost plan was identified and each technique was evaluated on its ability to 

select these lower cost plans.  

3.4.2.1 Moment Results   

The results for the moment trials, given in Table 3-11, indicate that all combinations 

select the lower cost plan in at least 74% and up to 81% of trials. These techniques all 

perform significantly better than random and reduce the dimensionality of the problem 

from 2
220

 to at most 10 moment values. As with the cost prediction trials, the ranking 

trials using ten moments generally performed better than the trials using six moments, 

however, the differences were again marginal. 
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Table 3-11 Moment Results 

Nearest 

Neighbor 

Number of 

Moments 

Number of 

Neighbors 

Number Correctly 

Predicted 

Percentage Correctly 

Predicted 
10 5 403 81% 

10 1 372 74% 

6 5 382 76% 

6 1 379 76% 

Regression Number of 

Moments 

 Number Correctly 

Predicted 

Percentage Correctly 

Predicted 

10  385 77% 

6  377 75% 

 

3.4.2.2 PCA Results 

The PCA results for ranking mirror the PCA results for predicting values. Overall, the 

PCA trials predicted between 71% and 87% of the pairs correctly. While the worst 

performing PCA method was outperformed by MOM, the top three performing methods, 

all based binary investment matrices, each outperformed the best MOM combination. As 

with the prior results, predictions improved with increasing numbers of neighbors. The 

only case where this trend did not hold was in the weighted capacity based investment 

matrices, where both methods predicted 78% of pairs correctly. 

Table 3-12 PCA Results Trials 

UW: unweighted by eigenvalues, W: weighted by eigenvalues 

Nearest 

Neighbor 

Eigenvalues Number of 

Neighbors 

Number Correctly 

Predicted 

Percentage Correctly 

Predicted 

Binary, W 5 415 83% 

Binary, UW 5 421 84% 

Binary, W 1 396 79% 

Binary, UW 1 377 75% 

Capacity, W 5 388 78% 

Capacity, UW 5 387 77% 

Capacity, W 1 390 78% 

Capacity, UW 1 355 71% 

Regression Eigenvalues  Number Correctly 

Predicted 

Percentage Correctly 

Predicted 

Binary  436 87% 

Capacity  365 73% 
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3.5 Conclusions 

Heuristic methods must be investigated for the multi-stage stochastic transmission 

expansion planning problem as the problem is computationally intractable using tradi-

tional optimization methods. Rather than focus on meta-heuristics which are blind to 

problem specific characteristics, this work explores creating a reduced order model or 

approximation of the MS-TNEP problem.  Developing an approximation for the trans-

mission expansion planning problem is specifically challenging due to a large number of 

categorical and integer variables (one for each type transmission line investment between 

two buses). 

This chapter proposed combining dimensionality reduction techniques from the im-

age processing literature and two interpolation techniques to form a reduced order model. 

Two methods from the image processing literature, Principal Component Analysis (PCA) 

and Method of Moments (MOM), were introduced to reduce the dimensionality from the 

number of network configurations (2
n
 where n is the number of investment options) to 5 

to 10 dimensions. These reduced dimensional spaces were then combined with a nearest 

neighbors or a linear regression approach to interpolate between the system-costs (trans-

mission cost and generation costs) of known transmission expansion plans to new 

transmission expansion plans. 

In order to test the dimensionality reduction and interpolation techniques, a new 

method was developed to produce a sample set of transmission expansion plans. The 

method combines depth first search for non-served energy, generation sampling, and 

traditional optimization methods to ensure both diversity of transmission expansion plans 

and low expected total costs. The method was tested on a 240 bus model of WECC to 

successfully produce 1,000 unique transmission expansion plans with no non-served 

energy. The different combinations of dimensionality reduction techniques were tested by 

training on the first 750 plans and then predicted costs of the remaining 250 plans and 

ranking between 500  pairs of the remaining 250 plans. 

Both the PCA and MOM approaches have strong potential to be used in guiding 

searches. The best combinations of interpolation and dimensionality techniques were able 
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to identify greater than 80% of rankings correctly. The highest performing combination, 

PCA and regression, identified 87% of rankings correctly. Generally, the PCA methods 

performed better than the MOM methods; however, the differences were not significant. 

In the cost prediction trials, however, PCA methods out performed MOM. The errors for 

MOM ranged from a minimum of 21% to a maximum of 34%, likely too high to accu-

rately discriminate between plans. Errors for the PCA methods ranged from 14% to 27% 

which may be sufficiently small to discriminate between plans. The true test, however, 

for each method would be to embedded it in a heuristic algorithm. 

3.6 Future Work 

The methods presented here were tested on a system expanded using a single voltage 

level and only allowed a single investment in each corridor. Further testing should be 

done on systems which allow for multiple voltages of transmission line and multiple 

investments per corridor. Additionally, further technical details should be integrated into 

the testing problem, for example losses and an assessment of n-1 reliability. As above, 

the true test for these approximation methods will be to embed them in heuristic optimi-

zation methods.  

There are many possible refinements to the work presented here. For example, in the 

PCA trials, 10 principal components were used. Greater differentiation may be gained 

using more principal components. Likewise, greater than 10 moments may be explored 

for MOM. There are also additional trade-offs to explore, such as the need to recalculate 

principal components against the general lower efficacy of MOM, which has static 

interpolation coefficients. 

The work presented in this chapter is an initial exploration into problem specific ap-

proximate value functions for the transmission expansion planning problem. Two image 

processing techniques were explored; however, there are many other problem dimension-

ality reduction techniques which may be useful in this context. For example, the image 

processing techniques are based on geographic distances, however, exploring electrical 

distances may perform better in the transmission problem [15]. Additional interpolation 
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techniques, such as Moving Least Squares, may also be able to better capture the non-

linear characteristics of the problem (see for example [67]).  
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4. STEP Model: An Approximate Dynamic Programming Approach 

for Multi-Stage Stochastic Transmission Network Expansion Planning 

Thus far this work has developed a screening model to reduce the dimensionality of the 

multi-stage stochastic transmission network expansion planning problem (MS-TNEP) in 

Chapter 2 and explored interpolation techniques to guide a heuristic search in Chapter 3. 

This chapter builds on the insights and methods of these previous chapters to develop a 

heuristic search algorithm to solve the MS-TNEP problem, titled the STEP (Stochastic 

Transmission Expansion Planning) model. The search algorithm proposed here uses the 

framework of Approximate Dynamic Programming (ADP). ADP avoids the curses of 

dimensionality that plague other solution methods through Monte Carlo methods and 

value function approximation.  

This chapter proceeds in three major sections. First, 4.1 describes the Approximate 

Dynamic Programming family of methods. Second, 4.2 works through the development 

of the STEP model. Finally, the 4.3 explores the STEP model on a small demonstration 

system. Conclusions and future research are given in 4.4. 

4.1 Approximate Dynamic Programming 

Approximate Dynamic Programming (ADP) is an extension of Dynamic Programming 

(DP) methods. The general approach of DP and ADP is to break a complex problem into 

many less-complicated subproblems. Each subproblem describes a discrete state of the 

system (e.g. for transmission planning a state would include the set of constructed 

transmission lines, set of generators, fuel prices, and demand levels). These states are 

connected as Markov chains, with each state containing all information required to make 

future decisions. Because of this general approach, DP is very flexible and naturally lends 

itself to both integer and non-linear problems. 

In the DP framework for decision making under uncertainty each sub-problems rep-

resents the cost or value contribution for each discrete decision-stage. The decision-stages 

(or time steps) are then connected via the Bellman equation and solved using backward 

recursion. The Bellman equation, shown in Eq. 31, describes the value of being in a 
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specific state as the sum of the current value of the state and the expected future value. 

That is, the value of a decision today depends both the cost incurred today and the costs 

incurred tomorrow. This is especially important in the transmission expansion planning 

context because the decisions are irreversible. A transmission line constructed today will 

not be taken out of service in ten years. As a result, constructing a new line today limits 

the future options to only plans which include that new line. 

Eq. 31           
     

            [             ]  

 

   state variable 

   current stage costs 

   actions 

  discount factor 

 

With a Markov state-based solution system, DP can also include the endogenous re-

lationship between generation and transmission. For example, if a large line is 

constructed to a new generation area, the probability of generation development matching 

the capacity of that new line can be increased. If on the other hand no line is constructed 

to that new generation area, the probability of new generation can be set to zero. These 

are relationships that are natural to model in the DP framework but cannot be modeled in 

other frameworks such as stochastic programming.  

The major impediment to using the DP approach directly is the thoroughly character-

ized curse of dimensionality [47][51]. The curse of dimensionality can be characterized 

in the state, action and uncertainty states. In the MS-TNEP problem, the size of the state 

space for each stage is 2
n
 with n again describing the number of investments. The size of 

this state space for each decision stage then increases linearly with the number of uncer-

tainty scenarios. Likewise, the action space, or set of all potential decisions for a given 

state, will also have a size of 2
n
. These effects multiply and make the problem computa-

tionally intractable. For a single stage problem considering 1,000 investments, there are 
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2
1000

 x 2
1000

 state action pairs to be characterized.  Again, this problem is realistically 

infeasible to solve due to computational time and memory constraints.  

A relatively new family of methods, Approximate Dynamic Programming (ADP), 

overcome these dimensionality problems through a combination of Monte Carlo methods 

and value function approximation [7],[47]. While the traditional DP solution methods 

require recursively solving every possible state, action and uncertainty combination, ADP 

methods iteratively sample state, action and uncertainty combinations to build a reduced 

order model of the value function. The ADP model then optimizes this reduced order 

model, more commonly called the value function approximation. Both the strength and 

weakness of ADP approach is its flexibility. Rather than a set algorithm which can be 

treated as a black box solver, ADP is a flexible approach which must be adapted to each 

individual context. Using an ADP approach, previously intractable may be solved; 

however, a new problem-specific algorithm will need to be developed. As with any 

heuristic method, the solution found by an ADP algorithm will not be provably optimal; 

however, the problems are intractable using methods with provably optimal solutions. 

4.1.1 Approximate Dynamic Programming Framework 

While there is great variety in ADP models, a common framework is a double-pass 

algorithm. A double-pass algorithm consists of a forward pass, sampling forward in time 

through the decision tree and a backward pass, updating Bellman values using the infor-

mation gained through the forward pass. This generic double-pass algorithm is described 

in Table 4-1.  

During the forward pass of the algorithm, demonstrated in Figure 4-1, a path is sam-

pled through the decision tree. In each stage, a decision is sampled and then an 

uncertainty realization is sampled. If an endogenous relationship between the generation 

and transmission is being modeled, the uncertainty realization (location and quantity of 

new generation) sampled will be affected by the transmission investment decisions made.  

In the backward pass, the decisions sampled states from the forward pass are evalu-

ated.  Starting with the last time stage, the costs incurred in each time stage are evaluated. 

Once the costs incurred in some stage t are evaluated, the current estimate of Bellman 
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cost for stage t-1 can also be updated. For the MS-TNEP problem, the costs incurred in 

each decision stage are both the operational costs (generation costs plus non-served 

energy costs) and the investment costs for all transmission lines constructed up to that 

point.  

 

Figure 4-1 Illustration of Forward Pass in ADP Algorithm 

 

Table 4-1 Generic Description of ADP Double-Pass Algorithm 

 Step Description Variable/Equation Step in MS-TNEP Problem 

Forward Pass 

              
1. Sample Decision 

  
  

Sample new transmission 

lines 

2. Sample Uncertainty   
  Sample new generation 

3. Update State Variable 

  
  

State: All transmission lines 

(including new) and all 

generation (including new) 

Backward Pass 

                
4. Evaluate Current 

Stage Costs   
    

   
Evaluate generation and 

investment costs 

5. Update Estimated 

Bellman Cost for the 

Current State 

 ̂ 
      

       
     ̂   

        

Update Bellman cost for 

specific plan and generation 

scenario 

6. Update Approxima-

tion of Value 

Function 
  ̅

  

 

 

 

Indices  

i iteration 

t stage (time stage) 
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Variables  

  
  state variable 

  
  current stage costs 

  ̅
  approximate value function 

 ̂ 
  estimate of Bellman cost 

Constants  

  discount factor 

4.1.2 Exploration and Exploitation Phases of ADP 

While an approximate value function, or reduced order model, is refined over each 

iteration, there are often two distinct phases of an ADP model, explore and exploit. 

During the exploration phase of the model, the goal is to gather information to build the 

value function approximation. To characterize the value function approximation, a wide 

variety of decisions and uncertainties are explored. The second phase, exploitation, uses 

the model developed during the exploration phase to find the actions which result in the 

highest Bellman values.  

Consider the simple one-stage stochastic illustrative problem given in Figure 4-2. In 

this simple problem, the goal is to minimize the expected value of the first stage decision. 

There are only three possible actions and two equally weighted probability scenarios for a 

total of six states. The problem structure and outcomes are shown in Figure 4-2.  

 

Figure 4-2 Decision Tree for Sample 

Problem 

 

 

Figure 4-3 Exploration Phase Sample 

Paths Through the Tree  

0

2

-1

1

0

2

-1

0

1

0

2

-1

1

0

2

-1

0

1



 

112 

 

Six iterations of the algorithm and the resulting value estimates are shown Figure 

4-3. The first three iterations of the algorithm are the exploration phase; each of the 

actions is sampled and an estimate of its value is based on the sampled uncertainty state. 

The second three iterations of the algorithm are the exploit phase. During these iterations, 

the optimal decision is selected as shown in Figure 4-5. With each iteration, the estimates 

of each action’s value changes (Figure 4-4) and as a result the optimal action also chang-

es (Figure 4-5).  In the illustrative example, all states are explored; however, in an ADP 

algorithm, interpolation is used to estimate value of states not yet visited. 

 

  ̂     
x i=1 i=2 i=3 i=4 i=5 i=6 

-1 0 0 0 1 1 1 

0  1 1 1 1 0 

1   0 0 1 1 

Figure 4-4 Estimated Expected Values for 

ADP Example Problem 
Values during updated during each iteration are bolded 

 i=4 i=5 i=6 

x
*
 -1 1 0 

   2 -1 2 

Figure 4-5 Optimal Actions and 

Uncertainty Outcomes for the ADP 

Example Problem 
 

4.2 ADP for the MS-TNEP Problem 

The STEP model, developed in the following sections, is based on the Approximate 

Dynamic Programming framework and includes one of the approximation techniques 

discussed in Chapter 3, Method of Moments. As a result of its structure, developing an 

ADP model using Method of Moments requires adaptation of the double-pass algorithm 

outlined in Table 4-1. This section is laid out in four sections. The first section, 4.2.1, 

describes the specific problem the STEP model is structured around. The second section, 

4.2.2, describes how the interpolation techniques explored in Chapter 3 are integrated 

into the ADP framework. The actual algorithm is outlined in two parts. The exploration 

phase of the algorithm is described in 4.2.3 and the exploitation phase is described in 

4.2.4. 
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4.2.1 Problem Structure 

The STEP model in the following section is explicitly formulated for a two-stage stochas-

tic transmission expansion planning problem. The problem, diagrammed in Figure 4-6, 

has two decision stages and a single uncertainty stage. The first-stage decision, the new 

transmission investments made today, is made in the face of uncertain future generation 

development. The second-stage investment decision is made once the generation uncer-

tainty is realized. This second stage decision is the recourse in the problem. For both 

development work and ease of explanation this algorithm is structured for two stages, but 

it could be expanded to an arbitrary number of decision stages. 

As shown in Figure 4-6, the optimal solution structure for the problem posed has a 

single first-stage plan,   
 , and multiple optimal second-stage plans dependent on the 

realization of generation uncertainty,      

 . The first-stage plans represent the best 

decisions made in the face of uncertainty. In the second-stage, additional lines are select-

ed to adapt the network to the realized generation uncertainty. As also shown in Figure 

4-6, the state variable that the algorithm will be optimizing is the post-decision state 

variable. For transmission expansion planning problems, the post-decision state variable 

reflects the build-out of the transmission system after new lines have been constructed 

but before the uncertainty is realized. In the two-stage problem, the first-stage state-

variable,   , contains only the new transmission build-out. In the second stage, the state-

variable,   , includes both the complete transmission build-out and the generation uncer-

tainty realization as the optimal second stage plan will depend on where generation is 

constructed. 
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Figure 4-6 Optimal Solution Structure and State Variables 

 

The algorithm presented in Table 4-1 minimizes the Bellman costs for first-stage de-

cisions. The classical form of the Bellman equation, balancing current and expected 

future costs, is repeated in Eq. 32. For the MS-TNEP problem, the Bellman costs repre-

sent minimizing the sum of today’s investment costs, expected operational costs and 

future investment and operational costs as shown in Eq. 33. For the two stage problem 

presented in Figure 4-6, the second stage costs are deterministic rather than stochastic, as 

shown in Eq. 35. As a result, Eq. 33 can also be simplified in the first-stage to remove the 

expectation as shown in Eq. 34.  

 

Eq. 32           
     

            [             ]  

Eq. 33                [      ]        [              [           ] ] 

Eq. 34                [      ]        [                   ] 

Eq. 35                      

 

   Bellman value 

   State variable 

  Discount factor 

       Investment costs 

. . .

,
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       Operational costs 

4.2.2 Approximate Value Function 

Most approximation methods operate in the same space as the decision variables. For 

example, a regression is performed on the decision variables as the independent variables 

or the hamming distance is calculated using strings of decision variables. With these 

methods, the dimensionality issues addressed may be caused by the range of values each 

decision variable can take. In the transmission expansion planning, this problem is 

reversed. Each investment variable can take on only one of two values, one or zero; 

however, there may be thousands of variables. As discussed in Chapter 3, these variables 

are not separately-additive and cannot be considered independently. Due to these issues, 

the value function approximation using the methods in Chapter 3 is performed in a 

reduced dimensionality space. 

The transformation from expansion plans into the lower dimensional states are 

straightforward calculates. There are not, however, direct transformations from the low 

dimensionality spaces back to the high dimensionality spaces. For example, if the value 

function approximation uses Method of Moments and regression, the resulting regression 

equation can be optimized, but there is no way to translate directly from the moments the 

optimization identifies back into a transmission expansion plan. Instead, the approach 

taken in the STEP algorithm is to use interpolation to select the best candidate plan 

among a small set. This small set is generated using MILP as will be discussed in 4.2.4. 

4.2.3 Exploration Phase 

The first part of the STEP model is designed to identify areas of the solution space where 

demand is met under generation scenarios. In the explore-exploit terminology, this is the 

exploration phase of the algorithm. No attempt is made to find the globally optimal 

solution; instead, individual plans are identified in each stage which can be built upon 

during the exploit phase of the algorithm. As discussed in Chapter 3, the vast majority of 

randomly selected expansion plans result in high non-served energy costs. To avoid this 

issue, the exploration phase of the ADP algorithm proposed here uses MILP techniques 
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to identify transmission plans with low to zero expected non-served energy costs. Using 

the canyon analogy from Chapter 3, this phase identifies points on the canyon floor by 

optimizing specific scenarios. It then explores nearby areas of the canyon floor to develop 

a map of the low cost spaces.  

The exploration phase of the model proceeds in four steps, outlined in Figure 4-7. 

The first step is the identification of optimal two-stage (or more generally n-stage) 

transmission expansion plans for scenarios. The second step is the identification of 

additional plans with low to zero expected energy non-served (EENS) constructed with 

limited sets of lines. For clarity, these plans with low to zero non-served energy will be 

referred to as valid plans. This terminology is used to indicate that these plans may be 

considered by the system planner; it does not indicate that plans outside this set are 

infeasible from an optimization perspective. With valid plans identified, the third step is 

to calculate estimates of expected operational costs for each state. Finally, with current-

stage contribution cost estimates for each state, Bellman values are calculated. 

 

 

Figure 4-7 Four Phases of the Explorative Phase 

The first step of the explore algorithm is to identify optimal plans for generation ex-

pansion scenarios. This is a straight-forward procedure where a generation expansion 

scenario is randomly sampled and a two-stage MILP optimization is solved for the 

deterministic scenario all potential transmission investments. Because the goal in this 

stage of the algorithm is to explore the solution space rather than find the optimal plan, 

the optimality criteria (e.g. MIP gap) can be very loose, for example 10%. The plans 

identified during the first step of the explore-phase are relatively computationally expen-

sive. These plans are computationally expensive to identify because the full set of 

transmission investments are considered.  

Identify
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Plans

Calculate 

Estimates of 

Expected 

Values

Calculate 
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In the second step of the exploration 

phase, the set of candidate transmission lines 

is reduced to lessen the computational 

burden of exploring the solution space and 

also to force diversity into the resulting 

plans. During this step, shown graphically in 

Figure 4-8, valid plans for scenarios are 

identified as in step one. In step two, howev-

er, the full set of transmission lines is not 

considered for investment. Instead, a subset 

of candidate transmission lines is developed 

based on an existing plan. This is analogous 

to starting from a known position on the 

canyon floor and exploring in a random 

direction. First, a random plan from step one 

is selected and the investments in this plan 

become the set of candidate transmission 

investments. Second, a subset of candidate 

investments are randomly removed and 

replaced with investments from the full set of 

plans. This replacement guarantees that the 

same transmission plan will not be repeated 

in both step one and step two. Finally, these transmission investments are optimized for a 

random generation expansion scenario.  

It is important to note here that the candidate transmission lines must not all be se-

lected for investment in the step two plans. Instead, the candidate lines are the set from 

which the two-stage optimization may select. In essence, the optimization is used to 

identify a reasonable plan from a subset of transmission investments.  Rather than ran-

domly selecting lines, however, the candidate set is based on a known valid plan.  

 

Figure 4-8 One Iteration of the Second 

Step of the Exploration Phase 

Select Two-Stage Plan, p

Create Set of Candidate 

Investments, Xi, from 

Two-Stage Plan, p. 

Randomly remove N 

lines from Xi

Add randomly selected N 

lines from full set of 

lines

Two-Stage Scenario 

Optimization Using Xi

Check for EENS

Save PlanDiscard Plan

yes no
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The valuation of the plans in steps one and two were based on a two-stage scenario. 

The problem at hand, however, is stochas-

tic. In order to value the plans identified in 

step two, the operational costs are evaluat-

ed across randomly sampled generation 

scenarios. These evaluations are completed 

using a DC optimal power flow which is 

computationally inexpensive. For stage 

one, several generation scenarios are 

necessary to develop an expected opera-

tional cost. In the second stage, however, 

each generation scenario and plan combi-

nation reflects a new state. 

Finally, in the fourth step of the explo-

ration algorithm, the Bellman values are 

calculated for each state. As discussed in 

4.2.1, the Bellman values for the final time 

stage are the investment and deterministic generation costs for each plan and scenario 

combination. The Bellman values for the first-stage include the expected current and 

future stage contributions and are calculated recursively. 

4.2.4 Exploitation Phase 

The second half of the algorithm exploits the knowledge gained during the exploration 

phase to optimize decisions. The exploration phase generally follows the double-pass 

algorithm described in Table 4-1.  The forward pass of the algorithm samples a path 

through the tree, and the backward pass evaluates those states sampled in the forward 

pass and updates the problem information. Like the exploration phase of the algorithm, 

the exploitation phase also uses MILP techniques to identify valid solutions. In the 

exploration phase, however, the MILP techniques are combined with interpolation to 

select plans with high expected values.  

 

Figure 4-9 Process for the Generation of 

Additional Valid Plans 

Select Plan for period t

Sample generation 

scenarios, wt

Solve load flow

Save operational cost for 

plan, p, and uncertainty 

scenario, wt.

Calculate Expected 

Value for State



 

119 

 

The first step of the forward pass, 

shown in Figure 4-10, creates a set of new 

transmission investment candidates for 

consideration.  First, the lowest-cost (Top 

N, where N is a parameter set for individ-

ual problems) plans are tested for 

feasibility given the current state. During 

the first planning stage, all future trans-

mission plans are possible because no new 

transmission has been built. During the 

second planning stage, however, some 

future plans will not contain all of the lines 

from the first-stage plan. Because trans-

mission lines are not removed from 

service, these plans are not feasible for the 

second stage decision. For example if a 

500kV line appears in the stage one plan, 

all feasible second stage plans must contain that same 500kV line. As shown in Figure 

4-11, the algorithm here identifies two random feasible plans included in the Top N 

plans. If there are fewer than two feasible plans, random plans are sampled from the Top 

N plans. The new investments from the two sampled plans are then combined to create a 

candidate investment set.  

 

Figure 4-10 Overview of forward pass 

Create Set of Candidate 

Investments from Plans

Sample generation 

scenarios, wt
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Figure 4-11 Selecting a Set of Candidate Lines 

 

With the set of candidate investments selected, a series of candidate transmission 

plans are created. These plans are created by iteratively optimizing the same set of 

candidate investments for different deterministic generation scenarios. In the second-

stage, only a single plan needs to be created as the plan is for a deterministic state. If the 

problem is sufficiently large such that the two-stage optimization requires an unreasona-

ble time, simplifications such as using a transportation power flow model in the second 

stage, could be explored. These simplifications are allowable because only the selections 

from the first-stage are retained from the optimization, and the second-stage is included 

in the optimization to prevent the algorithm from greedily choosing lines for the current 

stage and ignoring future investment and operational costs. 

Up to this point, the ADP algorithm proposed has not followed the structure pro-

posed of the standard double-pass algorithm. In the standard approach, the exploit-phase 

of the algorithm would simply optimize the approximate value function to identify a 

single new sample rather than identify several candidates for exploration as done here. 

The reason for this is straightforward.  As discussed in, Chapter 3 identifying the small 

subset of valid plans is a non-trivial problem, even when starting from an existing valid 
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plan.  Thus, both the exploratory and early steps of the exploit algorithm are intended to 

identify the valid regions of the search space, a step which ordinarily does not need to be 

undertaken. The candidate plans identified in this section are not guaranteed to be valid; 

however, because the set of lines are derived from two valid plans, the probability of non-

served energy is low. 

From this point in the algorithm, the more standard double-pass algorithm is fol-

lowed. With several candidate plans identified, interpolation is used to select the plan 

with the highest expected value. At this stage, there is a trade-off between the number of 

candidate plans identified during each iteration and run-time. With more candidate plans, 

interpolation can be more effectively used, requiring fewer total states to be explored. 

The identification of plans, however, requires solving a MILP which is computationally 

expensive compared to running the optimal power flows used to assess plans once 

selected. The balance will need to be tuned for individual problems. Again, in the final 

deterministic stage, only a single optimization is completed as there is no uncertainty and 

interpolation is unnecessary. 

The backward pass evaluates the plans selected in the forward pass and updates the 

expected stage cost contributions and Bellman values. As shown in Figure 4-12, the 

backward pass has five steps. If the state is new, e.g. the state has not yet been selected 

for evaluation, the interpolation database is updated to include the new state. Next, an 

estimate of operational costs is calculated. This estimate includes running new optimal 

power flows and updating the previous estimate of operational costs. While there are 

several ways to update the estimate, the values here are averaged as shown in Eq. 36. 

With updated operational cost estimates, the Bellman values can be updated as shown in 

Eq. 37. The second stage costs are only updated if the estimated cost for the second-stage 

is lower than the current best. Finally, with new Bellman values, the list of Top N plans 

can be updated. 

 

Eq. 36   ̂ (  
 )    ̂      
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Eq. 37  ̂ (  
 )    ̂ (  

 )       
         [  (     

 )    ̂ (     
 )] 

 

  iteration 

  number of times state    
   has been selected 

    operational costs found during iteration i 

 ̂ (  
 ) 

Estimate of the Bellman cost for the stage one stage 

selected in iteration given iteration i 

  ̂ (  
 ) 

Estimate of the operational costs for the stage one 

stage selected in iteration given iteration i 
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Figure 4-12 Backward Pass 

 

At first blush, it may seem odd that a new estimate of operational costs is calculated 

during the backward pass. After all, the optimization used in the forward pass to identify 

candidate plans is optimizing the sum of operational and investment costs. Using these 

costs, however, would never provide a good estimate for the operational costs and would 

result in a systematic bias toward plans optimized for high renewable energy. The crea-

tion of this bias is demonstrated in Figure 4-13. Assume that for some problem, there are 

only two generation scenarios, one with high renewable energy penetrations and one with 
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low renewable energy penetrations.  The optimization in the forward pass will produce 

two plans, one roughly optimized for the high scenario and one for the low scenario. 

Assuming both plan are valid, the interpolation should select Plan A as it will have a 

lower total cost. These lower costs results from the fact that operational costs dominate 

investment costs and the new renewable energy generators have zero operational cost. 

While Plan B may have a better expected value, it is never evaluated for the high penetra-

tion scenario and Plan A is never evaluated for the low penetration scenario. By sampling 

generation scenarios to update the operational costs, the plans are explicitly evaluated 

under different generation scenarios and the bias in operational costs is mitigated.  

 

 

Figure 4-13 Process for Creation of Bias in ADP Algorithm 

 

4.3 Evaluation of the STEP Model 

The STEP model’s performance was assessed on a demonstration-scale problem. This 

problem, described in 4.3.1, was also solved using a Branch and Bound algorithm to 

benchmark the STEPP model. These results are presented in sections 4.3.2 through 4.3.4. 
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Across sections, the first-stage plans are used for cost comparison and analysis. These 

first-stage plans are used because they are the actionable decisions produced by the 

model. After stage-one decisions are made, the state is reassessed and the model is rerun 

to identify new stage-one decisions. Section 4.3.2 compares the cost obtained by the 

branch and bound solution to those obtained by the STEP model. Section 4.3.3 examines 

the composition of the lowest cost plans and convergence of the STEP model is discussed 

in 4.3.4. For the test problem described in 4.3.1, the STEP model was executed according 

to the parameters in Table 4-2. 

Table 4-2 STEP Model Parameters 

Exploratory Phase Replace-

ment Coefficient 
20 

Number of Top Plans Tracked 30 

Exploration Iterations 
206  

(time limited to 1,000 seconds) 

Exploitation Iterations 5,000 

Candidate Plans for  

Interpolation 
2 

Optimality Gap for MILP 

optimization 
10% 

 

4.3.1 Test System 

The STEP model was evaluated on a small-scale demonstration problem. This test 

problem follows the structure outlined in Figure 4-14 with two decision stages and one 

uncertainty stage. The base test system is the same 240 bus WECC model used in both 

Chapter 2 and Chapter 3. As in Chapter 3, only reinforcement investments in existing 

corridors were considered. For this test system, however, both 345kV and 500kV invest-

ments were included for a total of 440 potential investments.  The two uncertainty 

scenarios modeled reflect 25% and 50% investment in top 10 WREZs, and a single load 

hour is modeled for each decision stage. Again, this test system is intentionally small 

such that the STEP results can be benchmarked using existing methods. 
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Figure 4-14 Optimal Solution Structure for STEP Test Problem 

 

To provide the benchmark solution, the test problem was formulated as a determinis-

tic equivalent and solved using the CPLEX Branch and Bound algorithm. The solution 

identified obtained using Branch and Bound algorithm had an optimality gap of 1.05%. 

In addition to solving the stochastic problem, the two-stage scenarios were also solved.  

For the test problem, the stochastic solution differs from the two scenario results. Each of 

the plans include a common set of 16 transmission lines; however, as shown in Table 4-3, 

both scenario plans both include lines not in the stochastic solution and excluded lines 

present in the stochastic solution.  

Table 4-3 Comparison of Stochastic and Scenario Stage-One Results 

 Scenario 1  
(50%  generation) 

Scenario 2  
(25%  generation) 

Stochastic 

Number of Lines 31 24 25 

Lines in Scenario but not 

Stochastic 
11 6  

Lines in Stochastic but not 

Scenario 
5 7  

 

 

  

T=0 (present) T=10 years T=25 years
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4.3.2 Cost of Plans 

The STEP model identifies a first-stage solution with a total expected cost 0.03% higher 

than the optima branch and bound solution. In the MS-TNEP problem, this difference is 

negligible due to the simplifications made in the model. As shown in Figure 4-15, the 

cost of the best plan in the STP model improves from 1.7% of the theoretical lower 

bound cost provided by the branch and bound optimization to 1.1%.  Likewise, the mean 

cost of the Top 30 plans reduces from 2.3% to 1.2%. 

 

Figure 4-15 Cost Comparison of STEM and Branch and Bound Solution 

 

While identifying the optimal plan for a stage-one expansion plan is a useful bench-

mark, there are many plans with similar costs. As shown in Figure 4-16, 19% (215) of the 

1,136 plans are within 2% of the theoretic lower bound. Realistically, the mid-term and 

long-term planning models do not have sufficient operational details to differentiate 

between these plans. As a result, it is more useful to examine the key features, common 

lines or structures of the best performing plans than consider only the optimal solution.  
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Figure 4-16 Distribution of Expected First-Stage Costs 

 

4.3.3 Composition of First-Stage Plans 

As discussed both in Chapter 3 and above in section 4.3.2, transmission expansion plans 

developed by models such as STEP will require further analysis due to their limited 

operational detail and siting concerns. Because operational-reliability constraints will 

likely require modifications to the plan produced by such models, the patterns of invest-

ment across the lowest-cost plans are more important the specific expansion plan.  
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and exploitative phases of the STEP model.  During the exploratory phase of the model, 
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possible investments 81% from 440 to 84. The exploitative phase of the algorithm then 

reduces the number of transmission investments again from 84 to 36. This process is 

shown iteratively in Figure 4-17. 

 

Figure 4-17 Reduction in the Number of Potential Transmission Investments 

 With 36 possible investments, there are still 2
36

 possible transmission expansion 

plans. As shown in Figure 4-18 and Figure 4-19, the 36 transmission investments are not 

used in equal frequency across the plans. In this smaller set of potential investments, 44% 

(16) are used across all Top 30 first-stage plans. These investments, shown in Figure 

4-23, are regional reinforcements rather than an east-west or north-south connection 

across large geographic areas. These east-west corridors, however, emerge when the lines 

appearing in at least 50% or 75% are added to the transmission maps as shown in Figure 
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Figure 4-18 Distribution of All Trans-

mission Investments 

 

Figure 4-19 Distribution of the Most 

Frequent Transmission Investments 
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Figure 4-20 All Lines in the First-Stage 

Top 30 Plans 

 

Figure 4-21 Lines in at least 50% of Top 

30 First-Stage Plans 

 

Figure 4-22 Lines in at least 75% of Top 

30 First-Stage Plans 

 

Figure 4-23 Lines in All Top 30 First-

Stage Plans 
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4.3.4 Convergence 

Convergence in the STEP model can be examined both in the first-stage decisions and the 

cost of these first-stage decisions.  As shown in Figure 4-15 in 4.3.2, the mean cost for 

the Top 30 Plans converged after 3,420 iterations. The first 1,500 samples accounted for 

most of the change in the cost, approximately 1% drop, while the remaining 3,500 

samples accounted for only a 0.1% additional drop in cost. In the action space, the set of 

Top 30 plans for the first-stage does not conclusively converge. The last change in the set 

occurs after 4,460 of 5,000 iterations as shown in Figure 4-24.  While the set of Top 30 

plans continue to change, these changes have minimal effect on the costs, and as dis-

cussed in 4.3.3, there are only 36 lines to select between for the final 3,000 iterations. As 

a result, the structure of the new plans will not change significantly. 

 
Figure 4-24 Action Convergence 

Changes Tracked Across Groups of 10 Iterations 
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the Markov state-based Approximate Dynamic Programming framework. The STEP 

model adapts a double-pass ADP framework to include the interpolation methods devel-

oped in Chapter 3. In the model, mixed integer linear programming is used to identify 

new plans, and the interpolation techniques from Chapter 3 to choose amongst these 

potential plans.  

The STEP model was tested on a demonstration-scale problem. The demonstration 

problem included 440 potential transmission investments, two decision stages and two 

uncertainty scenarios. In this problem, the STEP model identified a first-stage transmis-

sion expansion plan with a cost 0.03% higher than the optimal plan identified using a 

branch and bound solver.  The STEP model also identified 215 first-stage expansion 

plans within 2% of the theoretic lower bound. These low-cost plans all include a set of 16 

transmission lines and the 30 lowest-cost plans use a total of 36 lines. These results 

mirror the results from the St. Clair Screening Model in Chapter 2 where a small number 

of lines are used across of scenarios and most potential investments are not used.  

There are many future research directions for the STEP model. The major research 

thrust should be directed on increasing the size of the test system. The model here was 

tested on a demonstration-scale problem with a single load hour and two uncertainty 

scenarios. To understand the model’s behavior, experiments should be conducted with 

increasing numbers of both load hours and uncertainty scenarios. Furthermore, a single 

approximation technique was tested; however, Chapter 3 includes several additional 

options for exploration. Finally, the effects of the model parameters should be explored. 

These trials include exploring the trade-offs of tracking fewer or greater plans in the set 

of top solutions and varying the lengths of the exploration and exploitation phases.  
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5. Conclusions  

The development of location-constrained generation resources, integration of electricity 

markets and increasing connectivity between regional electric systems are forcing trans-

mission planners to consider larger areas than ever before. Rather than areas the size of 

European countries or states in the United States, transmission planners are planning for 

areas the size of continental Europe or west of the Rocky Mountains in the Unites States. 

Complicating the planning is the uncertainty in the development of new location-

constrained generation, especially wind and solar generation. Transmission lines are large 

capital investments, characterized by their economies of scale, which are made in context 

of an ever evolving electric system. Planning these lines requires trading off these econ-

omies of scale and the uncertainties in the ever evolving power system.  The tools to 

support this multi-stage stochastic wide-area transmission expansion planning, however, 

do not yet exist.  

This dissertation presents the framing and building blocks to develop these tools by 

blending both heuristic and mathematical programming approaches. The wide-area multi-

stage stochastic transmission network expansion planning problem (MS-TNEP) is 

challenging from an algorithmic perspective due to lumpy investments, physically driven 

network flows and dimensionality. For n transmission investments, there are 2
n
 unique 

transmission expansion plans possible. Reducing this dimensionality is key to developing 

tools for realistically sized MS-TNEP problems. To manage the dimensionality of the 

problem, this work develops a screening model, interpolation methods and an approxi-

mate dynamic programming model. 

5.1 Dissertation Summary  

The first building block is the St. Clair Screening Model, a tool to reduce the number of 

transmission investments for consideration. In small systems, expert judgment can be 

used to select a small number of investments for consideration. In wide-area planning, 

however, there are too many possible network configurations and investments to manual-

ly screen the investments. The St. Clair Screening Model, developed in Chapter 2, 
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combines linear optimization and generation sampling to identify corridors, paths be-

tween two nodes, and lines, specific investment types in each corridor, for future 

investment. In a test system, the St. Clair Screening Model was able to reduce the number 

of corridors of interest by 95%, from 13,695 to 629. The model also reduced the number 

of investments by 97%, from 41,085 to 1,081. 

In addition to reducing the number of corridors and lines for consideration, the St. 

Clair Screening Model provides information about the frequency of investment in indi-

vidual corridors.  In the test study, 41 corridors were identified with development in at 

least 90% of scenarios. These 41 corridors connected both existing system nodes as well 

as nodes with new location-constrained generation potential. The corridors which inter-

connect nodes with new generation potential, representative of geographic regions with 

wind and solar resources, are advantageous to develop as they lie along economically 

advantageous pathways. These corridors may be considered robust and emphasized in 

future planning studies. 

The second building block is interpolation methods to guide heuristic searches. Even 

with the reduction of investments made through the St. Clair Screening Model, the MS-

TNEP problem is too large to solve via traditional methods. Instead, Chapter 3 combines 

dimensionality reduction and interpolation techniques to predict the cost and ranking of 

new transmission expansion plans. The dimensionality reduction techniques, Method of 

Moments and Principal Component Analysis, are drawn from the image recognition 

algorithm. These choices were inspired by the ease of pattern recognition in transmission 

maps and their ability to reduce the dimensionality of the problem from a function of the 

number of lines, 2
n
, to 10. To interpolate within the reduced dimensionality spaces, the 

dimensionality reduction techniques were paired with both regression and nearest neigh-

bor techniques. When combined, these methods were able to select the lower cost 

transmission plans in over 80% of trials and at best, predict costs within 14%.  

Finally, the third building block is a heuristic algorithm to embed the methods devel-

oped in Chapter 4. The framework developed here is based on Approximate Dynamic 

Programming (ADP). ADP manages dimensionality by combining Monte Carlo methods 
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with value function approximation. The STEP model developed in Chapter 4 uses mixed-

integer linear programming techniques to identify transmission plans with low non-

served energy and then selects high value plans through the interpolation techniques from 

Chapter 3. In a limited test problem, this model was able to identify a transmission 

expansion plan with costs within 0.15% of the optimal plan identified using a determinis-

tic equivalent mixed-integer linear program.  

5.2 Policy Implications 

This dissertation demonstrates the feasibility of algorithmic wide-area transmission 

planning. Although this particular piece of work focuses on developing tools for plan-

ning, further works can and will add the necessary operational detail to produce 

transmission expansion plans for full power systems. The modeling discussed in this 

work focuses on reframing the transmission expansion planning question from one of 

local reinforcement to one of broad patterns of investment. Both the reframing of wide-

area planning and the demonstration of tools for wide-area planning carry implications 

for policymakers focused both on regional and wide-area network design.  

The first major policy implication is that transmission expansion planning on a real-

istic scale is within reach. Until this point, decision makers have relied on plans put 

together using expert judgment from stakeholders; however, this work demonstrates that 

neutral decision support models can be developed to guide the policymaking. Unlike 

existing models which are designed for generation expansion and have very coarse detail 

of the grid, the St. Clair and STEP models are specifically designed to capture the trans-

mission system. 

This work also demonstrates the feasibility of looking beyond scenario analysis to 

planning a network robust to future generation development. Most planning authorities 

produce a variety of scenario-specific transmission plans; these scenarios often result in 

very different network topologies which are narrowly tailored for the scenario. Instead, 

this work demonstrates that networks can be planned to provide value across future 
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generation scenarios and that oversight authorities should request the development and 

use of models which move beyond single scenarios. 

Finally, for both regional and wide-area policymakers, the results from the St. Clair 

filter provide a set of corridors which are consistently developed across scenarios. These 

robust corridors provide a means of proactive planning for decision makers and can be 

made a regional or national priority. For each corridor identified, environmental, litigious 

and siting decisions can be identified and resolved early. 

5.3 Future Work 

In addition to the detailed future research recommendations given in each chapter, there 

are three broad areas of future work for all tools developed in this dissertation: more 

realistic systems, exploring a greater number of uncertainties, and finally increasing the 

speed of each algorithm’s executions.  

The building blocks developed in this work have been created to solve real-world 

problems for real-world systems. As first-of-a-kind tools, they were designed and tested 

on demonstration scale problems with limited operational details. Future research should 

focus on testing and refining these tools on larger systems. These test systems should 

include greater technical detail, for example losses, and also a greater number of load 

hours.  

The research in this dissertation was also specifically motivated by the growth of lo-

cation-constrained generation and its impact on the transmission network.  There are, 

however, a great number of uncertainties which affect the value of transmission invest-

ments. These range from the retirement of current generators and changes in fuel prices 

to changing load patterns. The effects of these other sources of uncertainty should be 

included in research going forward.  

Finally, the computation time for the St. Clair Screening Model and STEP model 

could be reduced. The prototype codes developed for the research here were not well 

automated and their efficiency could be dramatically improved upon. The speed could be 
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increased both through parallelization and also through pre-computation of constants, 

such as the moment values for each transmission investment.  
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Appendix  A. Map Generation for Method of Moments 

Before the moments can be calculated, the transmission expansion plan must be convert-

ed to an image. For this process, the latitude and longitude of each bus in the system must 

be known in radians. First, the origin is set to the geographic center of the transmission 

network; the origin may also be set to another point, for example the geographic centroid 

of the buses. In the image or graph of the transmission expansion plan, all locations are 

defined in reference to the origin.  The units of x and y in Eq. 29 are unique to the image 

study; for a given image they be pixels, inches, millimeters, etc. The natural units for 

transmission expansion planning are miles such that an arbitrary unit of one is equal to 

one mile. To minimize the distortion of translating distances across the continental scale 

from the spherical latitude and longitudinal coordinates to Cartesian coordinates, the 

Haversine Formula is used and shown in Table 6-1. The Haversine Formula calculates 

distances between points on the surface of a sphere rather than straight line distances 

which pass through the volume of the sphere.  

Table 6-1 Transformation of Latitude and Longitude to Cartesian Coordinates 

      (   ⁄ )
 

                      (   ⁄ )
 

 

                  √ 
 

         

                      

         

Rearth=3965 miles 

l0: latitude or longitude coordinate of the origin (radians) 

l1: latitude or longitude coordinate of the bus (radians) 

 

For transmission planning, f(x,y) was reinterpreted to represent the capacity of a 

transmission line. The weighting function for each new line, fk(x,y), was calculated to be 

the total capacity of a line divided by its length as shown in Eq. 38.  This weighting was 

used to reflect the physical properties of a transmission network. As will be expanded 
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upon below, when integrated with the weighting function, moments reflect the quantity of 

new transmission capacity in geographic areas.  

 

Eq. 38          
      

       
 

 

With the weighting above, each transmission line can be conceptualized as a rectan-

gular prism. The length of the prism is given by the x and y coordinates and the height of 

each prism is given by the weighting function given in Eq. 38.  Both of these dimensions 

are indicative of physical quantities – the length of the line and the capacity of the line. 

The width of the rectangular prism, however, is not representative of a physical quantity 

and is set to one in order not to distort the physical representations. In the given reference 

frame, this implies each transmission line (or right of way) is one mile in width, while 

rights-of-way typically range from 150 to 200 feet [2].  The width values, shown as w in 

an example calculation of the zeroth moment for a 1,000 MW 100 mile line in Table 6-2, 

serve to scale the result.  As a result, w may be thought more of as a scaling factor.   

Table 6-2 Calculation of Zeroth Moment for Arbitrary Line shown in  
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Appendix  B.  Depth First Search Transmission Plan Generation 

A set of sample transmission expansion plans is required to test the dimensionality 

reduction and interpolation techniques. Ideally, the set of sample transmission plans 

should be characterized by a diversity of network expansion plans and each plan should 

be characterized by an expected cost across multiple generation expansion scenarios. 

Identifying a diversity of viable transmission expansion plans in a time-effective manner, 

however, is a non-trivial problem. In this context, a viable plan is one with very little or 

no non-served energy. A wide-area planning problem with 1,000 candidate lines, for 

example, has 2
1,000

 or 10e30 potential transmission expansion plans; however, due to the 

networked and non-linear properties of the transmission system only a small subset of 

these possible expansion plans are viable.  

Any method used to generate the sample transmission expansion plans must satisfy 

the competing demands of identifying a diversity of transmission expansion plans and 

only identifying viable plans. Instead of a purely random approach, the approach used 

here combines a depth-first search (DFS) for non-served energy and a traditional integer 

formulation of the optimal. The DFS avoids repeatedly sampling sets of transmission 

lines which are cannot produce viable plans and the use of the optimization algorithm 

ensures that the plans selected will be both viable and have relatively low expected total 

costs.  By selecting only viable plans with low expected costs, the dimensionality reduc-

tion techniques can be used to identify features which differentiate good plans from best 

plans. 

Diversity is introduced into the set of sample transmission expansion plans in two 

ways. First, the set of candidate lines that the optimization algorithm may consider are 

repeatedly randomly partitioned. The random partitioning introduces diversity by forcing 

the optimization to select from different sets of lines. Second, the generation expansion 

scenario considered by the optimization algorithm is varied. Thus, for the same random 

set of transmission lines, multiple plans may be constructed by optimizing for different 

future generation scenarios. The full process is outlined in Figure 6-1 and is discussed 

step-by-step in the following sections.  
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Figure 6-1 Outline of Depth-First Search for Non-Served 

Energy 

 

 The first step of the process is to build a binary search tree using the full set of can-

didate lines. As shown in Figure 6-2, the tree is constructed by randomly partitioning the 

set of candidate lines at each branching step.  For example, at the first branching point, 

the full set of candidate transmission lines are randomly divided into two groups. Follow-

ing the right branch of the tree in Figure 6-2, this set is then again randomly divided into 

another two sets. This process is repeated a third time. The tree shown here as a depth of 

three, however, trees may be constructed to other depths depending on the number of 

candidate transmission lines under consideration. The greater the depth of the tree, the 

faster the optimization algorithm will be able to solve the lower leaves on the tree and 

potentially higher diversity will be introduced into the set of sample transmission expan-
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sion plans. On the other hand, at higher depths, the number of candidate lines in each set 

is reduced and the likelihood that no viable plan can be identified with the progressively 

smaller sets of lines is increased. 

 

Figure 6-2 Binary Search Tree Composed of Randomly Partitioned Sets of Lines 

 

Once the tree is constructed, a depth-first search is conducted for non-served energy. 

Within the depth-first search, specific plans are identified and evaluated through a 

combination of a deterministic and integer transmission-network expansion optimization 

and an optimal power flow as outlined in Figure 6-1.  Each node or leaf in the tree 

contains a set of candidate transmission lines, not a complete transmission expansion 

plan. The candidate transmission expansion lines from each set are optimized with a 

deterministic generation expansion scenario to determine a specific transmission expan-

sion plan. If the plan has no non-served energy, the plan is added to the sample set. If the 

plan produced by the optimization has non-served energy, the plan is discarded and the 

tree is pruned to remove the all child nodes of the parent with non-served energy.  The 

pruning prevents the search algorithm from testing subsequent sets of candidate lines 

which are guaranteed to produce non-served energy as they strictly contain subsets of the 

same candidate lines.  When the tree has been fully explored, a new tree is constructed 

with freshly randomized sets of candidate lines. 
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Multiple generation scenarios are used to incorporate stochasticity into the cost of 

and create diversity in the set of transmission expansion plans. In the second step of 

Figure 6-1, a random generation scenario is selected to combine with the set of candidate 

transmission lines. The rational for this step is two-fold. First, optimizing for different 

generation scenarios with the same set of lines will produce different transmission 

expansion plans, inducing diversity in the sample set. Second, solving the MILP is faster 

for deterministic rather than stochastic problems. The motivation for this work, however, 

is to solve a stochastic problem and interpolate between the expected value of different 

plans. In order to incorporate stochasticity, each transmission plan in the set is assessed 

using an optimal power flow across the full set of generation expansion scenarios. This 

method produces an expected total cost across many possible  future generation scenari-

os. The cost for each transmission plan accepted is the sum of the expected generation 

cost and the transmission investment cost.  

B.1 Disjunctive Formulation  

The transmission network expansion planning problem with a DC load flow is a non-

linear mixed or binary integer problem. The non-linearity arises from the flow equation 

for new lines, shown in Eq. 39, where the voltage angles    and    are continuous varia-

bles are multiplied the integer investment variable x. Given the difficulty of solving the 

mixed-integer non-linear problem, commonly used formulations of the TNEP transform 

the problem to a binary-integer linear problem using a Big-M disjunctive formulation. 

 

Eq. 39      (     )   

 

The Big-M disjunctive formulation of the transmission linearizes the flow equation 

using a fictitious variable to effectively turn on or off equations with binary variables.  

The basic disjunctive formulation is given in equations (Eq. 42 - Eq. 8) and the disjunc-

tive formulation is applied to linearize the flow equation for new lines (Eq. 46 - Eq. 47). 

When a new line is selected, flow is constrained by the maximum possible flow on that 
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line and Big-M constants are multiplied by zero and have no impact. When a line is not 

selected, however, the problem may be artificially constrained.  For example, assume the 

M value of a given candidate is set to zero and the line is not selected by the optimiza-

tion. The total flow on the line is constrained to zero by (Eq. 5). In this case, the flow 

equations reduce from Eq. 46 and Eq. 47 to Eq. 40 and Eq. 41. As seen in Eq. 41, a zero 

M value constrains the voltage angles at the termini of any non-selected line to be equal.  

In order not to constrain the nodal voltage angles, an M value must be chosen which is 

larger than the maximum possible difference in voltage angles divided by the reactance.  

 

Eq. 40         
  

⁄  (               )    

Eq. 41   (               )    

 

The basic disjunctive formulation may be tightened by re-formulating the flow in 

new lines as the sum of its positive and negative components.  For these new flow 

equations, the difference in nodal voltage angles is also divided into its positive and 

negative. In this formulation, Eq. 46 and Eq. 47 are divided into four new constraints (Eq. 

55-Eq. 59). Two additional constraints, Eq. 59 and Eq. 60, are added to constrain the flow 

and difference angles to be the sum of their positive and negative components. This is the 

disjunctive formulation used here, coded in GAMS and solved with the base CPLEX 

Branch and Bound solver. 

 

Basic Disjunctive Formulation 

Eq. 42 
            ∑∑(               )

 

   

 

   

  

 
s.t.  

Eq. 43 
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 ∑       
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Eq. 44       
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Eq. 47       
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Eq. 48 
          i=1,…,I 

Eq. 49 
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Eq. 50 
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Complete Disjunctive Formulation 

Eq. 51 
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Eq. 55     
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Eq. 57     
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Eq. 59 
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Eq. 60 
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Eq. 61 
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Eq. 62 
          

    n=1,…,N 

Eq. 63 
        

    k=1,…,K
0
 

 

Indices and Sets: 

i index of buses 

k index of  circuits 

i(k), j(k) index of terminal buses of circuit k 

h index of load hours 

n index of generators 

K+ set of candidate circuits 

K
0
 set of existing circuits 

Ωi set of all circuits connected to node i 

σi set of all generators located at node i 

H number of load hours 

I number of buses 

M number of candidate circuits 

N number of generators 

 

Parameters/Constants 

cg generator costs [$/MW] 

ct annualized cost of candidate circuits [$] 

cμ cost of non-served energy [$/MW] 

d bus demands [MW] 

f
max

 circuit capacities [MW] 

g
max

 generator capacities [MW] 

X circuit reactances [pu] 

M Big-M constant [pu] 

b per unit base 

 



 

158 

 

Free Variables 

θi,h bus voltage angle 

 

Positive Variables 

fk,h circuit flow [MW] 

f
+

k,h positive flow component (from i to j) [MW] 

f
–

k,h negative flow component (from j to i) [MW] 

θ
+

k,h
 

positive bus voltage angle component across circuit k 

θ
–

k,h
 

negative bus voltage angle component across circuit k 

gn,h generator output [MW] 

μi,h non-served energy [MW] 

 

Binary Variables 

xk investment variable 

B.2 Calculation of M Values 

The disjunctive formulation of the binary integer linear model requires calculation of 

appropriate Big-M constants. As demonstrated previously, under-sizing of M values can 

artificially constrain the planning model; however, over-sizing of is also problematic, 

potentially ill conditioning the problem and slowing Branch and Bound searches [8]. 

Optimal M values then are as small as possible without creating artificial constraints. 

From Eq. 41, M must be greater than the reactance of a candidate line multiplied by any 

given value of voltage angle difference,    minus   . As the reactance is a constant value 

for each investment, the minimum value of M is given by the maximum difference in 

voltage angles across the candidate line’s terminuses.  

In corridors connecting two nodes in an already well-connected system, the maxi-

mum angular difference is constrained by the characteristics of existing lines. For lines in 

this type of corridor, the provable minimum value of M can be calculated using a shortest 
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path problem based on the Ck value from Eq. 65 for each existing line. This minimum 

value can also be tightened as an algorithm proceeds. 

 

Eq. 64 
  

     

 
    (               ) 

Eq. 65    
  

     

 
 

 

Methods to identify M values for corridors connection new nodes into an existing 

well-connected system or connecting multiple well-connected systems were developed in 

the context of reinforcing and expanding small systems. In [8], Binato proved that 

minimum values in these cases can be calculated by solving a longest path problem. In 

this context, the cost of each arc is equal to the maximum angular difference possible 

across the transmission corridor. One common method of calculating a longest path 

problem is to multiply costs, in this case angles, by negative one and then solve the 

shortest path problem. Viewed as a graph, however, the transmission network contains 

many cycles. To avoid infinite loops [39] suggests a heuristic of summing maximum 

angular differences as between each set of nodes as an upper bound.  

This approach implicitly assumes a small system. For stability reasons, differences in 

voltage angles never exceed 180 degrees in a system and the maximum voltage between 

two nodes is 90 degrees.  Voltage angles, even across long lines, typically do not exceed 

40 degrees. In a wide-area system, or a system of realistic size, this heuristic will dramat-

ically overestimate the minimum M value. For example, if a system has 100 candidate 

lines in unique corridors and 100 existing lines, a 1 degree difference across each line 

would produce an M value of 200 degrees, well above the absolute maximum value 180. 

For wide-area planning problems with new generation areas, a more useful heuristic 

would be to assume a maximum angular distance of 180 degrees.    

 


